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Abstract: The real-life signals captured by different measurement systems (such as modern maritime
transport characterized by challenging and varying operating conditions) are often subject to various
types of noise and other external factors in the data collection and transmission processes. Therefore,
the filtering algorithms are required to reduce the noise level in measured signals, thus enabling more
efficient extraction of useful information. This paper proposes a locally-adaptive filtering algorithm
based on the radial basis function (RBF) kernel smoother with variable width. The kernel width is
calculated using the asymmetrical combined-window relative intersection of confidence intervals
(RICI) algorithm, whose parameters are adjusted by applying the particle swarm optimization (PSO)
based procedure. The proposed RBF-RICI algorithm’s filtering performances are analyzed on several
simulated, synthetic noisy signals, showing its efficiency in noise suppression and filtering error
reduction. Moreover, compared to the competing filtering algorithms, the proposed algorithm
provides better or competitive filtering performance in most considered test cases. Finally, the
proposed algorithm is applied to the noisy measured maritime data, proving to be a possible solution
for a successful practical application in data filtering in maritime transport and other sectors.

Keywords: adaptive filtering; radial basis function; variable-width kernel smoother; particle swarm
optimization; maritime transport; signal processing

1. Introduction

In today’s world, due to the advances in digital technologies, vast amounts of data
are continuously acquired by different measurement systems, covering all fields of human
activities. These data are then used as input to various algorithms and analysis procedures.
However, the obtained real-life signals are often corrupted by various types of noise, which
occur due to numerous environmental factors and to the data acquisition and transmission
processes themselves. Therefore, prior to the further exploitation and analysis of such data,
it needs to be processed by filtering algorithms to reduce the noise, thus enabling more
efficient reconstruction of the original information content [1–7].

The modern maritime transport sector is an example of a complex system consisting of
different measurement subsystems and communication systems used to transmit collected
information. Moreover, the future development of autonomous shipping increases the
amount of data acquired during the ship operation, thus placing additional demand on
data quality. Maritime applications imply operation under difficult and rapidly changing
environmental conditions, which, accompanied by the reduced availability of reliable
communication channels, leads to high noise levels in the acquired data. Therefore, the
implementation of the existing and the development of the application-specific filtering
algorithms for the reconstruction of useful information from the noise-corrupted signals is
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an important field of scientific research within maritime and transport engineering [8]. The
research has been focused on different areas of application, including underwater signal
processing [9–12], radar signal processing [13,14], underwater image processing [15–17],
optical signal processing [18], and other applications [19–21].

The parametric filtering algorithms require knowledge of the underlying signal and
noise characteristics. In many practical applications, such information is not available,
and nonparametric filtering algorithms are used [22]. The main task in these algorithms
includes applying a method for finding the optimal filter width that controls the level of
signal smoothing. The nonparametric methods may be broadly classified into the plug-in
methods and the quality-of-fit methods (such as, for example, cross-validation) [22]. The
plug-in methods are computationally demanding due to complex formulae for calculating
the optimal filter width based on the estimation bias and variance. On the other hand,
the data-driven cross-validation method does not require bias estimation. The optimal
filter width minimizes the estimation mean squared error (MSE) resulting in an optimal
bias-variance trade-off [22].

An easy-to-implement and locally adaptive filtering algorithm is based on the inter-
section of confidence intervals (ICI) rule [23] combined with the local polynomial approx-
imation (LPA) [24,25]. The LPA-ICI algorithm requires only the estimation of the signal
and noise variance. The ICI rule for the optimal filter width selection was upgraded in [26]
and named the relative intersection of confidence intervals (RICI) rule, keeping the good
properties of the ICI rule, and at the same time improving the filtering performance in
terms of MSE and reducing method’s sensitivity to suboptimal parameter selection.

As it may be expected, the filtering performances of the LPA-ICI and the LPA-RICI
algorithms are affected by selected parameters’ values. Different data-driven techniques
have been analyzed for the selection of the ICI rule’s parameter [24]. However, the RICI
algorithm requires a simultaneous adjustment of two parameters, which has not been
investigated in depth in the literature. Therefore, the approach based on the grid search in
parameter space is generally used when applying the RICI algorithm. The time-consuming
nature of this procedure places a demand for a faster solution. The study in [27] proposed
a simulation-based method for the selection of the appropriate values of the RICI rule’s
parameters with respect to the obtained MSE. However, the provided empirical formula
defines regions of near-optimal parameter values and is obtained by analyzing a limited
number of signal classes. Moreover, the formula for the calculation of one parameter’s
value requires the other parameter’s value as an input, thus leaving a problem of its
proper selection. Therefore, a more general approach, which will guarantee the optimal
parameters’ values, is required.

In this paper, we propose an adaptive filtering algorithm based on the radial basis
function (RBF) kernel smoother with variable width. The kernel width is calculated using
the asymmetrical combined-window RICI algorithm. This data-driven, locally adaptive
algorithm requires only the noise variance estimation (and does not require the bias esti-
mation nor any information about the underlying signal and noise). In order to reduce the
time required by the procedure based on a grid search in the parameter space, the RICI
algorithm is upgraded by the particle swarm optimization (PSO) based procedure. We
analyze the proposed RBF-RICI algorithm’s filtering performance by applying it to several
synthetic, simulated noisy signals. The paper elaborates on the RBF-RICI’s efficiency in
noise suppression and the filtering error reduction. Moreover, we compare the proposed
algorithm to the competing filtering algorithms and show that it provides better or compet-
itive filtering performance in most considered test cases. Additionally, we have performed
a comparative analysis of several evolutionary metaheuristic optimization algorithms
applied to selecting the RBF-RICI algorithm’s parameters, including the genetic algorithm
(GA) and three algorithms based on the PSO. Finally, the proposed RBF-RICI algorithm is
applied to the noisy, real-life measured maritime data, proving to be a potential solution for
a successful practical application in data filtering in the maritime and other similar sectors.
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The rest of this paper is structured as follows. The proposed filtering algorithm and
optimization procedures are described in Section 2. The obtained results are thoroughly
presented and discussed in Section 3. Finally, the conclusions are summarized in Section 4.

2. Materials and Methods

We consider the noisy observations of signal y(k):

y(k) = x(k) + n(k), (1)

where x(k) is the original signal, and n(k) is the additive white Gaussian noise.
The noisy signal y(k) has to be filtered in order to obtain the estimate of the original

signal x̂(k) with the minimum estimation error. In this work, we propose an adaptive
filtering algorithm combining the RBF kernel smoother with the asymmetrical combined-
window RICI procedure whose parameters are adjusted utilizing the PSO algorithm.

2.1. The RBF-Kernel-Based Adaptive Filtering

The kernel smoother estimates the signal sample value as the weighted average of
the neighboring observed sample values. The weights assigned to the specific samples are
determined by the kernel type. Nonrectangular kernels assign higher weights to the samples
closer and smaller weights to the samples farther away from the considered one [28].

The RBF or Gaussian kernel K(k0, k, h) is defined as:

K(k0, k, h) = e−
(k0−k)2

2σ2 , (2)

where k0 is the sample of interest, k is the neighboring signal sample, h is the kernel width,
and σ is the RBF kernel scale which is referred to as standard deviation when considering
the Gaussian probability density function.

The Nadaraya–Watson kernel-weighted estimate [29] of the signal value at the consid-
ered sample is given by:

x̂(k0, h) = ∑k K(k0, k, h)y(k)
∑k K(k0, k, h)

. (3)

The kernel width h is a parameter that controls the estimation accuracy and the
smoothness of the estimated signal. The kernels with larger widths include more samples
in the estimation procedure, causing the decreased estimation variance and, at the same
time, increased estimation bias. On the other hand, smaller kernel widths lead to the
increase in the estimation variance and, simultaneously, the decrease in the estimation bias
due to the reduced number of samples taken into the estimation procedure [24].

Therefore, the selection of the proper kernel width determines the efficiency of the
applied filtering algorithm. As opposed to the constant kernel width used for the entire
duration of the signal, the varying kernel width enables the adaptation to the local signal
features. The kernel width providing the optimal trade-off between estimation bias and
variance is here calculated using the adaptive RICI algorithm.

The absolute value of error εn(k, h) obtained by the kernel-smoother-based estimation
procedure is defined as:

|εn(k, h)| = |x(k)− x̂n(k, h)|, (4)

where x̂n(k, h) represents the signal sample value estimated using n samples in its vicinity
by applying the kernel with varying width h(k).

