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Abstract: Biomimetic robotic fish systems have attracted huge attention due to the advantages of
flexibility and adaptability. They are typically complex systems that involve many disciplines. The
design of robotic fish is a multi-objective multidisciplinary design optimization problem. How-
ever, the research on the design optimization of robotic fish is rare. In this paper, by combining
an efficient multidisciplinary design optimization approach and a novel multi-objective optimiza-
tion algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named
IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the pro-
posed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel
multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization
algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied
to the design optimization of the robotic fish system, and the robotic fish system is decomposed
into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The com-
putational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics
characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce
the CFD method’s computational expense. The optimization results indicate that the optimized
robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA
strategy’s effectiveness.

Keywords: robotic fish; optimal design; multi-objective optimization; multidisciplinary design
optimization; computational fluid dynamics (CFD); artificial neural network; conceptual design

1. Introduction

Most conventional autonomous underwater vehicles (AUVs) use propellers for propul-
sion [1], but this propulsion mode has some disadvantages, such as poor concealment
and low efficiency. Due to the evolution over millions of years, fish can perform fast
and very efficient swimming motions [2]. Moreover, appealing morphological properties
for moving through the water with prominent speed and maneuverability indicate that
the biological features and locomotion abilities of fish can be used to design biomimetic
robotic fish. As a new conceptual AUV, the robotic fish has the advantages of flexibility and
adaptability, and it can be defined as an intelligent underwater propulsion system, relying
on oscillatory and undulatory motions to move through the water [3,4]. A robotic fish is
typically a complex system that involves many disciplines. Its design is a multi-objective
and multidisciplinary problem.

Multidisciplinary design optimization (MDO) provides an effective way for solving
conceptual design problems of complex systems [5]. Using MDO approaches, complex
systems can be decomposed into several disciplines (or subsystems), and the interactions
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between disciplines are well considered [6]. Therefore, the optimal design scheme can be
obtained, and the design cost can also be reduced to a great extent. Many well-known
MDO approaches have been proposed in the past few decades. These MDO approaches
can be classified into two categories: monolithic approaches and distributed approaches.
Monolithic approaches, including multidisciplinary feasible (MDF), all-at-once (AAO)
and individual discipline feasible (IDF), only have one optimizer in the system layer for
optimization, and there is only analysis in each discipline [7]. Distributed approaches
such as collaborative optimization (CO) [8], concurrent subspace optimization (CSSO) [9]
and bilevel integrated system synthesis (BLISS) [10] have an optimizer at the system layer
and the discipline layer for optimization. MDO has been increasingly applied to solve
the conceptual design problems of underwater robots in recent years. Luo and Lyu [11]
applied CO with particle swarm optimization algorithm (PSO) to the hydrodynamics
performance optimization of an autonomous underwater vehicle. Chen et al. [12] divided
the optimal design of an AUV into three disciplines, including control discipline, hydro-
dynamics discipline, and power and mass distribution discipline, and the MDF method
was adopted for the conceptual design of the AUV. By combining the PSO algorithm and
the MDF approach, Bidoki et al. [13] presented a PSO-MDF strategy and applied it to the
multidisciplinary design optimization of an AUV. Zhang et al. [14] applied a concurrent
subspace design (CSD) approach to establish the MDO architecture of an intelligent ocean
exploration underwater vehicle, and then they applied the surrogate model to reduce the
computational cost of the MDO problem.

The above applications focused on solving single-objective optimization problems
(SOPs). However, there are usually several conflicting optimization objectives in the
design optimization process of underwater robots; these problems are multi-objective
optimization problems (MOPs). As for MOPs, the performance improvement of one ob-
jective often leads to the performance reduction of other objectives, and it is difficult to
obtain the optimal solution for multiple objectives simultaneously. Thus, there is a set
of compromise solutions, which is called the Pareto optimal solution set [15]. In the past
few decades, many multi-objective optimization algorithms have been proposed to solve
MOPs, including non-dominated sorting genetic algorithm version 2 (NSGA-II) [16], region-
based selection in evolutionary multi-objective optimization (PESA-II) [17], multi-objective
particle swarm optimization (MOPSO) [18], multi-objective grey wolf optimization algo-
rithm (MOGWO) [19], multi-objective whale optimization (MOWOA) [20], multi-objective
hyper-heuristic algorithm based on adaptive epsilon-greedy selection (HH_EG) [21] and
disruption-based multi-objective equilibrium optimization algorithm (DMOEOA) [22],
etc. Wang et al. [23] developed a multi-objective multidisciplinary design optimization
(MMDO) strategy for the shape design optimization of an AUV. This strategy utilized a
CSD approach as the MDO architecture, and the unified-objective method was utilized
to change the multi-objective optimization problem into a single-objective optimization
problem. Liu et al. [24] carried out the research on the MMDO of a heavier-than-water
underwater vehicle by using the computational fluid dynamics (CFD) method and the
surrogate model, and NSGA-II was adopted as the optimizer. This paper presented a
multi-objective multidisciplinary design optimization strategy called IDF-DMOEOA to
solve the conceptual design problem of a three-joint robotic fish system. The robotic fish
system is divided into four disciplines, including hydrodynamics discipline, propulsion
discipline, weight and equilibrium discipline and energy discipline. The IDF approach
requires fewer function calls and additional information than other MDO approaches
in the formulation process [25]. Therefore, the IDF approach and a novel and efficient
multi-objective optimization algorithm named DMOEOA in our previous work [22] are
integrated into the proposed IDF-DMOEOA strategy. The hydrodynamics characteris-
tics analysis of the robotic fish is established by using the CFD method. To reduce the
computational cost of the CFD method in the optimization process, a backpropagation
neural network (BPNN), which has a strong ability of nonlinear mapping, is adopted as
the surrogate model in the hydrodynamics discipline [26].



