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Abstract: Oil drilling and extraction platforms are currently being used in many offshore areas
around the world. Whilst those operating in shallow seas are secured to the seabed, for deeper
water operations, Dynamic Positioning (DP) is essential for the platforms to maintain their position
within a safe zone. Operating DP requires intelligent and reliable control systems. Nearly all DP
accidents have been caused by a combination of technical and human failures; however, according
to the International Marine Contractors Association (IMCA) DP Incidents Analysis, DP control and
thruster system failures have been the leading causes of incidents over the last ten years. This
paper will investigate potential operational improvements for DP system accuracy by adding a
Predictive Neural Network (PNN) control algorithm in the thruster allocation along with a nonlinear
Proportional Integral derivative (PID) motion control system. A DP system’s performance on a
drilling platform in oil and gas deep-water fields and subject to real weather conditions is simulated
with these advanced control methods. The techniques are developed for enhancing the safety and
reliability of DP operations to improve the positioning accuracy, which may allow faster response to
a critical situation during DP drilling operations. The semisubmersible drilling platform’s simulation
results using the PNN strategy show improved control of the platform’s positioning.

Keywords: Dynamic Positioning (DP); semisubmersible drilling platform; time-domain simulation;
three Degree of Freedom (DOF) motion; thruster allocation; DP advanced control system; Predictive
Neural Network (PNN)

1. Introduction

Historically, dynamic positioning (DP) was developed as a result of increasing oil
demands and the need to extract it from deeper water. The offshore oil and gas industry
has become more dependent on technology development to achieve growth, with low risk,
over the last four decades [1]. The DP system’s basic principle is a computer-controlled
system to calculate the necessary thrust to counteract the environmental disturbance
forces to automatically maintain the platform’s required position and heading by using
its thrusters’ forces. It uses information provided by reference sensors to determine the
deviation between the actual position and the required position, and the forces from the
wind, waves, and current, which act upon the vessel, and it then calculates the forces
that the thrusters must produce to make the deviation as small as possible [2]. A DP
configuration is a machine system running under a qualified operator’s supervision to
achieve the prime purpose of controlling surge and sway to maintain the drilling platform’s
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position, as well as yaw to maintain the platform heading in any environmental condition.
Semisubmersible drilling platforms and drill ships should maintain safe drilling operations
using their propulsion systems while subjected to external forces. A DP drilling platform
needs to keep oil production operations safe in deep waters and meet demands from the
maritime and offshore industries in different sea conditions.

In the 1960s and early 1970s, the first DP systems were introduced for horizontal mode
control using single-input single-output Proportional Integral derivative (PID) control and
Kalman filter theory methods [3]. Later, nonlinear DP controller designs, such as fuzzy
logic, backstepping, and sliding mode control, were proposed [4]. New techniques have
used advanced control with intelligent behavior and computational methods, such as
adaptive nonlinear PID control, adaptive fuzzy logic theory, sliding mode control, and
artificial neural networks (NN), to address DP control’s nonlinearity problem [5]. As DP
technology has become well established, most studies have focused on the addition of
intelligent methods and the modification of performance for drilling operations.

The thrust forces required by the DP system are distributed by a thruster allocation
algorithm which should be accurate, efficient, and robust for the over-actuated optimization
problem. Therefore, the thruster allocation algorithm should handle important issues, such
as power efficiency, wear and tear minimization, input saturation and rate constraints,
and thruster fault tolerance [6]. The main strategies of thruster allocation documented in
Reference [7] are deterministic, pseudo-inverse matrix, nonlinear constraints optimization,
and genetic algorithms. The first of these strategies is the simplest achieved by grouping
the thrusters without optimization. The second is the simplest optimization method. Still,
the third is a reasonably complex optimization method without an objective function
but without functional limitations. The last is a powerful method to solve the nonlinear
optimization problem. Sequential quadratic programming (SQP) is a common method
used to solve the thruster allocation problem [8]. In recent studies, the model predictive
control (MPC) algorithm has shown better performance in comparison with static allocation
methods by considering the thrusters’ dynamic characteristics and various constraints in
Reference [9], and the thrust efficiency function was integrated into the nonlinear problem
taking into consideration the hydrodynamic interaction effects in Reference [10].