The mean squared estimation error, MSE(k, h), may be defined, with respect to the
estimation bias bn(k, h) and the estimation variance σ2

n(k, h), as [30,31]:

MSE(k, h) = E
{

ε2
n(k, h)

}
= |bn(k, h)|2 + σ2

n(k, h). (5)
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The crucial task of the adaptive filtering procedure includes selecting the kernel width
ho(k) that minimizes MSE(k, h), thus providing the optimal bias-variance trade-off [30,31]:

ho(k) = argmin
h(k)

MSE(k, h). (6)

Note that the original signal values x(k) are with the confidence p contained within
confidence intervals δn(k, h) [24,31]:

δn(k, h) = [δl,n(k, h), δu,n(k, h)], n = 1, . . . , N, (7)

where δl,n(k, h) and δu,n(k, h) are the lower and the upper confidence limits, respectively.
The confidence limits are defined using the ICI threshold parameter Γ representing the
critical value of the confidence interval:

δl,n(k, h) = x̂n(k, h)− Γ · σn(k, h), (8)

δu,n(k, h) = x̂n(k, h) + Γ · σn(k, h). (9)

The initial stage of the RICI algorithm is identical to the ICI rule [23], which provides
a set of N growing kernel widths H = {h1, h2, . . . , hN}, h1 < h2 < · · · < hN , and the
corresponding confidence intervals δn(k, h) for each signal sample k [24,25,31].

The ICI rule algorithm tracks the intersection of the confidence intervals and provides
the largest kernel width hICI(k) for which the intersection still exists [24,25,31]:

hICI(k) = argmax
hn(k)

{
∩N

n=1δn(k, hn) 6= ∅
}

. (10)

This condition is met if the inequality δl,n(k, h) ≤ δu,n(k, h) is satisfied, where δl,n(k, h)
is the largest lower and δu,n(k, h) is the smallest upper confidence limit [24,31].

In this work, we applied the asymmetrical combined-window RICI approach, where
the above-described procedure is implemented independently to the left and right side of
the considered sample k, resulting in two sets of confidence intervals δl(k, h) and δr(k, h)
for each signal sample k [27].

The algorithm tracks the intersection of the currently calculated nth confidence interval
with the intersection of all previous n − 1 confidence intervals on the each side of the
considered kth sample independently. This results in hl,ICI(k) and hr,ICI(k) as the largest
kernel widths satisfying (10) for the left and right side, respectively [27]. Finally, the
candidate for the optimal width of the asymmetrical kernel is obtained by combining
hl,ICI(k) and hr,ICI(k):

hICI(k) = hl,ICI(k) + hr,ICI(k)− 1. (11)

The ICI algorithm’s performance is highly sensitive to the selection of the optimal
value of the threshold parameter Γ, as too small values result in signal undersmoothing,
and too large values cause signal oversmoothing [24,30].

In order to make the ICI rule stage more robust to suboptimal Γ values, the second
stage of the algorithm includes the RICI rule upgrade, which applies the additional criterion
for the adaptive kernel width selection to the kernel width candidates obtained by the ICI
rule. The RICI rule improves the estimation accuracy of the ICI rule for the same values of
the threshold parameter Γ [26,27,32,33].

The RICI criterion λn(k, h) tracks the relative amount of confidence intervals overlap-
ping by calculating the ratio of the intersection of the confidence intervals’ width and the
current confidence interval’s width [26,27]:

λn(k, h) =
δu,n(k, h)− δl,n(k, h)
δu,n(k, h)− δl,n(k, h)

. (12)



J. Mar. Sci. Eng. 2021, 9, 439 5 of 35

The calculated RICI ratio λn(k, h) is compared to the preset RICI threshold value
(0 ≤ Rc ≤ 1) [27]:

λn(k, h) ≥ Rc. (13)

Similar to the ICI rule stage, the RICI rule is also applied independently to the both
sides of the considered samples, resulting in hl,RICI(k) and hr,RICI(k) which are the largest
kernel widths satisfying (10) and (13) for the left and right side, respectively [27]. Finally, the
width of the asymmetrical kernel hRICI(k) obtained by the RICI algorithm is calculated as:

hRICI(k) = hl,RICI(k) + hr,RICI(k)− 1. (14)

2.2. The Evolutionary Metaheuristic Optimization Algorithms

In real-world engineering applications, optimization problems are often nonlinear,
NP-hard (nondeterministic polynomial time-hard), and nondifferentiable. The traditional
techniques require a mathematical formulation of the considered problem, which is often
not possible. However, the evolutionary metaheuristic optimization algorithms have been
proved to be powerful tools for nonlinear optimization problems. They overcome the limi-
tations of the traditional techniques for nondifferentiable, noncontinuous, and nonconvex
objective functions. In this paper, we use and compare several evolutionary metaheuristic
optimization algorithms based on the PSO and GA. The generalized pseudocodes for
Algorithms A1–A4 are provided in Appendix A.

2.2.1. Traditional PSO Algorithm

The PSO is a population based iterative algorithm, where all particles are gathered in
one population, called the swarm [34–36]. Each particle represents the potential solution
of the optimization problem in the solution space. In each iteration, particles adjust its
flying trajectories according to personal and global experiences. Let us denote parameter s
as the number of particles, or the population size, and d as the dimension of the solution
space. d-dimensional solution space is defined with problem variables that need to be
optimized [34,35]. Particles move in the solution space by updating their velocity vector,
which is for the i-th particle (i ∈ [1, s]) defined as vi = (vi,1, vi,2, . . . , vi,d), and position
vector of the i-th particle, xi = (xi,1, xi,2, . . . , xi,d), according to the following equations:

vi,d = w · vi,d + c1 · r1 · (pi,d − xi,d) + c2 · r2 · (pg,d − xi,d), (15)

xi,d = xi,d + vi,d, (16)

where r1 and r2 are random numbers sampled from the range 0 to 1, w is the inertia weight,
c1 and c2 denote the acceleration coefficients which control the particle movement toward
the personal and the global best, pi,d and pg,d, respectively [34,35]. Apart from limiting
particle positions for the constrained problem, the value of each velocity vi,d can be limited
also to range [vmin,d, vmax,d] in order to reduce the likelihood of particles moving too fast in
smaller solution spaces.

A suitable selection of the inertia factor and the acceleration coefficients provides
a balance between global and local exploration and exploitation. Further research has
claimed that improved PSO performance could be gained if the inertia weight was chosen
as a linearly decreasing number rather than a constant number over all iterations. The idea
was that PSO search should start with high inertia weight for strong global exploration
while, with linearly decreasing, in later iterations emphasize finer local explorations [34,35].
The w used in our simulations is given as:

w = wmax − (wmax − wmin) ∗ (it/MaxIt), (17)

where parameters it and MaxIt stand for the current and maximum PSO iteration, respec-
tively [34,35].
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2.2.2. Enhanced Partial Search Particle Swarm Optimization (EPS-PSO) Algorithm

In some cases, the standard PSO might lead to a stagnant state, meaning that the
global best position cannot be improved over iterations. To avoid PSO’s convergence to
a local optimum, a supplementary search direction was obtained by implementing an
additional population that takes up the global search assignment. The PSO variation is
termed as the Enhanced Partial Search Particle Swarm Optimization (EPS-PSO) [35].

At the start of the EPS-PSO algorithm, the entire population is divided equally into
two subswarms, namely the traditional subswarm and the cosearch swarm, respectively.
The main difference between those two swarms is that the cosearch swarm is periodically
reinitialized every tg iterations, where tg is called the reinitialization period [35]. The reini-
tialization of the particle positions is performed uniformly in the search space. However,
there is an exception; if the current global best position of the cosearch, denoted as pCO−g,d,
outperforms the global best position of the traditional swarm, denoted as pT−g,d, then
the reinitialization of the cosearch swarm is called off. Basically, two subswarms work
independently. The only cooperation between the subswarms is when the cosearch swarm
exploits better outcomes than the traditional swarm. In that case, the velocity vector of the
traditional swarm will update its value based on the pCO−g,d, instead of the pT−g,d [35].

2.2.3. Multiswarm Particle Swarm Optimization (MSPSO)

The Multiswarm Particle Swarm Optimization (MSPSO) algorithm is another variant
PSO algorithm that also introduces additional swarms [37]. Therefore, the total population
depends not only on the number of particles but also on the number of swarms, denoted
as nSwarm. The number of swarms determines the degree of communication between the
swarms. The studies have shown that the algorithm performance can be improved by
involving more swarms in the process [35,37]. However, introducing more swarms also
increases the number of evaluations. For our optimizations, we have divided the same
population size of the previous PSO variants into multiple swarms.

2.2.4. Genetic Algorithm (GA)

The GA is a stochastic algorithm invented to mimic some procedures in the natural
evolution [36]. In GA, new particles, also called offsprings, are formed by combining two
particles from current generations, called parents, using crossover and mutation operators.
A new generation is formed by keeping the best performing particles from the parents and
offsprings. The crossover and mutation operators are part of genetic operators based on
the Darwinian principle of survival of the best performing particle in the population. In
the GA used in this paper, the numbers of offspring and mutants, nc and nm respectively,
are controlled with parameters pc and pm [36].

