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Abstract: The article examines the synthesis of algorithms for the estimation of the random parame-
ters of ship movement models, based on measured information in field tests. In addition, accuracy
analysis of the synthesized algorithms is provided. The derived algorithms are relatively simple and
allow highly precise unknown parameters for estimation of ship motion models at the non-real-time
scale to be obtained using the measurements recorded in field tests. The results can be used in the
construction of automated ship control systems, or in the development of navigation simulators and
the creation of ship models.

Keywords: safety; navigation; risk assessment; vessel; mathematical model; control; identification;
maritime; random parameter

1. Introduction

Algorithm elaboration for the automated control system of a specific vessel is carried
out using the vessel’s movement model. The ship motion model parameters can signifi-
cantly affect the ship control algorithm [1]. When using the ship motion model, the question
about the correspondence of the modeled phase coordinates of the vessel motion to the
real ship motion arises. A number of ship motion model parameters are set in the form of a
priori values, hence clarification based on field information is required when testing the
automated control system. To solve this problem, it is necessary to synthesize algorithms
for the estimation of motion model a priori parameters from the full-scale information
of the ship’s motion. The problem of estimating entrained water and the ship’s inertia
moment was considered in [2,3].

2. Research Objective

The mathematical model of the ship’s motion as a controlled dynamic system can
generally be represented as follows:

S(t) = F(t, C, S(0), U(t), L(t), E(t))

where F—is the operator that characterizes this particular mathematical model;
C—is the vector of constant system parameters that characterize this particular simu-

lated vessel;
S(t)—is the set of variable parameters describing the state of the system at a moment

in time t.
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If we consider the plane-parallel movement of the ship we can restrict ourselves to
three parameters—coordinates x0 and y0, and heading angle q:

S(t) = (x0(t), y0(t), q(t))

where U(t) represents the control actions on the system at different times: rudder angle
δR(t), rotation frequency nm(t), propeller step ratio H/D(t), and thruster control position
Nthruster (t), which sets its relative power as a percentage of the maximum possible:

U(t) = (δR(t), nm(t), H/D(t), Nthruster (t)).
L(t)—is the system load function, in this case the distribution of all cargoes of the ship;
E(t)—is the function of external disturbing influences on the system: depths at all

points of the water area; wind and current speed and direction; amplitude and phase
spectra of waves; and the spectra of directions of wave propagation at all frequencies for
all points of the water area at all times.

The following classes of problems are well-known from theory and are associated
with this mathematical model:

(1) Direct modeling problem: Required to determine the evolution of the modeled
system, the law of variation of variable parameters S(t) in time with known F, C, U(t), L(t),
E(t). The direct modelling problem is a formalization of the “what if?” question.

(2) Inverse problems: The requirement is to determine what was or should be inputs to
the system, so that the output is a specific behavior of the system S(t). The inverse problem
is a formalization of the “how to do it?” question.

The following cases of inverse problems are notable:
(2.1) C = ? with known F, S(t), U(t), L(t), E(t). This is the task of designing a new

controlled dynamic system—in this case, a new vessel with the required qualities.
(2.2) F = ? with known C, S(t), U(t), L(t), E(t). This is the task of constructing a new

empirical mathematical model based on an already existing real controlled dynamic system.
(2.3) U(t) = ? with known C, F, S(t), L(t), E(t). This is the task of constructing an adaptive

control algorithm (control system, control device). In addition, this class includes the task
of predicting the movement of the vessel for the feasibility of the required maneuver.

(2.4) L(t) = ? with known C, F, S(t), U(t), E(t) or E(t) = ? with known C, F, S(t),
U(t), L(t). This is the problem of indirectly measuring the load on the system or external
disturbing influences through the identification of changes (disturbances) in the behavior
of the controlled system.

In the framework of the current study, the direct problem of modeling and identifica-
tion of the parameters of the ship model is mainly investigated.