J. Mar. Sci. Eng. 2021, 9, 478 3 of 25

In this paper, the discipline analysis is presented in Section 2, and the multidisciplinary
design optimization architecture of the robotic fish’s conceptual design is established in
Section 3. The adopted multi-objective optimization algorithm, DMOEOA, is introduced in
Section 4. Then, the optimization results of the proposed MMDO problem and analysis are
given in Section 5. Finally, Section 6 provides the concluding remarks.

2. Discipline Analysis

The robotic fish system is decomposed into four disciplines: hydrodynamics discipline,
propulsion discipline, weight and equilibrium discipline, and energy discipline. Discipline
analysis models of the above four disciplines are established in this section.

2.1. Hydrodynamics Discipline

Fluid resistance plays an important role in underwater robots, and it is necessary to
design the shape of the robotic fish with the least resistance. Thus, the hydrodynamics
analysis model is presented for fluid resistance estimation.

2.1.1. Hydrodynamics Analysis Model

The hydrodynamics analysis model consists of three parts: parametric modeling,
mesh generation and CFD numerical simulation. Three kinds of software are utilized to
construct the analysis model, including Unigraphics NX 10.0, Ansys ICEM 20.0 CFD and
Ansys FLUENT 20.0. The whole analysis process will be repeated with the change of input
parameters. The flowchart of the hydrodynamics analysis model is shown in Figure 1.

Parametric modeling
(Unigraphics NX 10.0)

Mesh generation
(Ansys ICEM 20.0 CFD)

CFD numerical simulation
(Ansys FLUENT 20.0)

Input parameters

Outputs

Change of input 
parameters

Figure 1. Hydrodynamics analysis model.

2.1.2. Parametric Modeling of the Hull Shape

As shown in Figure 2, the hull of the robotic fish is shaped like a torpedo. It consists
of the fore-body, parallel middle body and after-body. La and L f represent the length
of the after-body and fore-body, respectively, and R is the maximum radius of the hull.
In addition, Lct refers to the length of cut off from the after-body section, and Lp indicates
the length of parallel middle body. The line shape of the hull is defined by the Glanville
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lines [27]. The formulas of the after-body section and fore-body section are described by
Equations (1) and (2), respectively.

za = qa1x(x− 1)4 + 1− (x− 1)4(4x + 1) +
qa2x2(x− 1)3

6
,(0 ≤ x ≤ 1) (1)

z f = |x4 − 1|+ q f1
(1− x)(5(1− x)3 − 21(1− x)2 − 35x)

16
+q f1

√
(1− x)− q f2(1− x)x3

6
,

(0 ≤ x ≤ 1)

(2)

where qa1 and qa2 are shape factors of the after-body section. q f1 and q f2 represent shape
factors of the fore-body section. The Glanville lines are dimensionless geometry lines,
and they must be expressed in physical forms. The physical line shape of the hull is
described below.

Za = Rza(
x

Lct + La
), (0 ≤ x ≤ Lct + La) (3)

Zp = R, (La + Lct ≤ x ≤ La + Lct + Lp) (4)

Z f = Rz f (
x− La − Lp − Lct

L f
), (La + Lct + Lp ≤ x ≤ La + Lct + Lp + L f ) (5)

Initial values of parameters that will influence the shape of the robotic fish are listed
in Table 1.

fL pL aL

Rfz az

ctL
wo

wx
wz

wy

Figure 2. Hull shape of the robotic fish.

Table 1. Initial values of the shape parameters.

Shape Parameter Value

L f 20 (cm)
Lp 27 (cm)
La 6 (cm)
Lct 0.2 (cm)
R 5 (cm)

q f1 2
q f2 1
qa1 3
qa2 12

UG 10.0 is applied to read the shape parameters of the hull and create the model, and
then the generated parasolid file is exported to the mesh generation part. In this work, four
shape factors, including qa1, qa2, q f1 and q f2, and the length of the parallel middle body
Lp are input variables in the hydrodynamics discipline. The objective of this discipline is to
design the line shape of the hull with the least fluid resistance Fdrag. The input and output
variables of the hydrodynamics discipline are summarized in Table 2.
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Table 2. Summary of the hydrodynamics discipline.

Input Variable Output Variable

Lp (24 cm ≤ Lp ≤ 30 cm) Fdrag
q f1 (2 ≤ q f1 ≤ 4)
q f2 (0 ≤ q f2 ≤ 4)
qa1 (2 ≤ qa1 ≤ 4)

qa2 (10 ≤ qa2 ≤ 20)

2.1.3. Mesh Generation

In this part, ICEM 20.0 is employed to generate meshes, to balance the accuracy and
calculation efficiency of the CFD method. The computational domain shown in Figure 3
is selected, and it consists of a cylinder and a semi-sphere. The flank area of the cylinder
and the semi-spherical are set as the velocity inlet (5 m/s), and the bottom surface of the
cylinder is set as the pressure outlet with reference pressure 0. The hull of the robotic
fish is defined as the wall. The distance between the vertex of the hull and the vertex
of the hemispherical sphere is equal to the length of the hull. The distance between the
hull’s end and the outlet boundary is twice the length of the hull. Because of the regular
geometry of the hull, structured meshes are applied to generate elements and nodes in the
computational domain. The mesh arrangement around the hull is shown in Figure 4.

Velocity inlet

Pressure outlet

x

y

z

Figure 3. Computational domain of the robotic fish.

Y

X Z

Figure 4. Mesh arrangement around the hull.
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2.1.4. CFD Numerical Simulation

Fluent 20.0 is utilized as the solver, the CFD numerical simulation adopts RANS
equations as the control equations and the finite volume method is employed to discrete
the control equations. Standard k− ε is adopted as the turbulence model, and the standard
wall function method is applied to treat areas near the wall. The wall in the computational
domain is set as a no-slip wall. The turbulent viscosity ratio and the intensity for the velocity
inlet and pressure outlet are set to 2 and 2%, respectively, and the standard discretization
scheme is used for pressure [11]. The SIMPLEC algorithm is utilized as the solution method.
The second-order upwind scheme is applied for turbulence kinetic energy, momentum and
turbulence dissipation rate, and under-relaxation factors are set to default values.