3. Results and Discussion

In order to investigate the efficiency of the proposed RBF-RICI adaptive filtering
algorithm, we have applied it to the several synthetic signals, including Blocks, Bumps,
Doppler, HeaviSine, Piece-Regular, and Sing signal. These signals are chosen as they represent
good models of some typical real-world data found in various engineering and signal pro-
cessing applications. For example, the piecewise constant Blocks signal is used as a model
of the acoustic impedance of a layered medium in geophysics or of the one-dimensional
profile along certain images in image processing applications [38]. Moreover, the Bumps
signal represents spectra arising in nuclear magnetic resonance (NMR), absorption, and
infrared spectroscopy [38], whereas the Piece-Regular signal is similar to wave arrivals in
a seismogram. Each considered signal is corrupted by the white additive Gaussian noise
and studied for three cases corresponding to signal-to-noise-ratio (SNR) values of 5, 7, and
10 dB.

The RBF-RICI algorithm is also compared to the zero-order LPA-RICI, the original
LPA-ICI, and the Savitzky–Golay [39] filtering algorithms. To facilitate the quantitative
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analysis of the tested algorithms, the following filtering quality indicators were calculated
for signals of the length Nk:

Mean squared error (MSE):

MSE =
1

Nk

Nk

∑
k=1

(x(k)− x̂n(k))
2, (18)

Mean absolute error (MAE):

MAE =
1

Nk

Nk

∑
k=1
|x(k)− x̂n(k)|, (19)

Maximum absolute error (MAXE):

MAXE = max
k=1,...,Nk

|x(k)− x̂n(k)|, (20)

Peak signal-to-noise ratio (PSNR):

PSNR = 20 log10

 maxk=1,...,Nk
x(k)√

1
Nk

∑Nk
k=1(x(k)− x̂n(k))

2

, (21)

Improvement in the signal-to-noise ratio (ISNR):

ISNR = 10 log10

(
∑Nk

k=1(x(k)− y(k))2

∑Nk
k=1(x(k)− x̂n(k))

2

)
. (22)

The RBF-RICI algorithm, as well as the other tested algorithms, are applied with
the optimal parameters for each considered signal, i.e., the parameters that minimize the
estimation MSE. The optimal parameter values of the LPA-ICI algorithm are found in the
range of 0 ≤ Γ ≤ 5. The Savitzky–Golay filtering algorithm is applied with the second order
polynomial and the optimal window width h. The optimal parameters of the RBF-RICI and
LPA-RICI algorithms are found by running the exhaustive grid search in the parameter
space defined by parameters’ value ranges of 0 ≤ Γ ≤ 5 and 0 ≤ Rc ≤ 1. The search is
conducted with the fine parameter value resolution of 10−2, resulting in the total number
of 50,000 iterations and algorithm evaluations. To speed up this time-consuming and
strenuous process, the PSO algorithm is proposed in the RBF-RICI parameters optimization.
Different PSO algorithm realizations, as well as the genetic algorithm, are tested, and their
performances are compared. The obtained results are presented and discussed in the rest
of this section.

3.1. Simulation Results
3.1.1. Blocks Signal

The original Blocks signal is shown in Figure 1a, while Figure 1b shows its noisy
version, with the SNR of 7 dB. The results obtained by applying the RBF-RICI filtering
algorithm, in terms of comparison of the original and the filtered signal, are presented in
Figure 1c, while Figure 1d shows the filtering error. As can be seen, the RBF-RICI algorithm
reduces the noise and reconstructs the main features of the original Blocks signal well, with
the slightly degraded performance near the instantaneous signal value changes.
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(a) (b)

(c) (d)
Figure 1. Blocks signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 1.44, Rc = 0.67). (d) Filtering error.

The filtering results obtained by the RBF-RICI, the LPA-RICI, the LPA-ICI, and the
Savitzky–Golay filtering algorithm applied to the noisy Blocks signal at SNRs of 5, 7, and
10 dB are given in Tables 1–3, respectively. The quantitative comparison is provided by
calculating the filtering quality indicators MSE, MAE, MAXE, PSNR, and ISNR for the
tested algorithms with the optimal parameters, i.e., the parameters that minimize the
filtering MSE. The best filtering quality indicators in each table, i.e., the lowest values of
MSE, MAE, and MAXE, and the highest values of PSNR and ISNR, are marked in bold. The
results presented in Tables 1–3 suggest that the RBF-RICI algorithm applied to the noisy
Blocks signal provides satisfactory filtering performance, reducing the filtering errors and
improving the SNR of the signal. With the decrease of the SNR, the RBF-RICI algorithm’s
filtering quality is also somewhat reduced but remained competitive.

The filtering quality improvement of the RBF-RICI algorithm over the other tested
algorithms for the Blocks signal is calculated, and the percentage values are given in
Tables 4–6 for SNRs of 5, 7, and 10 dB, respectively. The positive percentage values indicate
the filtering quality improvement of the RBF-RICI algorithm over the other algorithms, i.e.,
the decrease in the values of the filtering quality indicators MSE, MAE, and MAXE, and the
increase in the values of the PSNR and ISNR, while the negative percentage values indicate
the opposite. The results provided in Tables 4–6 suggest that, in most cases, the RBF-RICI
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algorithm applied to the noisy Blocks signal provides the improved or competitive filtering
quality when compared to the other tested algorithms.

Table 1. Blocks signal (SNR = 5 dB)—Filtering results. The best filtering quality indicators are marked
in bold.

Filtering
Quality

Indicator

RBF-RICI
Γ = 3.67,
Rc = 0.95

LPA-RICI
Γ = 4.03,
Rc = 0.96

LPA-ICI
Γ = 0.73

Savitzky-
Golay
h = 25

MSE 0.1409 0.1459 0.2114 0.3276
MAE 0.2132 0.2100 0.3264 0.4219

MAXE 3.6682 3.6471 4.0740 2.5848
PSNR (dB) 22.8307 22.6801 21.0700 19.1668
ISNR (dB) 11.4673 11.3166 9.7065 7.8033

Table 2. Blocks signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.44,
Rc = 0.67

LPA-RICI
Γ = 4.12,
Rc = 0.98

LPA-ICI
Γ = 0.62

Savitzky-
Golay
h = 21

MSE 0.0849 0.0973 0.1305 0.2599
MAE 0.1797 0.1864 0.2550 0.3684

MAXE 3.2267 2.8130 2.9652 2.3588
PSNR (dB) 25.0323 24.4376 23.1630 20.1717
ISNR (dB) 11.6688 11.0741 9.7996 6.8082

Table 3. Blocks signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.60,
Rc = 0.84

LPA-RICI
Γ = 1.56,
Rc = 0.89

LPA-ICI
Γ = 0.47

Savitzky-
Golay
h = 19

MSE 0.0311 0.0298 0.0595 0.1889
MAE 0.1000 0.1059 0.1703 0.2939

MAXE 2.4207 2.4023 2.4001 2.3602
PSNR (dB) 29.3877 29.5756 26.5776 21.5585
ISNR (dB) 13.0243 13.2121 10.2142 5.1951

Table 4. Blocks signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.03,
Rc = 0.96

LPA-ICI
Γ = 0.73

Savitzky-
Golay
h = 25

MSE 3.43% 33.35% 56.99%
MAE −1.52% 34.68% 49.47%

MAXE −0.58% 9.96% −41.91%
PSNR (dB) 0.66% 8.36% 19.12%
ISNR (dB) 1.33% 18.14% 46.95%
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Table 5. Blocks signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.12,
Rc = 0.98

LPA-ICI
Γ = 0.62

Savitzky-
Golay
h = 21

MSE 12.74% 34.94% 67.33%
MAE 3.59% 29.53% 51.22%

MAXE −14.71% −8.82% −36.79%
PSNR (dB) 2.43% 8.07% 24.10%
ISNR (dB) 5.37% 19.07% 71.39%

Table 6. Blocks signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 1.56,
Rc = 0.89

LPA-ICI
Γ = 0.47

Savitzky-
Golay
h = 19

MSE −4.36% 47.73% 83.54%
MAE 5.57% 41.28% 65.97%

MAXE −0.77% −0.86% −2.56%
PSNR (dB) −0.64% 10.57% 36.32%
ISNR (dB) −1.42% 27.51% 150.70%

The runtimes have also been computed for each tested filtering algorithm. The
algorithm runtimes have been obtained on a computer with the Intel Xeon CPU E5-2620
v4 @ 2.10 GHz, and 128 GB of RAM. The results have been averaged over 1000 algorithm
runs. The runtimes of the filtering algorithms applied to the noisy Blocks signal at SNRs
of 5, 7, and 10 dB are shown in Table 7. The presented results suggest that the proposed
RBF-RICI algorithm performs competitively to the LPA-RICI and LPA-ICI algorithms in
terms of execution speed, with a dependence on the selected parameters’ values. However,
Savitzky–Golay filtering algorithm provides significantly faster performance than the other
tested algorithms.