As a basic model, this study used a mathematical model of the ship’s movement.
Based on the materials from Lloyd’s Register (https://www.lr.org/en/ accessed on 1
February 2021) and International Maritime Organization (IMO) (https://www.imo.org/
accessed on 5 January 2021), conclusions can be drawn about the relevance of mathematical
models. Well-known contributions to the research have been made by authors including
Voytkunsky et al., 1973; Hoffman, 1988; Pavlenko, 1979; Sobolev, 1976; Tumashik, 1978;
Fedyaevsky and Sobolev, 1963. Leading maritime organizations have recognized these
mathematical models and the early works that are used in basic global research. On the
basis of these fundamental models, mathematical structures have been tested that validate
the accuracy and applicability of the models. Based on the information provided, the model
can be justified as follows:

dvx
dt =

ω(m22vy+l26ω)
m11

− Cr(δ−β)2(v2+ω2L2
r )ρ

2m11
+

+
(

n2
v

m11

)
Tx +

(
nv

m11

)
vKv +

Cx(Cx0,β)ρScpv2
2

2m11
(1)

https://www.lr.org/en/
https://www.imo.org/
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dvy

dt
= −ωm11vx

m22
−


Cββ

(
1−ω2)+ Cωβωβ−

−Cωωω
∣∣∣∣ω∣∣∣∣ Ap(v2+ω2L2

r )ρ
2m22

−mySr(δ− β)
(
v2 +ω2L2

r
)
ρ/2m22

dω
dt =

vx(m11−m22)
(

vy+
ωl26
m22

)
JZ

+

+
(Cmββv2−Cmωω(v2+ω2L2

r ))Ap Lρ
2JZ

+

+
mySr(δ−β)(v2+ω2L2

r )Lrρ

2JZ

where v(t) =
(

v2
x + v2

y

) 1
2 , ω = ωL

(v2+ω2L2)
1
2

, β(t) = −arcsin
(

vy(t)
v(t)

)
, Cx(Cx0,β) = −0, 075

sin((π− arcsin(Cx0/0, 075))(1− |β|)), Cmβ(β) = m1 sin(2β) + m2 sin(β).
The standard notation for the x and y axes is used for 2D space. The estimation shown

in Figure 1 is defined as x = Vx [m/s], y = t [s].
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In Equation (1) m11 = mc + ∆m11, m22 = mc + ∆m22—the mass of ship with entrained
water; Jzp = Jzc + ∆Jzp—vessel’s moment of inertia with attached water inertia moment;

v =
√

v2
x + v2

y, v1 =
√

v2 + (ωZLr)
2, v2 =

√
v2 + (ωZLr)

2—water flow rate modules,
respectively, in the area of the ship’s center of mass, bow and rudder;

β = −arcsinvy
v —leeway angle; ρ—water density; q = ρv2

2 , q1 =
ρv2

1
2 , q2 =

ρv2
2

2 —dynamical
pressure;ωZ = ωZ L

v1
,ωr =

ωZ Lr
v2

—relative angular velocities.
Vessel parameters such as ship length L, width B, rudder from the center of mass

standoff distance Lr, and rudder area Sr can be considered to be constant. In general,
hydrodynamic coefficients of forces and moments depend on the drift angle and angular
velocity of the ship’s rotation. To determine these for a particular vessel we can use
expressions given in [4–8].

A number of ship parameters, such as ∆m11, ∆m22—entrained water, ∆Jzp—added
mass moment of inertia of water, and Toc—ship’s draft are random variables. These random
parameters can be defined as some calculated (nominal) non-random values and random
deviations from the calculated values. The controllability characteristics of each specific
ship will clearly depend on the realized random parameters of the ship.