Generally, a DP system is at level 5 of the automation scale and executes the selected
force commands and keeps the DP operator informed [11]. As the task of finding the
optimal force and direction of each thruster and increasing the accuracy to maintain
the position and heading requires high precision, speed and power, computation, and
replication abilities to perform the task, the DP operator typically does not have the ability
to perform it precisely without the aid of thruster allocation control [11]. A Petro-HRA
(Human Reliability Analysis) quantitative method was used in Reference [12] to investigate
the implications of the allocation function between DP thruster allocation and the DP
operator by assessing the Human Error Probability (HEP) to maintain the platform position
and heading. Failing to diagnose drive-off of a semisubmersible drilling platform which
may involve DP control and thruster failures resulting in active thruster forces driving the
platform away, is designated as a Human Failure Event (HFE). The HEP for the HFE to
diagnose the platform drive-off has a 0.125 probability of failure, which is considered low
for human error probability.

The International Marine Contractors Association (IMCA) is one of the significant
marine organizations related to the offshore industry, and it publishes validated DP incident
analysis yearly. The DP incident analysis conducted by the IMCA shows that DP control
and thruster system failures represent a high percentage (around 30–40%) of the leading
causes of loss of position which makes it an important issue, requiring attention and
research [13–15]. The necessity of enhancing offshore operation safety, by keeping the
platform in the safe operating zone, has been proven over time by significant accidents.
The consequences of DP drilling accidents are incredibly high, with significant damage to
the facilities and environment and crew members’ deaths [16].
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DP time-domain simulators have been rapidly developed during the last decade [4,17,18],
and the results are inherently accurate having been compared with experimental analysis.
Studies have included the use of PID control on semisubmersibles using a wave filter to
account for the thruster forbidden zones [19] and Kalman filtering for wave motion [20].

The purpose of this paper is to develop an intelligent, reliable DP control system by
integrating Predictive Neural Network (PNN) thruster allocation control into an existing
basic control system to perform full dynamic positioning, enhance the accuracy of the
control and minimize the risks of losing its position. In drilling operations, the DP system
needs a quick response to apply precise amounts of force in certain directions to maintain
position and heading in harsh weather, and keep updating the environmental forces and
direction data in real-time. In this study, the traditional nonlinear PID motion control
methods and the Moore-Penrose pseudo-inverse thruster allocation algorithm have been
applied as a first stage for comparison with the PNN strategy. The study has utilized
the thrust force and the thrusters’ azimuth angle as design variables for an optimization
problem. The thrusters’ forbidden zone and interaction were neglected and the model is
implemented without a wave filter in order to investigate the PNN algorithm’s capability.
The main aim is to develop a framework for improvement of accuracy and reliability of DP
drilling activities by gaining real-time optimal thruster allocation in terms of directions and
forces while maintaining safe drilling operations. This will form the basis for developing a
generic intelligent DP control framework operated by any vessel that uses the DP system.
It has been concluded that adding artificial intelligence methods to the thruster allocation
control is more reliable and faster than the DP operator response during drilling operations.

The paper is organized as follows: Section 2 introduces the semisubmersible platform
model, describing the mathematical model that has been used. Section 3 describes the
design of PNN control and demonstrates numerical simulation. Section 4 presents the
simulation results in the time-domain and discussion of those results. Finally, the study is
concluded in Section 5.

2. Semisubmersible Platform Mathematical Modeling

This study investigates a method to improve the real-time DP control accuracy and
reliability while taking into account semisubmersible platform motion, environmental
loads and thruster allocation using PID and PNN controls. This combination is intended
to develop a framework for an intelligent DP control strategy for application to semisub-
mersible drilling vessels and other vessels that use DP systems. The most common method
of modeling a vessel’s motion is the vectorial notation from References [17,18], which has
become the standard for marine control systems.

2.1. Semisubmersible Drilling Platform Model

A model of the hull of an existing semisubmersible drilling platform with a mass
of 52,476 tonnes, has been built by using the Det Norske Veritas (DNV) Sesam (GeniE)
software and is depicted in Figure 1. Hydrodynamic response of the platform model was
generated by using DNV Seasam (HydroD) and Wave Analysis at Massachusetts Institute
of Technology (WAMIT) industry-standard numerical tools [21–23], and in accordance with
DNV standards in order to accurately to simulate the platform behavior and provides the
data needed for the time-domain simulation.
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Figure 1. Hull of a semisubmersible model.