Table 7. Blocks signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky–Golay

5 0.1439 0.2301 0.1482 0.0006
7 0.2655 0.0839 0.1351 0.0004
10 0.2136 0.2353 0.1413 0.0010

3.1.2. Bumps Signal

Figure 2a shows the original Bumps signal, whose noise-corrupted version with the
SNR of 7 dB is shown in Figure 2b. The comparison of the original and the RBF-RICI filtered
Bumps signal is given in Figure 2c, with the filtering error shown in Figure 2d. As shown in
Figure 2c, the RBF-RICI algorithm provides very good noise reduction performance.

Tables 8–10 provide the filtering quality indicators obtained by the optimized RBF-
RICI, LPA-RICI, LPA-ICI, and Savitzky–Golay filtering algorithms applied to the noisy
Bumps signal for SNRs of 5, 7, and 10 dB, respectively. The results indicate that the RBF-
RICI algorithm provides good filtering performance in terms of noise suppression and
filtering error reduction. As expected, the filtering performance slightly declines with the
decreasing SNR. Tables 11–13 give the relative comparison of the filtering quality obtained
by the RBF-RICI algorithm and the other tested algorithms applied to the Bumps signal at
SNRs of 5, 7, and 10 dB, respectively. The presented comparison indicates that the proposed
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RBF-RICI algorithm provides better performance than all other tested algorithms for each
considered filtering quality indicator and SNR value.

(a) (b)

(c) (d)
Figure 2. Bumps signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 0.82, Rc = 0.33). (d) Filtering error.

Table 8. Bumps signal (SNR = 5 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.13,
Rc = 0.49

LPA-RICI
Γ = 2.05,
Rc = 0.90

LPA-ICI
Γ = 0.57

Savitzky-
Golay
h = 9

MSE 0.0277 0.0356 0.0382 0.0626
MAE 0.0966 0.1093 0.1215 0.1880

MAXE 1.1582 1.2638 1.2638 1.7304
PSNR (dB) 29.6493 28.5563 28.2463 26.1023
ISNR (dB) 7.8378 6.7449 6.4348 4.2909
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Table 9. Bumps signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 0.82,
Rc = 0.33

LPA-RICI
Γ = 1.57,
Rc = 0.88

LPA-ICI
Γ = 0.48

Savitzky-
Golay
h = 9

MSE 0.0181 0.0251 0.0279 0.0454
MAE 0.0806 0.0944 0.1028 0.1546

MAXE 0.9612 1.0178 1.0178 1.7418
PSNR (dB) 31.4981 30.0755 29.6152 27.4996
ISNR (dB) 7.6866 6.2640 5.8038 3.6881

Table 10. Bumps signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 0.61,
Rc = 0.26

LPA-RICI
Γ = 1.55,
Rc = 0.96

LPA-ICI
Γ = 0.34

Savitzky-
Golay
h = 7

MSE 0.0101 0.0148 0.0166 0.0276
MAE 0.0599 0.0777 0.0790 0.1228

MAXE 0.7072 0.7327 0.8098 1.3599
PSNR (dB) 34.0275 32.3577 31.8621 29.6602
ISNR (dB) 7.2161 5.5462 5.0506 2.8487

Table 11. Bumps signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 2.05,
Rc = 0.90

LPA-ICI
Γ = 0.57

Savitzky-
Golay
h = 9

MSE 22.19% 27.49% 55.75%
MAE 11.62% 20.49% 48.62%

MAXE 8.36% 8.36% 33.07%
PSNR (dB) 3.83% 4.97% 13.59%
ISNR (dB) 16.20% 21.80% 82.66%

Table 12. Bumps signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 1.57,
Rc = 0.88

LPA-ICI
Γ = 0.48

Savitzky-
Golay
h = 9

MSE 27.89% 35.13% 60.13%
MAE 14.62% 21.60% 47.87%

MAXE 5.56% 5.56% 44.82%
PSNR (dB) 4.73% 6.36% 14.54%
ISNR (dB) 22.71% 32.44% 108.42%

Table 13. Bumps signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 1.55,
Rc = 0.96

LPA-ICI
Γ = 0.34

Savitzky-
Golay
h = 7

MSE 31.76% 39.16% 63.41%
MAE 22.91% 24.18% 51.22%

MAXE 3.48% 12.67% 48.00%
PSNR (dB) 5.16% 6.80% 14.72%
ISNR (dB) 30.11% 42.88% 153.31%
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The filtering algorithms’ runtimes in the case of the Bumps signal filtered at SNR levels
of 5, 7, and 10 dB are given in Table 14. The RBF-RICI algorithm shows performance that is
significantly slower than the one obtained by the Savitzky–Golay filtering and somewhat
slower than those provided by the LPA-RICI and LPA-ICI algorithms.

Table 14. Bumps signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky-Golay

5 0.1740 0.1614 0.1117 0.0002
7 0.1974 0.1206 0.0937 0.0001
10 0.1812 0.0742 0.0845 0.0001

3.1.3. Doppler Signal

The original and noisy (SNR = 7 dB) Doppler signals are shown in Figure 3a,b, respectively.
Figure 3c shows the original and the RBF-RICI filtered Doppler signal, while the obtained
filtering error is shown in Figure 3d. As shown in Figure 3c, the RBF-RICI algorithm provides
somewhat poorer filtering performance in the initial part of the Doppler signal where the higher
frequency oscillations are present, and the algorithm’s performance significantly improves in
the rest of the signal with the lower frequency content (and higher amplitudes).

The results obtained by applying the improved filtering algorithm to the noisy Doppler
signal are given in Tables 15–17 for SNRs of 5, 7, and 10 dB, respectively. According to the
values of the filtering quality indicators, the RBF-RICI technique provides a good filtering
performance by reducing the filtering error and increasing the SNR of the signal. The
percentage values describing the relative filtering quality improvement of the RBF-RICI
algorithm over the LPA-RICI, the LPA-ICI, and the Savitzky–Golay filtering algorithm ap-
plied to the Doppler signal at SNRs of 5, 7, and 10 dB are given in Tables 18–20, respectively.
The RBF-RICI algorithm outperforms all other tested algorithms for all filtering quality
indicators and SNR values, except for the MAXE at the 7 dB SNR.

The runtimes calculated for the filtering algorithms applied to the Doppler signal at
SNRs of 5, 7, and 10 dB are given in Table 21. The RBF-RICI algorithm provides the runtimes
which are competitive to the ones obtained by the LPA-RICI and LPA-ICI algorithms, with a
dependence on the SNR and parameters’ values. These algorithms are again outperformed
by the Savitzky–Golay filtering in terms of execution speed.

Table 15. Doppler signal (SNR = 5 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 2.15,
Rc = 0.88

LPA-RICI
Γ = 4.82,
Rc = 1

LPA-ICI
Γ = 0.58

Savitzky-
Golay
h = 23

MSE 0.0037 0.0046 0.0059 0.0044
MAE 0.0452 0.0496 0.0590 0.0481

MAXE 0.2647 0.3061 0.3028 0.2949
PSNR (dB) 18.2042 17.1874 16.1235 17.4454
ISNR (dB) 8.8026 7.7858 6.7220 8.0439
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(a) (b)

(c) (d)
Figure 3. Doppler signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 2.29, Rc = 0.94). (d) Filtering error.