Let us accept that model parameters Tx, Kv, Cx0 and my are random variables with equally
probable distribution laws in the intervals [Txmin, Txmax], [Kvmin, Kvmax], [Cx0min, Cx0max],[
mymin, mymax

]
. All other parameters are known values.
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To estimate the random parameters, Tx, Kv, Cx0 of the model we perform a vessel
test in rectilinear motion (δ(t) = 0) at full (nv = nmax), half (nv = nmax/2), and slow
(nv = nmax/4) speeds. During the on-board tests, the ship’s speed v∗x(ti), acceleration
a∗x(ti), and measurement times ti are measured and recorded. The equations of rectilinear
motion model (considering vy(t) = 0, β(t) = 0,ω(t) = 0) can be written in the form:

dvx

dt
= ax(t) =

(
n2

v
m11

)
Tx +

(
nv

m11

)
vxKv +

Cx0ρScpv2
x

2m11
(2)

The measurement model can be represented as:

v∗x(ti) = vx(ti) + σvξvx(ti), a∗x(ti) = ax(ti) + σaξax(ti) (3)

where σv, σa are the measurement’s MSE; ξvx(ti), ξax(ti) are independent white noises.
To estimate the random parameter my of the model (with known estimates T̂x, K̂v,

Ĉx0) we test the vessel during circulation (δ(t) = δm, at full speed nv = nmax). The model
motion during circulation equations, according to Equation (1), are written in the form:

dvx
dt = ax(t) = Fx

(
ω, δm, vx, vy, T̂x, K̂v, Ĉx0

)
,

dvy
dt = ay(t) = Fy

(
ω, vx, vy

)
+ my f

(
ω, δm, vx, vy

)
,

dω
dt = aω(t) = M

(
ω, vx, vy

)
+ my f

(
ω, δm, vx, vy

)
Lrm22/JZ.

(4)

During circulation, in addition to the measurements of Equation (3), lateral velocity
and acceleration, angular velocity, and angular acceleration of the ship’s rotation are also
measured [2,3,7–9]:

v∗y(ti) = vy(ti) + σvξvy(ti), a∗y(ti) = ay(ti) + σaξay(ti),
ω∗(ti) = ω(ti) + σωξω(ti), a∗ω(ti) = aω(ti) + σωξaω(ti) (5)

Based on the measured natural information of Equation (3) and, accordingly, Equation (5),
it is possible, using simple linear estimation algorithms [5], to construct estimates of
velocities v̂x(ti), v̂y(ti) and angular velocity ω̂(ti). A linear estimation algorithm, for
example, for velocity vx(t) (similarly vy(t),ω(t)) is determined by the equations:

Kv( ti|ti−1) = Kv(ti−1) + σ
2
a, Pv(ti) = Kv( ti|ti−1)/

(
Kv( ti|ti−1) + σ

2
v
)
,

Kv(t0) = σ2
v

v̂x(ti) = v̂x(ti−1) + a∗x(ti−1)dt + Pv(ti)(v∗x(ti)− v̂x(ti)),
Kv(ti) = Kv( ti|ti−1)− Pv(ti)Kv( ti|ti−1) (6)

where Kv(ti) is the velocity estimation variance and dt = ti − ti−1 is the measurement
arrival time interval. Realizations of the estimates of speeds and angular velocity when
simulating the rectilinear motion of a Volgo-Balt-type vessel are shown in Figures 1–4 at
full speed (Figure 1) and during circulation (Figures 2–4). Measurement accuracies are
σv = 0.1 m/s, σa = 0.01 m/s2, time interval dt = 0.5 s.

Based on estimates of the speed and angular velocity of the vessel’s circulation, it is
possible to calculate the functions in Equations (2) and (4).

fK(v̂x(t)) =
(

nv
m11

)
v̂x(t), fCx0(v̂x(t)) =

ρSCP v̂2
x(t)

2m11
, Fy

(
ω̂(t), v̂x(t), vy(t)

)
,

M
(
ω̂(t), v̂x(t), v̂y(t)

)
, f
(
ω̂(t), δm, v̂x(t), v̂y(t)