2.2. Mathematical Modeling

The mathematical model describing a drilling platform’s dynamics is separated into
low frequency (LF) and wave frequency (WF) models. The LF motions are caused by
second-order wave loads (drift forces, including viscous effects and slowly varying forces),
current loads, wind loads, and the thrusters’ forces. The first-order wave loads cause
the WF motions. In the modeling of marine dynamic control systems, it is considered
sufficient to consider the horizontal-plane dynamics [24], which has been assumed in
this paper. Typically, linear damping and wave drift loads make up a significant part of
the LF forces, which again is considered in this model. The viscous forces appear as a
huge effect at the wave splash zone on the semisubmersible platform columns, especially
in storm conditions [25]. The model is designed to compensate for WF motions and LF
motions with a maneuvering model to describe the relation between the control activity,
the motion-induced and seakeeping models to describe the motion due to the wave loads.
In general, the first-order wave loads are more significant than the second-order wave
loads. Both can be determined by employing quadratic transfer functions [26,27].

The study of the dynamic equations of marine system’s motion can be split into two
aspects: The kinematic equations of motion, which relate to the geometrical aspects, and
the kinetic equations of motion, which correspond to the motion analysis caused by the
forces [18]. The operational drilling mode requires a specific mathematical model and
parameters as the primary physical properties will depend on how the platform is operated.
The vessel motions in the horizontal plane are in the surge, sway, and yaw directions; these
are considered in the DP control used in this study. The reference frames used in the
paper, platform kinematics, and thrusters’ locations [1–8] are illustrated in Figure 2. The
North-East-Down (NED) coordinate system is defined with respect to an earth-fixed XE, YE
reference frame. In addition, the reference-parallel XR, YR frame is earth-fixed rotated to
the required heading angle ψd, and the origin is translated to the desired xd, yd position
coordinates. The body-fixed X, Y frame is fixed to the body of the platform rotated to
the platform heading ψ and the origin platform x, y position coordinate. By using the
generalized position η, the velocity V is given with respect to a body-fixed frame, and
R(ψ) is the transformation matrix in a vectorial representation [18]. These six differential
equations are lumped together into a three Degree of Freedom (DOF) reference frame,
η =

[
x y ψ

]T , V =
[

u v r
]T [28] as:

η = R(ψ)V, (1)
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R(ψ) =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

. (2)
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The rigid-body and hydrodynamic equations of motion are in general described
by three differential equations, one for each degree of freedom. These three differential
equations are lumped together into a vectorial equation of motion for the nonlinear unified
seakeeping and maneuvering model [18]:

M
.

Vr + CRB(V)V + CA(Vr)Vr + D(Vr)Vr + G(η) = τwind + τwave1 + τwave2 + τthr, (3)

where M is the platform inertia matrix, including the added mass, and CRB(ν)ν is the
skew-symmetric Coriolis and centripetal matrix. The effects of sea current on the platform
are divided into two parts: the potential part is formulated as CA(Vr)Vr which includes
the Munk moments, and the viscous part [18]. The damping vector D(Vr)Vr is divided
into linear and nonlinear components D(Vr)Vr = DLV + DNL(Vr, γr). G(η) defines the
restoring vector, τwind is the wind load vector, τwave1 is the first-order wave loads, τwave2
defines the second-order wave loads, and τthr represents the thruster forces. The platform
inertia mass matrix M, including the added mass, the linear damping DLV, and nonlinear
damping DNL(Vr, γr), are defined as:

M =

 m− X .
u 0 0

0 m−Y .
v −Y.

r
0 −N .

v IZ − N.
r

, (4)

DLV =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

, (5)

DLV =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

, (6)

where m is the platform mass, IZ is the moment of inertia about the z-axis, and X .
u, Y .

v, Y.
r, N .

v,
and N.