Table 16. Doppler signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 2.29,
Rc = 0.94

LPA-RICI
Γ = 3.61,
Rc = 1

LPA-ICI
Γ = 0.46

Savitzky-
Golay
h = 21

MSE 0.0027 0.0033 0.0045 0.0034
MAE 0.0373 0.0417 0.0512 0.0412

MAXE 0.3212 0.2803 0.3177 0.2776
PSNR (dB) 19.5106 18.6596 17.3110 18.5490
ISNR (dB) 8.1091 7.2581 5.9094 7.1475

Table 17. Doppler signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 2.85,
Rc = 1

LPA-RICI
Γ = 2.55,
Rc = 1

LPA-ICI
Γ = 0.35

Savitzky-
Golay
h = 17

MSE 0.0017 0.0021 0.0030 0.0023
MAE 0.0293 0.0319 0.0411 0.0332

MAXE 0.2097 0.2553 0.2809 0.2643
PSNR (dB) 21.5377 20.6978 19.1250 20.2577
ISNR (dB) 7.1362 6.2962 4.7235 5.8561
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Table 18. Doppler signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.82,
Rc = 1

LPA-ICI
Γ = 0.58

Savitzky-
Golay
h = 23

MSE 19.57% 37.29% 15.91%
MAE 8.87% 23.39% 6.03%

MAXE 13.52% 12.58% 10.24%
PSNR (dB) 5.92% 12.90% 4.35%
ISNR (dB) 13.06% 30.95% 9.43%

Table 19. Doppler signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 3.61,
Rc = 1

LPA-ICI
Γ = 0.46

Savitzky-
Golay
h = 21

MSE 18.18% 40.00% 20.59%
MAE 10.55% 27.15% 9.47%

MAXE −14.59% −1.10% −15.71%
PSNR (dB) 4.56% 12.71% 5.18%
ISNR (dB) 11.72% 37.22% 13.45%

Table 20. Doppler signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 2.55,
Rc = 1

LPA-ICI
Γ = 0.35

Savitzky-
Golay
h = 17

MSE 19.05% 43.33% 26.09%
MAE 8.15% 28.71% 11.75%

MAXE 17.86% 25.35% 20.66%
PSNR (dB) 4.06% 12.62% 6.32%
ISNR (dB) 13.34% 51.08% 21.86%

Table 21. Doppler signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky–Golay

5 0.1600 0.0658 0.0947 0.0010
7 0.1177 0.0464 0.0836 0.0004
10 0.0512 0.0555 0.0702 0.0007

3.1.4. HeaviSine Signal

Figure 4a shows the original noise-free HeaviSine signal, while Figure 4b shows its noise-
corrupted version at the 7 dB SNR. The comparison between the original and the RBF-RICI
filtered signal is given in Figure 4c, while their difference is illustrated in Figure 4d as the
filtering error. The proposed filtering algorithm provides noise reduction and estimates the
original signal efficiently, with the low values of filtering error for the whole signal duration.
The signal value jump at k = 307 is successfully reconstructed, in contrast to the sudden
change in the signal value at k = 737 where the algorithm did not adapt fast enough.
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(a) (b)

(c) (d)
Figure 4. HeaviSine signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 4.98, Rc = 0.99). (d) Filtering error.

Tables 22–24 provide the filtering results for the RBF-RICI, the LPA-RICI, the LPA-ICI,
and the Savitzky–Golay filtering algorithm in the case of the HeaviSine signal filtered at
SNRs of 5, 7, and 10 dB, respectively. The obtained filtering quality indicators suggest
that the RBF-RICI algorithm efficiently removes the noise, keeping the filtering error at
low values. The filtering quality is somewhat reduced for the lower SNR values but
remained satisfactory. Tables 25–27 give the comparison between the filtering quality
indicators obtained by the algorithms applied to the HeaviSine signal at SNRs of 5, 7,
and 10 dB, respectively. The RBF-RICI algorithm shows better filtering performance than
the LPA-RICI and LPA-ICI algorithms for each SNR case, but it is outperformed by the
Savitzky–Golay filtering algorithm.

The filtering algorithms’ runtimes for the noisy HeaviSine signal considered at SNR
levels of 5, 7, and 10 dB are shown in Table 28. The RBF-RICI algorithm is competitive to
the LPA-RICI and LPA-ICI algorithms in terms of execution speed, outperforming both
methods at the SNR of 10 dB. The Savitzky–Golay filtering provides the fastest performance.
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Table 22. HeaviSine signal (SNR = 5 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 4.98,
Rc = 0.98

LPA-RICI
Γ = 4.97,
Rc = 0.99

LPA-ICI
Γ = 0.61

Savitzky-
Golay

h = 217

MSE 0.1683 0.2022 0.3517 0.0995
MAE 0.3264 0.3432 0.4737 0.2217

MAXE 1.2817 1.8795 2.7010 1.0594
PSNR (dB) 19.7793 18.9828 16.5791 22.0611
ISNR (dB) 12.6436 11.8471 9.4434 14.9254

Table 23. HeaviSine signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 4.98,
Rc = 0.99

LPA-RICI
Γ = 4.54,
Rc = 0.99

LPA-ICI
Γ = 0.51

Savitzky-
Golay

h = 101

MSE 0.1070 0.1280 0.2540 0.0763
MAE 0.2526 0.2763 0.3987 0.2001

MAXE 1.1832 1.8756 2.6166 1.0451
PSNR (dB) 21.7477 20.9676 17.9928 23.2185
ISNR (dB) 12.6119 11.8319 8.8571 14.0828

Table 24. HeaviSine signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 4.85,
Rc = 1

LPA-RICI
Γ = 4.67,
Rc = 1

LPA-ICI
Γ = 0.38

Savitzky-
Golay

h = 101

MSE 0.0594 0.0668 0.1549 0.0536
MAE 0.1782 0.1924 0.3101 0.1578

MAXE 1.0415 0.9900 2.4188 1.0251
PSNR (dB) 24.3045 23.7948 20.1394 24.7476
ISNR (dB) 12.1688 11.6591 8.0037 12.6118

Table 25. HeaviSine signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.97,
Rc = 0.99

LPA-ICI
Γ = 0.61

Savitzky-
Golay

h = 217

MSE 16.77% 52.15% −69.15%
MAE 4.90% 31.10% −47.23%

MAXE 31.81% 52.55% −20.98%
PSNR (dB) 4.20% 19.30% −10.34%
ISNR (dB) 6.72% 33.89% −15.29%

Table 26. HeaviSine signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.54,
Rc = 0.99

LPA-ICI
Γ = 0.51

Savitzky-
Golay

h = 101

MSE 16.41% 57.87% −40.24%
MAE 8.58% 36.64% −26.24%

MAXE 36.92% 54.78% −13.21%
PSNR (dB) 3.72% 20.87% −6.33%
ISNR (dB) 6.59% 42.39% −10.44%
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Table 27. HeaviSine signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.67,
Rc = 1

LPA-ICI
Γ = 0.38

Savitzky-
Golay

h = 101

MSE 11.08% 61.65% −10.82%
MAE 7.38% 42.53% −12.93%

MAXE −5.20% 56.94% −1.60%
PSNR (dB) 2.14% 20.68% −1.79%
ISNR (dB) 4.37% 52.04% −3.51%

Table 28. HeaviSine signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky–Golay

5 0.2017 0.1275 0.1274 0.0010
7 0.1428 0.1061 0.1534 0.0009
10 0.0942 0.1177 0.1102 0.0015

3.1.5. Piece-Regular Signal

Figure 5a,b show the original and the noisy (SNR = 7 dB) Piece-Regular signal, respectively.
The original and the RBF-RICI filtered signals are shown in Figure 5c, while Figure 5d
shows the obtained estimation error. The results presented in Figure 5c,d suggest that the
proposed adaptive algorithm provides excellent filtering accuracy, as the original signal and
the filtered signal match closely. The algorithm adapts well to all sudden changes in signal
slope and value.

The results presented in Tables 29–31 suggest that the proposed RBF-RICI algorithm
applied to the noisy Piece-Regular signal provides excellent filtering performance. The
performance deteriorates somewhat with decreasing SNR. As shown in Tables 32–34, the
RBF-RICI algorithm outperforms all other tested algorithms applied to the Piece-Regular
signal for each considered SNR.

Table 35 gives the runtimes of the filtering algorithms applied to the noisy Piece-Regular
signal at SNRs of 5, 7, and 10 dB. In this case, the RBF-RICI algorithm provides a slower
performance when compared to the other tested algorithms.

Table 29. Piece-Regular signal (SNR = 5 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.72,
Rc = 0.82

LPA-RICI
Γ = 4.80,
Rc = 1

LPA-ICI
Γ = 0.57

Savitzky-
Golay
h = 25

MSE 10.6693 14.1213 18.3593 13.3110
MAE 2.3735 2.7457 3.1596 2.7866

MAXE 17.7053 19.0331 18.5048 15.9277
PSNR (dB) 22.4826 21.2653 20.1255 21.5219
ISNR (dB) 9.9092 8.6918 7.5520 8.9485
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Table 30. Piece-Regular signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.44,
Rc = 0.81

LPA-RICI
Γ = 3.77,
Rc = 1

LPA-ICI
Γ = 0.47

Savitzky-
Golay
h = 25

MSE 7.0609 9.5441 13.0202 9.9522
MAE 1.9533 2.2509 2.6585 2.3151

MAXE 12.7040 18.3339 15.7328 15.2692
PSNR (dB) 24.2754 22.9667 21.6178 22.7848
ISNR (dB) 9.7020 8.3932 7.0444 8.2114

Table 31. Piece-Regular signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.19,
Rc = 0.84

LPA-RICI
Γ = 2.86,
Rc = 1

LPA-ICI
Γ = 0.35

Savitzky-
Golay
h = 19

MSE 3.7850 5.2971 7.6770 6.7829
MAE 1.4513 1.6479 2.0257 1.8895

MAXE 8.7759 16.1955 12.8774 14.5437
PSNR (dB) 26.9834 25.5236 23.9121 24.4498
ISNR (dB) 9.4099 7.9502 6.3386 6.8764

Table 32. Piece-Regular signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 4.80,
Rc = 1