)
. (7)
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The measured acceleration a∗x(ti), according to Equations (2) and (3) is a linear trend
of random parameters Tx, Kv, Cx0:

a∗x(ti) =

(
n2

v
m11

)
Tx + fK(v̂x(t))Kv + fCx0(v̂x(t))Cx0 + σaξax(ti) (8)

The measured accelerations a∗y(ti), a∗ω(ti), according to Equations (4) and (5), are
linear trends of random parameter my:

a∗y(ti) = Fy
(
ω̂(t), v̂x(t), vy(t)

)
+ f

(
ω̂(t), δm, v̂x(t), v̂y(t)

)
my + σaξay(ti),

a∗ω(ti) = M
(
ω̂(t), v̂x(t), v̂y(t)

)
+

f (ω̂(t),δm ,v̂x(t),v̂y(t))Lrm22
JZmy

+ σωξaω(ti)
(9)
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3. Synthesis of Algorithms for Estimating Ship Parameters

The estimation algorithm for a vector X of random parameters by the criterion of
the minimum mean square error, in the general case, is reduced to calculating the condi-
tional mean.

X̃(t) =
∫

Ω(X)

XP(X|Y∗(τ)) dX (10)

where P(X|Y∗(τ)) is the after-the-event probability of the parameter vector X given the
measured sample of the vector Y∗ on the time interval t0 ≤ τ ≤ t; Ω(X) is the region of
the possible values of vector X.

If there is a sufficient statistic X̂(t) = X̂(Y∗(τ)), then the posterior probability, using
Bayes’ formula, can be written in the form:

P(X|Y∗(τ)) =
P
(

X̂(t)
∣∣X)P(X)∫

Ω(X)

P
(

X̂(t)
∣∣X) P(X)dX

(11)

4. Estimation of Parameters for Rectilinear Motion

When testing the ship in straight-line motion, the measurement vector is recorded:

Y∗p (ti) = Cp(ti)Xp + Tp(ti)ξ(ti) (12)

where Cp(ti)—measurement matrix; Tp(ti)—RMSD matrix of measurement errors; Xp—vector
of estimated parameters.

Cp(ti) =

 n2
m/m11, fK

(
v̂xp(t)

)
, fCx0

(
v̂xp(t)

)
n2

m/4m11, fK(v̂xc(t)), fCx0(v̂xc(t))
n2

m/16m11, fK(v̂xm(t)), fCx0(v̂xm(t))

, Tp(ti) =

 σa 0 0
0 σa 0
0 0 σa

, Xp = [Tx, Kv, Cx0] (13)

The sufficient statistic X̂p(t) has a linear estimate determined by the equations:

Kp(ti) = Kp(ti−1)− Kp(ti−1)Cp(ti)
T

(
Cp(ti)Kp(ti−1)Cp(ti)

T

+Tp(ti)TT
p (ti)

)−1

Cp(ti)Kp(ti−1),

Pp(ti) = Kp(ti−1)Cp(ti)
T

(
Cp(ti)Kp(ti−1)Cp(ti)

T

+Tp(ti)TT
p (ti)

)−1

,

X̂p(ti) = X̂p(ti−1) + Pp(ti)
(

Y∗p (ti)− Cp(ti)X̂p(ti−1)
)

.

(14)
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The conditional probability of a linear estimate for a sufficiently large sample of
measurements can be considered a Gaussian distribution; in this case the optimal parameter
estimate, according to Equation (11), will be determined by the expression [2,10,11]:

T̃x(t) = T̂x(t) + σT(t)

√
2
π

(
e−x2

2 − e−x2
1

)
erf(x2, x1)

(15)

where x1 = T̂x(t)−Tmin√
2σT(t)

, x2 = T̂x(t)−Tmax√
2σT(t)

, σT(t) =
√

Kp11(t) erf(x2, x1) =
2√
π

x2∫
x1

e−x2
dx is the er-

ror function integral. The optimal estimates of the parameters Kv, Cx0 are determined similarly.