r are the zero-frequency added mass in the surge, sway and yaw directions; hence, M
is symmetrical and positive definite. DLν defines the strictly positive damping caused by
linear wave drift and laminar skin friction damping, where Xu, Yv, Yr, Nv, and Nr are the
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hydrodynamic potential damping which can be calculated by the DNV Sesam (HydroD)
and WAMIT software tools. The nonlinear damping DNL(Vr, γr) needs Ccx(γr), Ccy(γr)
and Ccψ(γr), which are non-dimensional current coefficients in the horizontal plane, as
illustrated in Figure 3, and can be found by model tests using the DNV Sesam Simulation
of Marine Operations (SIMO) software for the platform with some defined location of
the origin. In Equation [6], ρw is the water density, Lpp is the platform length between
perpendicular, and D is the platform drilling draft.
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Furthermore, the sea current loads typically included in the LF model define the
relative velocity vector Vr and drag angle γr according to:

Vr =
[

ur vr r
]T

=
[

u− uc v− vc r
]T , (7)

γr = atan2(ur, vr). (8)

The horizontal sea current formulation in surge and sway are defined as uc and vc,
noting that, in yaw, r is small, almost equal to zero, where Vc and βc are the sea current
speed and direction, respectively, as follows:

uc = Vccos(βc − ψ), (9)

vc = Vc sin(βc − ψ), (10)

Vc =
√

ur2 + vr2. (11)

Generally, the motions are nonlinear, but linear approximations about specific points
can be calculated. To linearize the motion equations, there is a time-domain model for the
linear zero speed state-space model, which has been proposed by the Cummins equation
in seakeeping [29]:

M
.

Vr +CRB(V)V +CA(Vr)Vr +D(Vr)Vr +G(η)+µ = τwind + τwave1 + τwave2 + τthr, (12)

µ =

t∫
0

K(t− τ)V(τ)dτ, (13)

where K(t− τ) is the retardation function, V(τ) is a unit impulse, and µ (t) is an impulse
response function. A state-space formulation has been developed for the potential damping
in the equation [30]. Consequently, µ (t) is represented by a linear state-space model with
X as the state vector: .

X = ArX + BrV, (14)

µ = CrX + DrV, (15)
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where Ar, Br, Cr, and Dr are constant matrices, and µ is calculated using the state-space
model equations by solving the linear seakeeping motion equations in the time-domain,
which includes fluid memory effects. Then, assuming linear force superposition, wave
loads can be added for different speeds and sea states. The formulation of the wind
velocities uw and vw are defined according to the following equations, where the total wind
speed Vw, and relative wind angle γw may be simplified:

uw = Vwcos(βw − ψ), (16)

vw = Vwsin(βw − ψ), (17)

Vw =
√

uw2 + vw2, (18)

γw = βw − ψ. (19)

The wind loads τwind in the surge, sway, and yaw directions are defined as follows:

τwind = 0.5ρaV2
w

 AwxCwx(γw)
AwyCwy(γw)

AwyCwψ(γw)Loa

, (20)

where ρa is the air density, Loa is the platform length overall, and Awx, Awy are the lateral
and longitudinal areas of the platform freeboard projected on the xz-plane and yz-plane.
Cwx(γw), Cwy(γw), and Cwψ(γw) are the non-dimensional wind coefficients in the horizon-
tal plane, which can be calculated by using DNV Sesam (SIMO), as shown in Figure 4, or
found by employing semi-empirical formulae as presented in Reference [31].
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By assuming linear force superposition, τwave1 and τwave2 are obtained by using the
Quadratic transfer function to get the Response Amplitude Operator (RAO) forces [32], as
illustrated in Figures 5 and 6. The Joint North Sea Wave Project (JONSWAP) spectra were
applied for the platform wave parameters.

τthr =

 Xthr
Ythr
Nthr

 = T3x8(α) f1x8 = T3x8(α)K8x8u1x8, (21)

where τthr defines the generalized forces generated by the thruster system, and the thrust
configuration T(α) with the azimuth angles α, the control forces obtained by the thruster
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system, f = Ku with the magnitudes of the force produced by each thruster vector u, and K
is a diagonal force coefficient matrix. T(α) can be expressed as,

Ti(αi) =

 cosαi
sinαi

lxicosαi + lyisinαi

, (22)

where the angle αi is the angle of the i-th actuator i = 1 . . . 8, determining the force
direction produced in the platform body-fixed coordinate system, lxi, lyi are the locations of
the thrusters on the platform by using the extended thrust vector τc [18] defined according
to

τc = TeKue

=

 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
−ly1 lx1 −ly2 lx2 −ly3 lx3 −ly4 lx4 −ly5 lx5 −ly6 lx6 −ly7 lx7 −ly8 lx8