2.1.5. CFD Grid Convergence Study

The accuracy of the CFD method has a significant impact on its practical application
in engineering fields. In this work, the grid convergence analysis is carried out to ensure
that the numerical simulation results are not affected by the grid size. Three different mesh
sizes are adopted for the computational domain, including 942,208 cells, 1,492,608 cells
and 2,090,538 cells. The boundary layer has a significant impact on the accuracy of the
CFD method, so the y+ of the first layer near the wall is the criteria for the mesh quality.
The height of the first layer near the wall can be calculated by the estimation formula [11]:

y+ =
0.172∆yR0.9

e
Lc (6)

where the desired y+ value is set as 45. Re represents the Reynolds number, and Lc is the
characteristic length of the hull. In this simulation, the Re is 2.65× 106, and the density of
the water ρ is set as 998.2 kg/m3. In Figure 5, the x axis refers to the position of the wall
surface of the robotic fish hull along the x axis direction, we can observe that y+ values of
the mesh with 942,208 cells are located in the range 30–60, so the mesh quality achieves the
requirement [11].

Figure 5. y+ values.

Table 3 shows the CFD simulation results of fluid resistance Fdrag of the hull using
different numbers of mesh. We can observe that the Fdrag obtained by the finest mesh differs
by 0.624% from that of the coarsest mesh, which proves the CFD numerical simulation
results are accurate and stable, and the mesh size with 942,208 cells is applied for the
optimization to reduce computational costs. The surface pressure field of the hull with
942,208 cells is shown in Figure 6.
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Table 3. Comparison of Fdrag values using different numbers of mesh.

Number of Mesh Fdrag (N)

942,208 12.95503
1,492,608 13.01365
2,090,538 13.03643

Figure 6. Surface pressure of the hull.

2.1.6. Surrogate Model for Hydrodynamics Analysis

As a high-fidelity analysis method, CFD simulation is time-consuming. If the CFD
method is integrated into the hydrodynamics analysis model in the optimization process
directly, it may lead to a large amount of calculation and low efficiency. Surrogate models
provide an effective way to solve design optimization problems with a better balance
between accuracy and efficiency. Many surrogate models have been applied successfully
in engineering optimization fields, including the response surface method (RSM), Kriging
model and artificial neural networks (ANNs). In this work, a backpropagation neural
network (BPNN) [26] is utilized as the surrogate model to reduce the computational cost of
the CFD simulaton. The process of constructing the surrogate model shown in Figure 7
consists of four steps.

1. Design of experiment (DOE) can be applied to obtain sufficient input–output sample
points for the construction of the surrogate model [5]. In this work, an optimal Latin
hypercube design is adopted as the DOE method, and 200 sample points are collected.

2. In this step, BPNN is employed as the surrogate model, and 70% of the sample points
are selected randomly to train the surrogate model, and the number of hidden layer
neurons is set to 20 in the BPNN model.

3. In this step, 15% of the sample points are employed to validate the BPNN model,
and 15% of the sample points are used to test the BPNN model.

4. If the surrogate model meets the accuracy requirement, the BPNN model is exported
to the hydrodynamics discipline model, or return to step 2 to retrain the BPNN model.

The accuracy of the surrogate model is important. The correlation coefficient R value
measures the linear correlation between observed values and predicted values. An R value
of 0 indicates no linear correlation relationship, and 1 indicates a full linear correlation.
As shown in Figure 8, correlation coefficient values of the training set, validation set
and test set are all greater than 0.9, and the coefficient of determination R2 of the BPNN
model is 0.9024. The mean squared error MSE of the BPNN model is listed in Table 4.
From Figure 8 and Table 4 we can observe that the BPNN model has sufficient precision for
hydrodynamics discipline analysis.
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BPNN

 Validation & Test

Accuracy requirement 

meet ?

DOE

Retrain

Output

BPNN model

Yes

No

Figure 7. Construction of the surrogate model.

Table 4. MSE values of the BPNN model.

Evaluation Index Value

MSE for training set 0.0094
MSE for validation set 0.0247

MSE for test set 0.0234
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Figure 8. Regression analysis of the BPNN model.



J. Mar. Sci. Eng. 2021, 9, 478 9 of 25

2.2. Weight and Equilibrium Discipline

Weight distribution and static equilibrium are two factors that need to be considered
in the conceptual design of robotic fish. As shown in Figure 9, the three-joint biomimetic
robotic fish consists of four components, including the rigid fish head f h, the flexible fish
body f b, the after-body a f and the caudal fin sw. The rigid fish head component includes
the battery b, the control panel e and a junction plate jp. Three servo motors smi(i = 1, 2, 3)
are utilized as joints in the flexible fish body to mimic fish-like swimming. There are also
counterweights Pi(i = 1, 2, 3) inside the flexible fish body. The caudal fin and fish body
are connected by the after-body. l1 indicates the length of link o1o2, l2 refers to the length
of link o2o3 and l3 represents the distance between joint o3 and the after-body. The sum of
lengths of l1, l2 and l3 is equal to the length of the flexible fish body Lp. As for the weight
and equilibrium discipline, the total weight and buoyancy should be balanced, and the
trim angle θt also needs to be considered. θt can be calculated by the following equations:

rcm =
m f hr f hm + m f br f bm + ma f ra f m + mswrswm + mhrhm

m f h + m f b + ma f + msw + mh
(7)

rcb =
Vf hr f hb + Vf br f bb + Va f ra f b + Vswrswb + Vhrhb

Vf h + Vf b + Va f + Vsw + Vh
(8)

θt = arctan(
xcb − xcm

zcb − zcm
) (9)

where rcm = [ xcm ycm zcm ]T and rcb = [ xcb ycb zcb ]T represent the barycenter and
buoyant center of the robotic fish, respectively, m f h, m f b, ma f , msw represent the masses of
the four components of the robotic fish, respectively, and Vf h, Vf b, Va f , Vsw are the volumes
of the four components, respectively. r f hm, r f bm, ra f m, rswm indicate the barycenters of
those four components, respectively, and r f hb, r f bb, ra f b, rswb are the buoyant centers of
the four components, respectively. mh, Vh, rhm, rhb represent the mass, volume, barycenter
and buoyant center of the hull, respectively. This discipline is constructed to compute
the mass of each component and to balance the buoyancy and weight of the robotic fish.
Three parameters, including l1, l2 and l3 are input variables in the weight and equilibrium
discipline. The input and output variables of this discipline are summarized in Table 5.