5. Estimation of Parameters during Circulation

During circulation, a measurement vector is recorded:

Y∗ts(ti) = Fts(ti) + Cts(ti)my + Tts(ti)ξ(ti)

where

Fts(ti) =

[
Fy
(
ω̂(t), v̂x(t), vy(t)

)
M
(
ω̂(t), v̂x(t), vy(t)

) ], Cts(ti) =

[
f
(
ω̂(t), δm, v̂x(t), v̂y(t)

)
f
(
ω̂(t), δm, v̂x(t), v̂y(t)

)
m22/JZ

]
,

Tts(ti) =

[
σa 0
0 σω

]
(16)

A linear estimate of the parameter my is determined by the equation:

m̂y(ti) = m̂y(ti−1) + Pts(ti)
(
Y∗ts(ti)− Fts(ti) + Cts(ti)m̂y(ti−1)

)
(17)

where the vector of weights Pts(ti) is defined similarly to Equation (14).
The optimal estimate of the parameter my is determined by the expressions:

m̃y(t) = m̂y(t) + σm(t)

√
2
π

(
e−x2

2 − e−x2
1

)
erf(x2, x1)

where

x1 =
m̂y(t)−mymin√

2σm(t)
, x2 =

m̂y(t)−mymax√
2σm(t)

,σm(t) =
√

Kts(t). (18)

6. Accuracy Analysis of the Estimation Algorithms

Accuracy analysis of the synthesized algorithms for estimating the ship parameters
was carried out using a statistical modeling method. A Volgo-Balt type vessel was con-
sidered with the main known movement model parameters of Equation (1), as shown in
Table 1.

Table 1. Movement model parameters of Equation (1) of the Volgo-Balt type vessel.

Name m11[tf*s2/m]
m22[tf*s2/m]

Jz[tf*s2*m]
l26[tf*s2]

L [m]
Lr [m]

Cr [m2]
Sr [m2]

Ap [m2]
Scp [m2]

m1
m2

Cβ
Cωβ

Cωω
nv[r/s]

value 232
380.26

133,630
−539.91

81.7
40.5

0.942
8.1

331.7
1065

0.0604
0.003378

0.283
0.1576

−0.097836
4.8

The Volgo-Balt vessel is a dry-cargo vessel of the “river-sea” class, designed for the
carriage of bulk cargo (coal, ore, grain, crushed stone, etc.) along a country’s large inland
waterways with access to the sea.

The implementation of estimation of the vessel’s parameters with time is shown in
Figures 5–8 (the number of measurements n3 = 2t).
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Figures 5–8 show, on average, at 150 s, that good indicators are obtained for evaluating
the parameters, namely: σT = 0, 0764 tf · s2/rev2, σK = 0, 058 tf · s2/rev2 ·m, σC = 0.0005,
σm = 0.046. The end of the identification transition process occurs at 50 s. For a vessel that
is an inertial object, the resulting identification speed is more than satisfactory and can be
used in automated control systems of a marine vessel.

For identification, parameters were selected that significantly affect the dynamics of
the ship’s movement [11]. Furthermore, the obtained algorithms can be used for all other
parameters that cannot be accurately determined from analytical calculations.

7. Conclusions

This paper considers the problem of synthesizing algorithms for estimating the ship
motion model parameters, based on measured information in field tests. The derived
algorithms are relatively simple and allow highly precise estimates of the unknown param-
eters of a ship’s motion model at a non-real-time scale to be obtained using measurements
recorded in field tests. The results can be used in the construction of automated ship control
systems, and in the development of navigation simulators, for the creation of ship models.

The algorithms developed in this work were tested when navigating a vessel of the
“Volgo-Balt” type project 2-95A/R through the Kerch Strait. The mathematical model
obtained after identifying the parameters showed good convergence with a full-scale
prototype. On the basis of the obtained model, an assessment was made of the risk of
escorting the vessel at each section of the strait, and an algorithm for changing the rudder
was recommended, taking into account hydrometeorological factors.
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