Kue,
(23)

ue =
[

uxi uyi
∣∣ ]T , (24)

where ue is the extended control input vector, and Te is the extended thrust configuration,
which is constant while Ti(αi) depends on αi. ue can be solved directly from Equation (23)
using a least-squares optimization method, then the azimuth control can be derived from
ue by mapping the pairs using [33]:

ui =
√

uxi
2 + uyi

2 , (25)

αi = tan−12
(

uxi
uxi

)
. (26)
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The azimuth angles must be calculated with the control inputs subject to amplitude
and rate saturation. The solution to this problem by using Lagrange multipliers is defined
as the generalized inverse:

T∗e = W−1TT
e

(
TeW−1TT

e

)−1
. (27)

In the case where W = I, an equal weighting is given to each control force where W is a
positive definite matrix. Thus, Equation (27) reduces to the Moore-Penrose pseudo-inverse.
Since fe = T∗e τc, the control input can be computed as:

ue = K−1T∗e τc. (28)

The locations of the thrusters, as shown in Figure 2, are presented in Table 1.

Table 1. Thrusters’ locations.

Thruster No. lxi Location (m) lyi Location (m) Thrust (kN)

1 17.2 36.5 700
2 48.52 25.58 700
3 48.52 −25.58 700
4 17.2 −36.5 700
5 −17.2 −36.5 700
6 −48.52 −25.58 700
7 −48.52 25.58 700
8 −17.2 36.5 700

The semisubmersible platform in the simulation was commanded to maintain the
position and heading in the horizontal-plane. The nonlinear PID controller is modeled, with
an error signal ηe computed by using the reference system inputs for the semisubmersible
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platform. The nonlinear PID motion control receives the error signals and provides the
force required to the platform. The position and speed of actual values are obtained from
the platform dynamic equations. The PID control has been designed modeled using marine
systems simulator (MSS) Simulink toolbox [34].

τPID = −Kpηe − R(ψ)KdV − Ki

∫ t

0
ηe(τ)dτ, (29)

where Kp, Ki, and Kd are the non-negative controller gains for the proportional, time
integral, and time derivative of the error signal, respectively. The controller’s gains used for
drilling operations were obtained through tuning using the Simulink optimization toolbox
as presented in Table 2.

Table 2. Nonlinear Proportional Integral derivative (PID) control gains.

Kp Ki Kd

X 4.50 × 106 8.81 × 107 4.50 × 104

Y 7.02 × 108 1.40 × 1010 7.02 × 106

ψ 7.00 × 105 1.39 × 107 7.00 × 103

3. PNN Model

PNN control is an advanced control method in which a Neural Network (NN) model
of the nonlinear DP control has been used to predict future platform performance utilizing
the Newton-Raphson optimization algorithm to minimize the cost function [35]. The
computationally efficient derivation of PNN will minimize the cost function with a gradient-
based iterative solution in real-time. The PNN provides the transformation between the
required forces as input and the thruster commands as output in three DOF. The PNN
determines the thruster allocation control input to optimize the platform performance over
a specified time horizon. Figure 7 and Equation (30) illustrate the NN procedure in which
the sum of inputs is multiplied by the weights, added to the bias terms, and then passed
through an activation function F(u).

F(u) =
N

∑
j=1

(
Wjyj + θ

)
, (30)

where N is defined as the number of inputs, j is the input number, Wj the weights of the
input j, yj is the input j and θ is the bias.
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For PNN multiple-layer feedforward networks with time-delayed line (TDL) there is
one hidden layer of tan-sigmoid transfer function (tan-sigmoid neurons), including input
weight (IW) and input bias θ1. This is followed by an output layer of a linear transfer
function (linear neurons) used for the fitting problem, including layer weight (LW) and