LPA-ICI
Γ = 0.57

Savitzky-
Golay
h = 25

MSE 24.45% 41.89% 19.85%
MAE 13.56% 24.88% 14.82%

MAXE 6.98% 4.32% −11.16%
PSNR (dB) 5.72% 11.71% 4.46%
ISNR (dB) 14.01% 31.21% 10.74%

Table 33. Piece-Regular signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 3.77,
Rc = 1

LPA-ICI
Γ = 0.47

Savitzky-
Golay
h = 25

MSE 26.02% 45.77% 29.05%
MAE 13.22% 26.53% 15.63%

MAXE 30.71% 19.25% 16.80%
PSNR (dB) 5.70% 12.29% 6.54%
ISNR (dB) 15.59% 37.73% 18.15%

Table 34. Piece-Regular signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based
filtering over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 2.86,
Rc = 1

LPA-ICI
Γ = 0.35

Savitzky-
Golay
h = 19

MSE 28.55% 50.70% 44.20%
MAE 11.93% 28.36% 23.19%

MAXE 45.81% 31.85% 39.66%
PSNR (dB) 5.72% 12.84% 10.36%
ISNR (dB) 18.36% 48.45% 36.84%
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Table 35. Piece-Regular signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky–Golay

5 0.1522 0.0670 0.0862 0.0003
7 0.1459 0.0532 0.0975 0.0007
10 0.1366 0.0674 0.0873 0.0005

(a) (b)

(c) (d)
Figure 5. Piece-Regular signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 1.44, Rc = 0.81). (d) Filtering error.

3.1.6. Sing Signal

The original Sing signal and the signal with the added white Gaussian noise
(SNR = 7 dB) are shown in Figure 6a,b, respectively. The comparison between the original
and the filtered signal is given in Figure 6c, with the filtering error shown in Figure 6d. The
Sing signal is characterized by having zero values for the most part of its duration and one
sudden peak of high amplitude, making it challenging for the filtering algorithm to adapt
in a short period of time. The visual inspection of the presented results suggests that the
optimized RBF-RICI algorithm provides excellent filtering performance with efficient noise
suppression and an almost perfect match between the original and the filtered signal for
the entire signal duration.
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(a) (b)

(c) (d)
Figure 6. Sing signal: (a) Original signal. (b) Noisy signal (SNR = 7 dB). (c) Original and RBF-RICI filtered signal
(Γ = 0.99, Rc = 0.01). (d) Filtering error.

Tables 36–38 provide the results obtained by the RBF-RICI, the LPA-RICI, the LPA-ICI,
and the Savitzky–Golay filtering algorithm when applied to the filtering of the noisy Sing
signal at SNRs of 5, 7, and 10 dB, respectively. The analysis of the calculated filtering quality
indicators suggests that the RBF-RICI algorithm efficiently removes the noise, decreasing
the filtering error and increasing the SNR of the signal. The performance is slightly reduced
at the lower SNR values. The comparison of the filtering quality indicators obtained by
the tested algorithms applied to the Sing signal, given in Tables 39–41, suggests that the
RBF-RICI algorithm shows better filtering performance than the other tested algorithms
for each filtering quality indicator and each considered SNR case.

Table 42 provides the filtering algorithms’ runtimes in the case of the noisy Sing signal
filtered at SNR levels of 5, 7, and 10 dB. The results suggest that the RBF-RICI algorithm is
outperformed by the other tested algorithms in terms of the execution speed.
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Table 36. Sing signal (SNR = 5 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 1.12,
Rc = 0.11

LPA-RICI
Γ = 2.81,
Rc = 0.94

LPA-ICI
Γ = 0.82

Savitzky-
Golay
h = 5

MSE 83.8782 141.4546 177.6915 1962.6767
MAE 3.8877 6.4314 6.8539 33.8149

MAXE 111.5364 211.4573 193.0249 303.2041
PSNR (dB) 46.9901 44.7204 43.7299 33.2981
ISNR (dB) 15.9259 13.6562 12.6657 2.2339

Table 37. Sing signal (SNR = 7 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 0.99,
Rc = 0.01

LPA-RICI
Γ = 1.87,
Rc = 0.91

LPA-ICI
Γ = 0.73

Savitzky-
Golay
h = 5

MSE 64.1788 80.2616 132.0162 1338.2816
MAE 3.3283 5.4335 5.8075 27.0899

MAXE 108.9616 114.1618 171.9973 300.6734
PSNR (dB) 48.1527 47.1815 45.0203 34.9611
ISNR (dB) 15.0885 14.1173 11.9561 1.8969

Table 38. Sing signal (SNR = 10 dB)—Filtering results.

Filtering
Quality

Indicator

RBF-RICI
Γ = 0.68,
Rc = 0.11

LPA-RICI
Γ = 2.11,
Rc = 0.96

LPA-ICI
Γ = 0.44

Savitzky-
Golay
h = 5

MSE 35.3108 50.3365 73.5058 804.6591
MAE 2.4840 4.0478 4.7087 19.5046

MAXE 84.0245 99.7517 115.0057 297.8189
PSNR (dB) 50.7475 49.2078 47.5634 37.1705
ISNR (dB) 14.6833 13.1435 11.4992 1.1062

Table 39. Sing signal (SNR = 5 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 2.81,
Rc = 0.94

LPA-ICI
Γ = 0.82

Savitzky-
Golay
h = 5

MSE 40.70% 52.80% 95.73%
MAE 39.55% 43.28% 88.50%

MAXE 47.25% 42.22% 63.21%
PSNR (dB) 5.08% 7.46% 41.12%
ISNR (dB) 16.62% 25.74% 612.93%

Table 40. Sing signal (SNR = 7 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 1.87,
Rc = 0.91

LPA-ICI
Γ = 0.73

Savitzky-
Golay
h = 5

MSE 20.04% 51.39% 95.20%
MAE 38.74% 42.69% 87.71%

MAXE 4.56% 36.65% 63.76%
PSNR (dB) 2.06% 6.96% 37.73%
ISNR (dB) 6.88% 26.20% 695.43%
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Table 41. Sing signal (SNR = 10 dB)—Filtering quality improvement of the RBF-RICI-based filtering
over other tested algorithms.

Filtering
Quality

Indicator

LPA-RICI
Γ = 2.11,
Rc = 0.96

LPA-ICI
Γ = 0.44

Savitzky-
Golay
h = 5

MSE 29.85% 51.96% 95.61%
MAE 38.63% 47.25% 87.26%

MAXE 15.77% 26.94% 71.79%
PSNR (dB) 3.13% 6.69% 36.53%
ISNR (dB) 11.72% 27.69% 1227.30%

Table 42. Sing signal—Filtering algorithms’ runtimes.

Runtime (s)

SNR (dB) RBF-RICI LPA-RICI LPA-ICI Savitzky-Golay

5 1.1708 0.9176 0.8507 0.0001
7 1.5391 0.4543 0.8060 0.0001
10 1.1189 0.7373 0.5872 0.0001

3.1.7. Parameters Sensitivity

In addition to the analysis provided above, Figure 7 shows the filtering quality measure
MSE as a function of the RBF-RICI algorithm’s parameters Γ and Rc, for the algorithm
applied to each considered noisy signal at the SNR of 7 dB. The MSE values are calculated
during the grid search in the parameter space, within the range 0 ≤ Γ ≤ 5 and 0 ≤ Rc ≤ 1.
As can be seen, the estimation MSE, whose value determines the filtering performance,
depends heavily on the proper selection of the algorithm’s parameters. In order to reduce
the total number of evaluations needed to find the parameters’ values that minimize the
obtained MSE, the parameters optimization approach following the PSO-based procedure
is proposed.

3.1.8. Effects of the Signal Length

The effects of the signal length on the RBF-RICI algorithm’s filtering performance are
demonstrated on each considered test signal for the SNR of 7 dB. The obtained results are
shown in Table 43. The RBF-RICI parameters are set to the values which are in the previous
analysis found as optimal for each signal of the 1024 samples length. As can be seen in
Table 43, the filtering performance is generally improved with the increasing signal length,
i.e., the filtering errors are reduced, and the SNR is increased. The only exceptions are the
MAXE which does not always show this declining trend, and the Sing signal due to its
specific nature in which the high-amplitude and the narrow-width peak is not adequately
registered at lower sampling rates. As expected, the algorithm runtime is increased for
longer duration signals.
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(a) (b)

(c) (d)

(e) (f)
Figure 7. The filtering quality indicator MSE as a function of the RBF-RICI algorithm’s parameters Γ and Rc for noisy signals
at 7 dB SNR: (a) Blocks. (b) Bumps. (c) Doppler. (d) HeaviSine. (e) Piece-Regular. (f) Sing.
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Table 43. Filtering results obtained by applying the RBF-RICI algorithm to signals of different lengths.