Table 5. Summary of weight and equilibrium discipline.

Input Variable Output Variable

l1 (10 cm ≤ l1 ≤ 12 cm) m f b
l2 (10 cm ≤ l2 ≤ 12 cm) Vf b
l3 (4 cm ≤ l3 ≤ 8 cm) mh

Vh
θt
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Figure 9. General overview of the robotic fish.

2.3. Propulsion Discipline

Most conventional AUVs use propellers as the propulsion mode, which may lead to
low efficiency and poor concealment. In contrast, the multi-joint robotic fish use multiple
joints and links to mimic fish-like swimming, in which rotating joints are actuated by servo
motors. The propulsion velocity of robotic fish is a key indicator of swimming performance,
and the dynamic model is employed to analyze the velocity of the three-joint robotic fish.

2.3.1. Determination of Coordinate Frames

Several methods have been employed to establish the dynamic model of multi-joint
robotic fish successfully, such as the Lagrange method [28], the Kane method [29] and the
Newton–Euler method [30]. Due to the advantages of simplicity and easy implementation,
the Newton–Euler method is applied to establish the dynamic model of the multi-joint
robotic fish in this section.

To analyze the swimming dynamics of the multi-joint robotic fish, the coordinate
frames are shown in Figure 10. Assume that the multi-joint robotic fish consists of nl links,
Li(i = 0, 1, 2, . . . , nl − 1) represents the length of the ith link, the center of mass of each
link that coincides with its geometrical center is denoted as Ci. mi(i = 0, 1, 2, . . . , nl − 1)
represents the mass of the ith link. Links are connected by joints (i.e., output shafts of
servo motors). The moving coordinate system Oi − XiYiZi is attached to the ith link,
and the direction of the OiXi is parallel to the axis of the ith link. Oi is fixed in the
starting point of the ith link. The angle between the (i − 1)th link and the ith link is
θi(i = 1, 2, . . . , nl − 1); in particular, θ0 indicates the angle between the 0th link and
the X axis of the world coordinate system Ow − XwYwZw (WCS). Ri+1

i is the transform
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matrix from Oi − XiYiZi to Oi+1 − Xi+1Yi+1Zi+1. R0
w indicates the transform matrix from

Ow − XwYwZw to O0 − X0Y0Z0. Ri+1
i and R0

w can be expressed as follows:

Ri+1
i =

 cos θi+1 sin θi+1 0
−sinθi+1 cosθi+1 0

0 0 1

(i = 0, 1, 2, . . . , nl − 1) (10)

R0
w =

 cos θ0 sin θ0 0
−sinθ0 cosθ0 0

0 0 1

 (11)

Figure 10. Coordinate systems and notations of the robotic fish.

2.3.2. Kinematic Analysis

Let the coordinate of the joint O0 in WCS be (x, y, 0)T . The position vector ri
oi(i =

0, 1, 2, . . . , nl − 1) of joint Oi relative to the origin of the world coordinate system Ow can
be expressed in its moving coordinate system as:

r0
o0 = R0

w[ x y 0 ]T (12)

ri
oi = Ri

i−1(r
i−1
oi−1 + [ Li−1 0 0 ]T) (13)

Therefore, the position vector ri
ci(i = 0, 1, 2, . . . , nl − 1) of the center of mass of link i

relative to the origin of WCS can be described in its moving coordinate system as:

ri
ci = ri

oi +
[ 1

2 Li 0 0
]T (14)

The angular velocity wi and the angular acceleration αi of the ith link relative to the
origin of WCS can be expressed in Oi − XiYiZi as:

wi
i = [ 0 0 ∑i

0 dθi ]T (15)

αi
i =

dwi
i

dt
(16)

The velocity vi and the acceleration ai of the center of mass of link i relative to the
origin of WCS in Oi − XiYiZi can be expressed as:

vi
ci =

dri
ci

dt
+ wi

i × ri
ci (17)

ai
ci =

dvi
ci

dt
+ wi

i × vi
ci (18)



J. Mar. Sci. Eng. 2021, 9, 478 12 of 25

2.3.3. Dynamic Analysis

The fluid resistance on a link depends on the relative velocity of the link with respect
to the fluid. The relative velocity vi

ri and the relative acceleration ai
ri are as follows:

vi
ri = vi

ci − vi
f i (19)

ai
ri = ai

ci − ai
f i (20)

where vi
f i and ai

f i represent the velocity and acceleration of the fluid in Oi − XiYiZi, respec-
tively.

Then, the corresponding moment of fluid resistance can be expressed as follows:

Tdi = [ 1
2 Li 0 0 ]T × Fdi (21)

Joints of the robotic fish are employed to connect links, and there are forces and
moments generated by the interaction between links. Suppose that the interaction force
and moment of the ith joint are jFi and jTi, respectively. Based on Newton–Euler method,
the dynamic equations of the ith link can be formulated as follows:

jFi + Fdi = miai
ci (22)

The fluid drag Fdi of the ith link can be calculated by the following equation [31]:

Fdi =

 −0.5ρcx|vi
rix|vi

rixsix
−0.5ρcy|vi

riy|vi
riysiy

0

 (23)

jTi + Tdi = Jci · ẇi
i + wi

i × Jci · wi
i (24)

where Jci indicates the rotational inertia of the ith link. The motion rule of the ith joint is
as follows:

θi = Ai sin(ωit + ϕ) (25)

where Ai and ωi represent the angle of amplitude and angular velocity of the ith joint,
respectively. ϕ indicates the phase of joint motion. By solving the above equations, we are
able to analyze the velocity of the rigid head of the robotic fish. As shown in Figure 9,
the length of the ith(i = 0, 1, 2, 3) link can be described as follows:

L0 = L f (26)

L1 = l1 (27)

L2 = l2 (28)

L3 = l3 + La + Lsw (29)

Through the dynamic model, we can establish the propulsion discipline analysis
framework of the robotic fish. The main objective of the propulsion discipline is to analyze
the forward velocity of the three-joint robotic fish v. The input and output variables in this
discipline are listed in Table 6.
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Table 6. Summary of the proplusion discipline.