J. Mar. Sci. Eng. 2021, 9, 399 11 of 25

input bias θ2. Multiple layers of neurons with nonlinear transfer functions allow the
network to learn nonlinear relationships between PID control input and thruster force
output, as demonstrated in Figure 8.
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This approach yielded a PNN structure of τPID with 3 input neurons, 20 hidden layers,
and 8 output neurons of uPNN . A numerical cost function optimization program used the
predictions to specify the control signal that would decrease the next performance criterion
over the specified horizon:

uPNN =
N2

∑
j=N1

(τPID(t + j)− τPNN(t + j))2 + ρ
Nu

∑
j=1

(u′(t + j− 1)− u′(t + j− 2))2, (31)

where N1, N2, and Nu describe the horizons over which the signal error and the control
inputs are estimated. The term u′ defines the tentative control signal that minimizes the
cost function of uPNN . τPID describes the required response from the PID motion control,
and τPNN defines the neural network model response. The ρ value represents the influence
that the sum of the squares of the control augmentations has on the performance index. The
first phase of the PNN is to train the NN model to define the platform thruster allocation′s
forward dynamics. The prediction error between the thruster system outputs and the
NN model outputs is used for training the signal. The PNN involves the NN model and
an optimization block to calculate the tentative control signal’s values that decrease the
performance criterion, then integrate the optimal control signal to the thruster allocation.
This was simulated by using the neural network predictive control toolbox in the Simulink
software.

The advanced intelligent DP motion control system is designed to control the LF and
WF motions of a drilling platform, which is based on five interconnected systems: (1) set-
position to the platform model so that the reference system estimates the position, course
and distance travelled that in turn is needed to control the vessel’s course, (2) the reference
system which determines the position and heading errors to maintain the set-position, (3)
the PID control system which determines the necessary motion control forces and moments
produced by the platform to satisfy a specific control objective, (4) the PNN allocation
control system which determines the thruster action required to keep the platform in the
safe drilling zone through optimizing the PID motion control signal by training the NN
model using Bayesian regularization to predict the optimum performance, and (5) the
thruster system that produces the forces needed to maintain the position, and thruster
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allocation in order to calculate the optimized control forces for each thruster. The overall
simulation also includes three environment modules, in which waves, current, and wind
are generated, as shown in Figure 9.
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The simulation study presented in this paper investigates the potential operational
impacts of using the advanced intelligent control systems through three significant steps:
First, the modeling of a hull of an existing semisubmersible drilling platform to calculate
the hydrodynamic data and environmental coefficient data, using DNV Sesam (GeniE and
HydroD), SIMO, and WAMIT software. The second step in the modeling is building a
time-domain simulation with nonlinear PID control, as in primary DP systems, following
Fossen′s (Unified Model) method in which maneuvering and seakeeping ship motion
theories are modeled in three degrees of freedom (DoF). This has been completed by using
MATLAB/Simulink software. Thirdly, the DP control has been enhanced by adding the
PNN control method, and this has been developed using the Simulink Model Predictive
Control Toolbox.

4. Results and Discussion

This study used a model that simulates the environmental loads affecting the platform,
namely wind, current, and first-order and second-order waves. Platform response data is
taken from the platform model’s simulation with integrated hydrodynamic and hydrostatic
matrices (Inertia mass, Coriolis and centripetal, damping and restoring forces). The Nonlin-
ear PID control collects the position and heading difference data and then sends the motion
control unit’s input to the thruster allocation to configure the required thruster force using
the Pseudo-inverse (Moore-Penrose) matrix. The platform initial position and heading are
x, y = 0 m and ψ = 0 degrees in the NED reference frame. The PNN control determines
the best action to send to the thruster system to provide the platform′s required force. The
system is evaluated by simulating DP drilling operations in oil and gas deep-water fields
in real weather conditions to drilling operation limits, as shown in Table 3.

Table 3. Environmental control limitation.

Case No. Wind Speed (m/s) Current Peed (m/s) Wave Height (m) Depth (m)

1 23.2 0.93 6 1000
2 20 1 6.5 800
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The advanced intelligent DP control framework developed in this paper is based on
two weather condition scenarios. The use of the first weather scenarios investigates the
characteristics of the PID motion control system based on comparison with other published
results. The second weather case investigates the improvements achieved by adding PNN
thruster allocation to the conventional PID motion control in DP drilling operations.