Signal Filtering Quality Indicator
Signal Length

256 512 1024 2048 4096

Blocks

MSE 0.3513 0.1749 0.0849 0.0366 0.0304
MAE 0.4153 0.2670 0.1797 0.1101 0.0879

MAXE 3.3583 2.9265 3.2267 2.5318 2.9030
PSNR (dB) 18.8633 21.8929 25.0323 28.6845 29.4858
ISNR (dB) 5.3256 8.6348 11.6688 15.1945 15.9701

Runtime (s) 0.0208 0.0889 0.2655 1.2338 4.1248

Bumps

MSE 0.0404 0.0292 0.0181 0.0138 0.0094
MAE 0.1331 0.1045 0.0806 0.0675 0.0554

MAXE 1.2079 1.0840 0.9612 0.9261 0.9646
PSNR (dB) 28.0066 29.4147 31.4981 32.6580 34.3455
ISNR (dB) 3.7458 5.7128 7.6866 8.7608 10.4151

Runtime (s) 0.0195 0.0652 0.1974 0.9162 2.5284

Doppler

MSE 0.0073 0.0041 0.0027 0.0018 0.0013
MAE 0.0632 0.0442 0.0373 0.0301 0.0248

MAXE 0.3359 0.2657 0.3212 0.4062 0.4062
PSNR (dB) 15.2227 17.7765 19.5106 21.3202 22.8532
ISNR (dB) 3.6592 6.4918 8.1091 9.8028 11.3092

Runtime (s) 0.0134 0.0465 0.1177 0.4334 1.0760

HeaviSine

MSE 0.3413 0.1443 0.1070 0.0661 0.0593
MAE 0.5009 0.2944 0.2526 0.2006 0.1873

MAXE 1.3481 1.4779 1.1832 1.0982 1.2504
PSNR (dB) 16.7101 20.4488 21.7477 23.8411 24.3073
ISNR (dB) 7.4158 11.4321 12.6119 14.5912 15.0314

Runtime (s) 0.0182 0.0529 0.1428 0.3319 0.8183

Piece-Regular

MSE 21.2851 8.1570 7.0609 4.2778 3.2621
MAE 3.3795 2.0880 1.9533 1.3535 1.1571

MAXE 18.4508 15.2367 12.7040 24.8208 24.8185
PSNR (dB) 19.3473 23.7121 24.2754 26.4571 27.6479
ISNR (dB) 4.7412 9.2154 9.7020 11.7501 12.8999

Runtime (s) 0.0143 0.0464 0.1459 0.4298 1.5775

Sing

MSE 34.2950 74.0754 64.1788 81.2321 67.2775
MAE 2.9835 3.7794 3.3283 4.2714 3.7723

MAXE 45.1892 72.1926 108.9616 96.0850 249.2586
PSNR (dB) 38.8331 41.5093 48.1527 53.1499 59.9891
ISNR (dB) 11.6169 11.5691 15.0885 16.9605 20.7632

Runtime (s) 0.0648 0.3062 1.5391 6.0509 27.8120

3.2. Parameters Optimization

In this section, we formalize a single-objective optimization problem:

min{MSE(Γ, Rc)},
subject to: Γ ∈ [0, 5], Rc ∈ [0, 1].

(23)

The optimization has been performed using the described evolutionary optimization
methods with the key parameters given in Table 44.

The number of particles in the swarm, s, the maximum number of iterations, MaxIt,
and the corresponding parameters have been kept equal for all considered optimization
algorithms to preserve the equal number of the MSE evaluations and to facilitate mutual
comparison. That is, each swarm size in the EPS-PSO and MSPSO algorithms, which use
multiple swarms, has been scaled accordingly to preserve s.

The computational results, including the average (Mean), the best (Best), the worst
(Worst), the standard deviation (Std. Dev.), and the median (Median), obtained by the
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PSO-based and GA-based optimization algorithms applied to the parameters optimization
problem for each considered noisy signal at the SNR of 7 dB, are given in Table 45. The
convergence results for 50 independent runs are shown in Figure 8.

Table 44. Parameters of the considered optimization algorithms.

Algorithms s MaxIt wmax wmin c1 = c2 Additional

PSO 50 50 0.9 0.4 2
GA 50 50 / / / pc = pm = 0.5

EPSPSO 25 + 25 50 0.9 0.4 2 tg = 5
MSPSO 25 + 25 50 0.9 0.4 2 nSwarm = 2

Table 45. The computational results obtained by the PSO-based and GA-based optimization algo-
rithms after 50 iterations, averaged over 50 independent runs.

Signal Statistic PSO GA EPS-PSO MSPSO

Mean 0.0850 0.0852 0.0850 0.0850
Best 0.0849 0.0849 0.0849 0.0849

Blocks Worst 0.0854 0.0856 0.0854 0.0854
Std. Dev. 2.1332 · 10−4 2.7481 · 10−4 2.5420 · 10−4 2.0457 · 10−4

Median 0.0849 0.0854 0.0849 0.0849

Mean 0.0181 0.0181 0.0181 0.0182
Best 0.0181 0.0181 0.0181 0.0181

Bumps Worst 0.0187 0.0184 0.0181 0.0189
Std. Dev. 8.8353 · 10−5 5.3257 · 10−5 8.3062 · 10−6 2.4976 · 10−4

Median 0.0181 0.0181 0.0181 0.0181

Mean 0.0027 0.0027 0.0027 0.0027
Best 0.0027 0.0027 0.0027 0.0027

Doppler Worst 0.0027 0.0028 0.0027 0.0028
Std. Dev. 7.0885 · 10−7 6.2548 · 10−6 9.6431 · 10−7 1.2469 · 10−5

Median 0.0027 0.0027 0.0027 0.0027

Mean 0.1131 0.1150 0.1100 0.1144
Best 0.1070 0.1070 0.1070 0.1070

HeaviSine Worst 0.1330 0.1330 0.1330 0.1333
Std. Dev. 1.10 · 10−2 1.13 · 10−2 8.10 · 10−3 1.15 · 10−2

Median 0.1070 0.1070 0.1070 0.1070

Mean 7.0609 7.0632 7.0628 7.0609
Best 7.0609 7.0609 7.0609 7.0609

Piece-Regular Worst 7.0609 7.1043 7.0848 7.0609
Std. Dev. 3.5888 · 10−15 8.3 · 10−3 6.6 · 10−3 3.5888 · 10−15

Median 7.0609 7.0609 7.0609 7.0609

Mean 65.6770 65.0317 65.0584 65.3961
Best 64.1788 64.1788 64.1788 64.1788

Sing Worst 68.8607 68.8607 68.8607 68.8607
Std. Dev. 2.2062 1.7989 1.8182 2.0745
Median 64.1788 64.1788 64.1788 64.1788

All considered optimization algorithms have performed well for the Blocks signal.
However, the PSO-based algorithms have a slight advantage over the GA with respect to
the Worst, Std. Dev., and convergence, as shown in Figure 8a. All optimization algorithms
have found the global optimum multiple times in 50 independent runs.

Similarly, high optimization performance is obtained for the Bumps signal, as well.
The difference is with the GA, which performs equally well as the PSO-based algorithms in
this case. The exception is the MSPSO algorithm, which provides the poorest performance
with respect to the Mean, Worst, and Std. Dev. Additionally, Figure 8b clearly shows poorer
convergence of the MSPSO algorithm. On the other hand, the EPS-PSO shows excellent
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performance, as it has converged to the global optimum in each independent run. Similar
to the previous case, all optimization algorithms have found the global optimum at least
once in 50 independent runs.
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Figure 8. Convergence comparison between the considered optimization algorithms for signals: (a) Blocks. (b) Bumps. (c)
Doppler. (d) HeaviSine. (e) Piece-Regular. (f) Sing.
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Excellent optimization performance is obtained for the Doppler signal. All considered
optimization algorithms have found the global optimum numerous times in 50 independent
runs, where the PSO and the EPS-PSO have converged to the global optimum in each
optimization run.

The results obtained by the considered optimization algorithms differ the most for
the HeaviSine signal example. Although all optimization algorithms have found the global
optimum at least once in 50 independent runs, the obtained numerical results and graphical
representation of the convergence suggest that the GA and the MSPSO have performed
worse than the PSO and the EPS-PSO algorithms, with the EPS-PSO highlighted again as the
best performing algorithm with respect to the obtained results statistics and convergence
(Figure 8d).

Another high optimization performance is obtained for the Piece-Regular signal, simi-
larly to the Doppler signal example. The only difference is that the MSPSO has replaced the
EPS-PSO as the best performing algorithm along with the PSO, which has also found the
global optimum in each independent run.