Input Variable Output Variable

ωi(i = 1, 2, 3) (π ≤ ωi ≤ 2π) v
Ai(i = 1, 2, 3) (π

6 ≤ Ai ≤ π
3 )

ϕ (π
6 ≤ ϕ ≤ π

2 )
mi(i = 0, 1, 2, 3)

l1 (10 cm ≤ l1 ≤ 12 cm)
l2 (10 cm ≤ l2 ≤ 12 cm)
l3 (4 cm ≤ l3 ≤ 8 cm)

2.4. Energy Discipline

A battery is utilized to provide energy for the robotic fish. Among various kinds of
batteries, in this work, a lithium battery is adopted due to its long service life and large
capacity density. The task of the energy discipline is to estimate the endurance of the
robotic fish based on the total energy provided by the battery. The total energy of the
battery can be calculated as follows [24]:

Eb =
mb · ρmb · (1− SMF)

1000
(30)

where mb and ρmb represent the mass and mass energy density of the lithium battery. SMF
refers to the spare margin factor, which is set to 5% according to [24]. To calculate the power
of each motor in the robotic fish, we need to estimate the torque of each motor, as shown
in Figure 11, and each joint of the robotic fish is driven by a motor. As for the motor sm1,
assume that the barycenter of its load is g1 , the distance between g1 and joint o1 is r1 , then,
the motion rule of g1 can be calculated as follows:

yg1 = r1 A1 sin(ω1t) (31)

vg1 = ω1r1 A1 cos(ω1t) (32)

vg1 max = ω1r1 A1 (33)

where ω1 is the angular velocity and A1 is the amplitude of the motion of g1. yg1 and vg1
represent the location and velocity of g1, respectively. vg1 max represents the maximum
velocity of g1. Then the drag Dg1 and drag moment Td1 applied to the load 1 can be
estimated as follows:

Dg1 =
ρCd1Sc1v2

g1 max

2
(34)

Td1 = Dg1r1 (35)

where ρ is the density of the water, Cd1 and Sc1 represent the drag coefficient and wetted
surface of load 1, respectively. Therefore, the power of motor 1 PP1 can be calculated
as follows:

PP1 = Td1ω1 (36)

In the same way, the power of other motors can be estimated through the above
equations. The endurance of the robotic fish can be calculated as follows:

Hen =
Eb

3
∑

i=1
PPi

(37)

The main objective of energy discipline is to estimate the endurance of the robotic fish
Hen. The calculated torque of sm1 should not exceed the maximum torque Tdmax. The input
variables and output variables of the energy discipline are summarized in Table 7.
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Figure 11. Illustration of barycenter location of each motor’s load.

Table 7. Summary of the energy discipline.

Input Variable Output Variable

ωi(i = 1, 2, 3) (π ≤ ωi ≤ 2π) Hen
Ai(i = 1, 2, 3) (π

6 ≤ Ai ≤ π
3 ) Td1

l1 (10 cm ≤ l1 ≤ 12 cm)
l2 (10 cm ≤ l2 ≤ 12 cm)

l3 (4 cm ≤ l3 ≤ 8 cm)

2.5. MMDO Model of the Robotic Fish

There are three optimization objectives in the conceptual design of the robotic fish;
the first objective is to design an optimal shape of the robotic fish with the least fluid resis-
tance, and the other two objectives are to maximize the forward velocity and endurance of
the robotic fish. Considering the main optimization objectives of the robotic fish, the con-
straints on mechanical limits and size requirements, the values of design variables are set
in a reasonable range. The MMDO model of the robotic fish can be specified as follows:

Min F = {Fdrag,−v,−Hen}

w.r.t
10 ≤ x1 = l1 ≤ 12, 10 ≤ x2 = l2 ≤ 12

4 ≤ x3 = l3 ≤ 8, 2 ≤ x4 = q f1 ≤ 4

0 ≤ x5 = q f2 ≤ 4, 2 ≤ x6 = qa1 ≤ 4

10 ≤ x7 = qa2 ≤ 20, π ≤ x8 = ω1 ≤ 2π

π ≤ x9 = ω2 ≤ 2π, π ≤ x10 = ω3 ≤ 2π

π
6 ≤ x11 = ϕ ≤ π

2 , π
6 ≤ x12 = A1 ≤ π

3

π
6 ≤ x13 = A2 ≤ π

3 , π
6 ≤ x14 = A3 ≤ π

3

s.t.
g1= |θt| − 10 ≤ 0

g2 = Td1 − 3.5 ≤ 0

(38)

Based on the above MMDO model and analysis of the four disciplines, coupling
relationships between these four disciplines are shown in Figure 12. We can observe that
li, ωi, Ai(i = 1, 2, 3) are design variables shared by different disciplines. The objective
v is obtained not only by the analysis of propulsion discipline but also by decoupling
the interactions between the weight and equilibrium discipline and the propulsion disci-
pline. Traditional optimization algorithms are not suitable for solving this coupled MMDO
problem because those methods do not take the coupling relationships into considera-
tion. Therefore, the MMDO strategy is needed to solve the above optimization problem.
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The flowchart of the global proposed approach for the MMDO of the robotic fish is shown
in Figure 13.

Hydrodynmaics
discipline

Weight & equilibrium 
discipline

Propulsion 
discipline

Energy 
discipline

1 2 1 2, , , ,
     ( 1,2,3)
il qf qf qa qa

i 
       
( 1,2,3)

il
i 

, , ,
( 1, 2,3)
i i il A
i
 


 , ,
( 1, 2,3)

i i il A
i



      
( 0,1,2,3)

im
i 

dragF

t

v

1,en dH T

Figure 12. Coupling relationships between four disciplines.

MMDO of the robotic fish system

BPNN model

Hydrodynamics 
discipline analysis

Weight & equilibrium 
discipline analysis

Propulsion 
discipline analysis

Energy 
discipline analysisAccuracy 

requirements 
meet？

MMDO model of the 
multi-joint robotic fish 

Yes

No

IDF architecture of 
the MMDO model

Output optimization 
results

DMOEOA optimizer

Retrain

Figure 13. The flowchart of the global proposed approach.
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3. Multidisciplinary Design Optimization

Because the IDF approach requires less additional information and fewer function calls
than other multidisciplinary design optimization approaches, it is adopted in this work.

3.1. Individual Discipline Feasible Approach

The optimization model of the IDF approach is described as follows [32]:

Min F(X, y(X, yt))

w.r.t
X, yt

s.t.
ci(X0, Xi, yi(X0, Xi, yt

j 6=i)) ≤ 0

cc
i = yt

i − yi(X0, Xi, yt
j 6=i) = 0

(39)

where X = [X0, X1, . . . , Xnd]
T refers to the vector of design variables, nd is the number of

disciplines. X0 and Xi(i = 1, 2, . . . , nd) represent the shared variables and design variables
local to the ith discipline, respectively. The coupling design variable supplied by the ith
discipline is denoted as yi, and yt

i is the copy of yi. yi represents the state variable of
discipline i. ci and cc

i represent the constraint and the consistency constraint of discipline i,
respectively. Coupling variable copies and consistency constraints are introduced into IDF
architecture to allow the discipline analysis to run in parallel. The extended design structure
matrix (XDSM) of the IDF architecture [33] is shown in Figure 14. The IDF architecture
enables the discipline analysis to run independently, which can reduce the computation
time, accelerate the computation speed and improve the computation efficiency.

X (0), y t,(0)

X ∗
0, 3→1 :

Optimizer
1 : X0,Xi , y

t
j 6=i 2 : X , y t

y∗i , y
∗
i

1 :

Discipline i
2 : y i , yi

3 : f , c , cc
2 :

Objective functions

Figure 14. The XDSM of the IDF architecture.

3.2. IDF Architecture of the MMDO Problem

In this work, the IDF approach is applied to solve the MMDO of the robotic fish. The
MMDO framework of the robotic fish based on IDF architecture is shown in Figure 15. The
expressions of variables and constraints contained in the proposed MMDO problem in IDF
architecture are listed in Table 8. Using IDF architecture, the optimization process can be
performed in parallel.
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X (0), y t,(0)

X ∗ 0, 3→1 :

Optimizer
1 : X0,X1 1 : X0 1 : X0,X3 1 : X0 2 : X , y t

y∗
1

1 :

Hydrodynamics discipline
2 : y1

y∗
2 , y

∗
2

1 :

Weight and equilibrium discipline
1 : y2 2 : y2, y2

y∗
3

1 :

Propulsion discipline
2 : y3

y∗
4

1 :

Energy discipline
2 : y4

3 : F , c , cc
2 :

Objective functions

F = {Fdrag ,−v ,−Hen}

Figure 15. The MMDO framework of the robotic fish.

Table 8. Expressions of notations contained in the proposed MMDO problem in IDF architecture.

Variable and Constraint Notation in IDF Architecture

li, ωi, Ai(i = 1, 2, 3) X0
q f1,q f2,qa1,qa2 X1

ϕ X3
mi(i = 0, 1, 2, 3) y2

Fdrag y1
θt y2
v y3

Hen, Td1 y4
gi(i = 1, 2) c

4. Multi-Objective Optimization Algorithm

In this work, a novel and efficient multi-objective optimization algorithm named
disruption-based multi-objective equilibrium optimization algorithm (DMOEOA) is adopted
as the optimizer in the proposed MMDO strategy. DMOEOA was proposed in our previ-
ous work [22]. It is an effective optimization algorithm that shows superiority in solving
multi-objective optimization problems with a better balance between distribution and
convergence of obtained Pareto solutions.

4.1. Grid Mechanism

In DMOEOA, a grid mechanism is applied to record the distribution and convergence
of obtained solutions. Some definitions used in this work are introduced as follows [34]:

Definition 1. (Grid boundary): max fi(x) and min fi(x) represent maximum and minimum
values of the ith objective, respectively, lower limit lwi and upper limit upi of grids in the ith
objective space can be calculated as follows:

lwi = min fi(x)− max fi(x)−min fi(x)
2Gd

(40)

upi = max fi(x) +
max fi(x)−min fi(x)

2Gd
(41)

where Gd refers to the number of grids in each dimension of the objective space.
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Definition 2. (Grid location): An individual’s grid location can be defined as:

GLi(x) = [
fi(x)− lwi

di
] (42)

where di indicates the width of grids in the ith objective, [·] refers to the function of rounding up.
For instance, in Figure 16, grid locations of individuals B and C are (1, 4) and (2, 3), respectively.

Definition 3. (Grid ranking): An individual’s grid ranking (GR) is defined as follows:

GR(x) =
k

∑
i=1

GLi(x) (43)

where k refers to the number of objectives, as shown in Figure 16, solution A’s grid ranking is four
and solution D’s grid ranking is six, which means that solution A is closer to the Pareto optimal
front than solution D.