The optimization results for the final signal example, the Sing, highlight the MSPSO
and, for the first time, the GA as the best performing algorithms with respect to the statistics
and convergence, shown in Figure 8f. All considered optimizations algorithms perform
with the equal Best and Worst solutions in 50 independent runs.

To sum up, all tested optimization algorithms perform well for our optimization problem,
successfully finding the global optimum for all signal examples. The larger size of the single
swarm in the PSO algorithm boosts the convergence for the initial number of evaluations.
However, the EPS-PSO algorithm, with a greater ability to escape from the local optimum,
stands out as the best performing optimization algorithm for our signal examples.

3.3. Experimental Results for Real-Life Signals

In order to test the proposed RBF-RICI filtering algorithm in real-life conditions, we
have applied it to the noisy measured maritime signals (as an example of a practical
application). The measurements were obtained from a buoy located in the Atlantic Ocean,
approximately 210 nautical miles west-southwest of Slyne Head at the west coast of Ireland.
The data is provided by Met Éireann, Ireland’s National Meteorological Service, as an open-
access dataset publicly available at https://data.gov.ie/dataset/hourly-data-for-buoy-m6
(accessed on 17 April 2021). The dataset contains hourly measurements from 2006 to
the present.

Figure 9a shows the noisy measurements of the sea temperature (°C), while Figure 9b,c
show the sea temperature signal obtained after applying the RBF-RICI filtering algorithm
and Savitzky–Golay filtering algorithm, respectively. The RBF-RICI algorithm’s parameters
are set to Γ = 3.2 and Rc = 0.9. All real-life maritime signals considered in this analysis
are filtered using the Savitzky–Golay filter with the second order polynomial and the
window width set to 2% of the signal length. This particular window width setting is
chosen because the widths of that order of magnitude proved to be optimal during the
analysis performed for several synthetic signals.

The measurements of the significant wave height (m) are shown in Figure 10a, while
Figure 10b,c show the same data after application of the RBF-RICI and Savitzky–Golay
filtering algorithm, respectively. In this case, the RBF-RICI parameters are set to Γ = 3 and
Rc = 0.1.

https://data.gov.ie/dataset/hourly-data-for-buoy-m6
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(a) (b)

(c)
Figure 9. Sea temperature: (a) Noisy measured signal. (b) RBF-RICI filtered signal. (c) Savitzky–Golay filtered signal.

(a) (b)

(c)
Figure 10. Significant wave height: (a) Noisy measured signal. (b) RBF-RICI filtered signal. (c) Savitzky–Golay filtered signal.

Figure 11a shows the noisy measurements of the wave direction (°), whereas Figure 11b
shows the wave direction signal obtained after applying the RBF-RICI filtering algorithm,
whose parameters are tuned to the values Γ = 0.6 and Rc = 1. Figure 11c shows the signal
obtained after application of the Savitzky–Golay filter.
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The measurements of the individual maximum wave height (m) are shown in Figure 12a,
whereas Figure 12b shows the same data after application of the RBF-RICI filtering algorithm,
whose parameters are set to the values Γ = 4.9 and Rc = 0.95. The Savitzky–Golay filtered
signal is shown in Figure 12c.

As shown in Figures 9–12, the RBF-RICI filtering algorithm reduces the noise level in
the real-life measurements and successfully reconstructs the main morphological features
of the underlying signals, performing competitively to the conventionally applied Savitzky–
Golay filtering algorithm. Therefore, the application of the RBF-RICI filtering enables better
observation of the useful information and trends in the measurement data, and this way
filtered signals may be used for further analysis and processing. Moreover, the RBF-RICI
algorithm’s parameters Γ and Rc may be set to the values used as optimal for the simulated
signals of similar morphologies. However, these parameters can be additionally adjusted
in order to achieve the different levels of the filtered signal’s smoothness. The algorithm’s
parameters obtained by this data-driven approach may be then successfully used for the
filtering of the signals of the same type and similar characteristics.

(a) (b)

(c)
Figure 11. Wave direction: (a) Noisy measured signal. (b) RBF-RICI filtered signal. (c) Savitzky–Golay filtered signal.
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(a) (b)

(c)
Figure 12. Individual maximum wave height: (a) Noisy measured signal. (b) RBF-RICI filtered signal.(c) Savitzky–Golay
filtered signal.

4. Conclusions

In this paper, we proposed an adaptive RBF-RICI filtering algorithm, whose parame-
ters are adjusted using the PSO-based procedure. The analysis of the RBF-RICI algorithm’s
filtering performance was done using several synthetic noisy signals, showing that the
algorithm is efficient in noise suppression and filtering error reduction. Moreover, compar-
ing the proposed algorithm with similar filtering algorithms, we found that it shows better
or competitive filtering performance in most considered test cases. Finally, we applied the
proposed algorithm to the noisy measured maritime data, proving the possibility of its
successful application in real-world practical applications. The possible other applications
in the maritime sector include signals obtained by different ship measurement and detec-
tion sensors and systems, meteorological sea data, navigational data, etc. Moreover, the
application of the proposed PSO-enhanced RBF-RICI filtering algorithm is not limited to
the maritime transport sector only but may also be generalized for application in other
fields dealing with nonstationary data.
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Appendix A

Algorithm A1 PSO algorithm-general
Require: s, MaxIt, wmin, wmax, c1, c2
Ensure: pg

1: Initialization:
2: for i← 1 to s do
3: Initialize position xi, velocity vi and particle’s personal best pi;
4: Perform the function evaluation f (xi);
5: pi ← xi;
6: if f (pi) < f (pg) then
7: pg ← pi;
8: end if
9: end for

10: Main loop:
11: for it← 1 to MaxIt do
12: (17);
13: for i← 1 to s do
14: (15), (16);
15: Perform the function evaluation f (xi);
16: if f (xi) < f (pi) then
17: pi ← xi;
18: end if
19: if f (pi) < f (pg) then
20: pg ← pi;
21: end if
22: end for
23: end for

https://data.gov.ie/dataset/hourly-data-for-buoy-m6
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Algorithm A2 EPS-PSO algorithm-general
Require: s, MaxIt, wmin, wmax , c1, c2, tg
Ensure: pT−g
1: Initialization:
2: for each particle in both swarms do
3: Initialize position xi , velocity vi and particle’s personal best pi ;
4: Perform the function evaluation f (xi);
5: pi ← xi ;
6: if f (pi) < f (pg) then
7: pg ← pi ;
8: end if
9: end for

10: Main loop:
11: for it← 1 to MaxIt do
12: (17);
13: for each particle in both swarms do
14: (15), (16);
15: Perform the function evaluation f (xi);
16: if the criterion of the reinitialization period tg for the cosearch swarm is met then
17: for each particle in the cosearch swarm do
18: Reinitialize position xi , velocity vi and particle’s personal best pi ;
19: Perform the evaluation f (xi);
20: if f (pCO−g) < f (pT−g) then
21: pT−g ← pCO−g;
22: end if
23: end for
24: end if
25: end for
26: end for

Algorithm A3 MSPSO algorithm-general

Require: s, nSwarm, MaxIt, wmin, wmax, c1, c2
Ensure: pg

1: Initialization:
2: for j← 1 to nSwarm do
3: for i← 1 to s do
4: Initialize position xi,j, velocity vi,j and particle’s personal best pi,j
5: Perform the function evaluation f (xi,j)
6: pi,j ← xi,j;
7: if f (pi,j) < f (pg,j) then
8: pg,j ← pi,j;
9: end if

10: end for
11: end for
12: Main loop:
13: for it← 1 to MaxIt do
14: (17);
15: for j← 1 to nSwarm do
16: for i← 1 to s do
17: (15), (16);
18: Perform the function evaluation f (xi,j)
19: if f (xi,j) < f (pi,j) then
20: pi,j ← xi,j;
21: end if
22: if f (pi,j) < f (pg,j) then
23: pg,j ← pi,j;
24: end if
25: end for
26: end for
27: pg ← min(pg,j)
28: end for
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Algorithm A4 GA algorithm-general
Require: s, MaxIt, pc, pm
Ensure: pg

1: Initialization:
2: for i← 1 to s do
3: Initialize position xi, velocity vi and particle’s personal best pi
4: Perform the function evaluation f (xi)
5: end for
6: Sort population in descending order;
7: pg ← population(1);
8: Main loop:
9: for it← 1 to MaxIt do

10: for j← 1 to nc/2 do
11: Compute crossovers and form new subpopulation;
12: end for
13: for j← 1 to nm do
14: Compute mutation and form new subpopulation;
15: end for
16: Create merged population;
17: Sort population in descending order;
18: Truncate population to s best performing particles;
19: pg ← population(1);
20: end for
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