Definition 4. (Grid coordinate point distance): Grid coordinate point distance (GCPD) is defined
as the normalized Euclidean distance between the individual and minimum boundary point in
its grid:

GCPD(x) =

√√√√ k

∑
i=1

[
( fi(x)− (lwi + (GLi(x)− 1) · di))

di
]
2

(44)

As for solutions that have the same GR value, the one that has a smaller GCPD value
should be preferred. For instance, in Figure 16, individuals F and E have the same GR
value, and the GCPD value of solution E is smaller than that of solution F, so solution E
should be selected.

1f

2f

(2, 2)A

(1, 4)B

(2,3)C

(3, 2)G

(3,3)D
(4,3)E

(4,3)F

GCPD

Figure 16. Grid mechanism in the bi-objective space.

4.2. Equilibrium Optimizer

DMOEOA involves the effective properties of the single-objective equilibrium opti-
mizer (EO), which is inspired by the control volume mass balance model [35]. In EO, each
individual in the population with its concentration Co is a search agent, the individual is
similar to a solution in PSO, and the Co of each individual is similar to the position of a
particle. The position updating rule of EO is shown below:

Co = Coe +
Ge

λV
.(1− Fe) + (Co − Coe).Fe (45)
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where Coe indicates the equilibrium candidate, Ge and Fe represent the generation rate and
exponential term, respectively, and V is set to the unit. λ = [λ1, λ2, . . . , λn]T refers to a
random vector in the interval of [0, 1] and n represents dimensions of the individual’s Co.

4.2.1. Equilibrium Pool Coe,pool

The equilibrium state refers to the final convergence state of obtained solutions. In the
initial stage of the search process, there is no knowledge about the convergence state, so the
equilibrium candidate Coe is employed to provide the search guide for other individuals.
In DMOEOA, an external archive Arc in MOPSO is adopted as the equilibrium pool.
The Arc is used to store non-dominated solutions in the search process. Solutions in the
Arc are defined as equilibrium candidates. The equilibrium pool Coe,pool can be described
as follows:

Coe,pool = {Arc} (46)

Individuals in the population update positions with a roulette wheel selection from
equilibrium candidates. The more equilibrium candidates Coe with the same GR value in
the Coe,pool , the less likely they are to be chosen to guide the individuals in the population.
This selection method can maintain diversity of the obtained non-dominated solutions in
the optimization process.

4.2.2. Exponential Term Fe

Exponential term Fe that controls the position updating rule is calculated as follows:

Fe = a1sign(h0 − 0.5)(e−λt − 1) (47)

t = (1− cit
MT

)(a2
cit

MT ) (48)

where a1 and a2 are constant values that control the exploration and exploitation abilities of
DMOEOA, respectively, sign(h0 − 0.5) is employed to control the direction of exploitation
and exploration and h0 is a random number in the interval of [0,1]. t refers to the function
of iterations, which declines with the number of iterations, and MT and cit represent the
maximum iteration and the current iteration, respectively. The values of a1 and a2 are set
to 2 and 1, respectively; in this work, the choice of these two values is consistent with
original DMOEOA.

4.2.3. Generation Rate Ge

Generation rate is applied to enhance the exploitation ability of DMOEOA, and it can
be calculated as follows:

Ge = GCP(Coe − λCo) (49)

GCP =

{
0.5h1 h2 ≥ GP
0 h2 ≤ GP

(50)

where GCP refers to generation rate control probability, GP indicates the generation prob-
ability, which is set to 0.5 in this work. h1 and h2 represent two random numbers in the
interval of [0,1].

4.3. Layered Disruption Method

In DMOEOA, a novel mutation method named layered disruption method (LDM) is
proposed. LDM is inspired by the disruption phenomenon originated from astrophysics.

“When a swarm of gravitationally bound particles having a total mass, mk, approaches too
close to a massive object, Mk, the swarm tends to be torn apart. The same thing can happen to a solid
body held together by gravitational forces when it approaches a much more massive object” [36];
this is the statement of disruption phenomena.
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In LDM, individuals that have the same GR value are regarded as one group, and
there are different disruption conditions in different groups. The disruption coefficient Qi
is calculated as follows:

Qi = exp[−( i
γ
)2] (51)

where γ represents the number of groups, and i is the ith index after sorting different
groups by increasing order based on the GR values. In the ith group, individuals with SNi
smallest GCPD values are regarded as the mass Mk, and individuals that will be disrupted
have the total mass mk. SNi is calculated as follows:

SNi = [QiUi] (52)

where Ui represents the number of individuals in the ith group, [·] indicates the function of
rounding up. When the individual satisfies the disruption condition, the random number
that obeys the Cauchy distribution is used to disrupt the individual. The cauchyrnd is
determined as follows:

f (x) =
1

π(1 + x2)
, x ∈ [−∞,+∞] (53)

The disruption equation is described as follows:

Coj(cit) = (
cit

MT
)Coj(cit) + Cau.Coj(cit)(1− cit

MT
) (54)

where Coj represents the position of individual j, and Cau is a matrix that is composed of a
set of Cauchy random numbers.

4.4. Constraint Handling

As there are constraints in the MMDO of the robotic fish, the constrained-dominate
principle [16] is adopted as the constraint handling technique in DMOEOA.

Definition 5. (Constrained-domination): Given two solutions i, j. i constrained-dominates j
(denoted as i ≺ j) i f f :

1. Solution i is feasible and solution j is non-feasible.
2. Both solution i and solution j are non-feasible, and the constraint violation of solution i is

smaller than that of solution j.
3. Both solution i and solution j are feasible, but solution i dominates solution j.

4.5. Pseudo Code of DMOEOA

The pseudo code of DMOEOA is described in Figure 17. The computational com-
plexity of DMOEOA is o(kN2), k indicates the number of objectives and N represents the
number of individuals in the population. The computational complexity of DMOEOA is
the same as some famous multi-objective optimization algorithms, including NSGA-II,
MOPSO, MOWOA, MOGWO. More information about DMOEOA may refer to [22].
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Input: Population           Population size       External archive size       Maximum iterations 
Output: External archive
Begin

   Initialize the population 
   Initialize parameters of DMOEOA
   Calculate objective values of each individual in the
   Obtain non-dominated solutions and initialize the external archive          with them
     

   while                      Do
     Calculate the value of    by equation (48) 
   for each individual in the          Do

         =RouletteSelect (         )
         Update the position of each individual using equation (45) 

      end for
      Calculate the objective values of all Individuals in the
      Add non-dominated solutions to the  

   if the          is full
         Use the grid mechanism  to remove redundant  members in               

      end if
      Use LDM to disrupt individuals in the          by equations (51-54)

   Add non-dominated solutions in the          to update the 
 if the          is full

    Use the grid mechanism  to remove redundant  members in
      end if

           Update
end while
Return 

End

Algorithm: Disruption-based Multi-objective Equilibrium Optimization Algorithm 

Pop N Ar MT
Arc

Pop

Pop

oeC

1cit 
cit MT

Pop

Pop

Pop
Pop

1cit cit 

t

Arc

Arc

Arc

Arc

Arc

Arc
Arc

Arc
Arc

Figure 17. Pseudo code of the DMOEOA algorithm.

4.6. Parameter Setting

The parameters used in DMOEOA are summarized in Table 9. The selection of
these parameters is consistent with the original DMOEOA. The optimization process is
performed on a desktop computer with an Intel Core i5-8400 CPU clocking at 2.80 GHz,
and the RAM of the computer is 16 GB. The average running time of each generation in the
optimization process is 15.52 s.

Table 9. Parameters of DMOEOA.

Parameter Value

Gd 10
a1 2
a2 1
GP 0.5
MT 300

Pop size N 30
Arc size Ar 50

5. Optimization Results and Discussion

The optimization results of the robotic fish are shown in Figures 18–20 and Table 10.
The obtained Pareto solutions of different intermediate generations (50, 100, 200 and 300)
in Figure 18 indicate the convergence process, and it can be observed that more and more
non-dominated solutions are found with the number of iterations, and the obtained Pareto
solutions are uniformly distributed in the objective space in the 300th generation. As shown
in Figure 19, as the forward velocity of the robotic fish increases, the endurance of the
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robotic fish decreases. To balance the performances of different design objectives of the
robotic fish, four cases in the middle of the Pareto front shown in Figure 19 are selected
for analysis.

Table 10. Comparison of inputs and outputs between the initial design and four selected cases.

Initial Design Case1 Case2 Case3 Case4

l1 12 10 10.007 10.77 10.055
l2 11 10 10.005 10 10.021
l3 4 4 4.01 4 4.04
w1 5.589 6.283 5.679 4.955 4.773
w2 5.1 4.28 4.003 3.142 3.142
w3 3.142 3.142 3.494 3.142 3.178
A1 0.533 0.524 0.849 0.743 0.695
A2 0.524 0.524 0.524 0.524 0.534
A3 1.047 1.032 1.046 1.047 1.042
ϕ 0.524 0.751 0.769 0.579 0.64

q f 1 2 2 2 2.078 2.313
q f 2 1 1.901 2.593 0.0213 0
qa1 3 3.446 2.929 3.273 3.574
qa2 12 16.326 14.405 14.105 14.71

Fdrag (N) 12.858 11.941 12.499 12.462 12.577
v (m/s) 0.104 0.2 0.4117 0.2827 0.2148
Hen (h) 10.792 11.779 6.345 11.443 15.516

The comparison between optimization results of those four selected cases and the
corresponding initial design is shown in Table 10. The values of optimization objectives
are shown in bold. The obtained results listed in Table 10 suggest that all the four selected
cases have less fluid resistance than the initial design, and the comparison between the
optimal lines of those four cases and the initial line is shown in Figure 20. In addition,
the four selected cases show better performance in the forward velocity than that of the
initial design.

Figure 18. Pareto solutions of intermediate generations.

Among the four selected cases, case1 has the least fluid resistance, case2 has the fast
forward velocity and case4 shows better performance in endurance than that of the other
three cases. Compared to case2, case1 shows longer endurance and smaller fluid resistance,
and the forward velocity of case2 is more than twice as fast as that of case1. Case3 and case4
have similar fluid resistance values, and the forward velocity of case3 is faster than that of
case4; however, case4 shows better performance in endurance than case3. Although case2
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has a 41% reduction in endurance compared to the initial design, the forward velocity of
case2 is four times as fast as that of the initial design. All the four selected cases show better
comprehensive performance than the initial design, which validates the effectiveness of
the IDF-DMOEOA strategy.

Figure 19. Pareto solutions of the final generation.

Figure 20. Comparison between optimal lines of the four cases and the initial line.

6. Summary and Conclusions

In this paper, a novel multi-objective multidisciplinary design optimization strategy
(IDF-DMOEOA) combining the IDF approach and the DMOEOA algorithm is proposed for
the conceptual design of a three-joint robotic fish system. The robotic fish system is divided
into four disciplines: hydrodynamics discipline, propulsion discipline, weight and equilib-
rium discipline, and energy discipline. The fluid resistance of the hull, forward velocity
and endurance of the three-joint robotic fish are adopted as the optimization objectives. The
CFD method is applied to predict the hull’s fluid resistance, and the grid convergence study
is conducted to prove the stability of the mesh for simulation. The backpropagation neural
network is employed as the surrogate model in the hydrodynamics discipline analysis to
reduce the computational expense. The Pareto front is obtained after 300 generations. Four
cases are chosen to compare with the initial design. The optimization results suggest that
the optimized robotic fish shows better comprehensive performance than the initial design,
which validates the proposed IDF-DMOEOA strategy’s effectiveness. In this work, only
four disciplines are considered. In future work, more aspects of the multi-joint robotic fish’s
conceptual design, such as maneuverability and structure, should be taken into account,
and the proposed IDF-DMOEOA strategy is expected to have a wide application in other
MMDO problems of complex systems.
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