4.1. Conventional PID Model

Comparisons with DP time-domain simulators for motion control and thruster al-
location systems have been made to demonstrate the similarity of responses between
the developed framework in this study and the published literature. References [19,20]
both simulated semisubmersible platforms at 45 degree environmental angle of attack
(quarter sea). Figure 10 presents simulation results obtained in this study for the position
and heading under the same environmental conditions and thruster power as case 3 in
Reference [19], at the required position and heading x, y = 10 m and ψ = 0 degrees within
a 1000 s time-frame.
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The studies in Reference [19] presented experimental results for a smaller semisub-
mersible model but using similar environmental load tools. Table 4 shows a comparison of
the key control performance parameters for the results in Figure 10 and [19]. The response
from the platform in this study, when compared with the response shown in Reference [19]
demonstrates similar behavior during both transient and steady state periods with regard
to the Y position and heading setting. In the case of the response for X position, the steady
state result is similar, as expected; however, the transient response in this study shows
improvements when compared with the result from Reference [19].

Table 4. Quantified position and heading control differences with Reference [19].

[19] Model This Study Model

Position and heading X Y ψ X Y ψ

Peak time (s) 45 175 50 130 135 75
Overshoot 27 m 7 m 5 deg 1.5 m 2.1 m 1.1 deg

Settling time (s) 540 530 525 245 180 350

The improvements in performance may be attributed to the higher thruster allocation
from the more aggressive PID control algorithm used in this study. Figure 11 shows the
thruster force for thrusters 3 and 6 of the platform shown in Figure 2. Both this platform
and the one modeled in Reference [19] have thrusters with a maximum rating of 720 kN;
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however, higher thruster capability is used in this study with 88.2% and 87.3% for thrusters
3 and 6 here versus 55.5% and 51.1% for thrusters 2 and 7 (the equivalent locations) in
Reference [19].

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 25 
 

 

Table 4. Quantified position and heading control differences with Reference [19]. 

 [19] Model This Study Model 
Position and heading X Y 𝜓 X Y 𝜓 

Peak time (s)  45  175  50  130  135  75  
Overshoot  27 m  7 m 5 deg 1.5 m 2.1 m 1.1 deg 

Settling time (s) 540  530  525  245  180  350  

The improvements in performance may be attributed to the higher thruster allocation 
from the more aggressive PID control algorithm used in this study. Figure 11 shows the 
thruster force for thrusters 3 and 6 of the platform shown in Figure 2. Both this platform 
and the one modeled in Reference [19] have thrusters with a maximum rating of 720 kN; 
however, higher thruster capability is used in this study with 88.2% and 87.3% for thrust-
ers 3 and 6 here versus 55.5% and 51.1% for thrusters 2 and 7 (the equivalent locations) in 
Reference [19]. 

 
(a) 

 
(b) 

Figure 11. DP simulation with PID control showing thruster force: (a) Thruster 3; (b) Thruster 6. 

Further comparison was made of this study′s results with those of Reference [20], 
which reported the performance of a smaller semisubmersible model at a required posi-
tion and heading 𝑥 =  −4 m, 𝑦 = −3 m and 𝜓 = 0 degrees within a 2000 s time-frame, as 
shown in Figure 12. 

Figure 11. DP simulation with PID control showing thruster force: (a) Thruster 3; (b) Thruster 6.

Further comparison was made of this study′s results with those of Reference [20],
which reported the performance of a smaller semisubmersible model at a required position
and heading x = −4 m, y = −3 m and ψ = 0 degrees within a 2000 s time-frame, as
shown in Figure 12.
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Figure 12. DP simulation with PID control showing platform X, Y position and heading angle.

The model in Reference [20] used PID motion control with wind feedforward and
a Kalman filter for wave motion instead of the conventional PID model used in this
study. Table 5 shows the key control performance parameters, comparing this study with
reference [20]. It can be seen that there is similar transient response in terms of position
and heading displacements.

Table 5. Quantified position and heading control differences with Reference [20].

[20] Model This Study Model

Position and heading X Y ψ X Y ψ

Peak time (s) 75 175 310 50 60 200
Overshoot −0.3 m −0.5 m 1.7 deg −2.4 m −3 m 3.1 deg

Settling time (s) 375 470 500 400 380 450

It can be seen that there are differences in terms of settling time and overshoot between
the two sets of data, but the model in this study reaches the peak more quickly. Since the
thruster forces in Reference [20] were mainly in the range of 300 to 400 kN, the thrusters
in this paper were constrained to have maximum and minimum thrust forces by using a
least-square optimization method, as shown in Figure 13.

As a result, the thruster capability in the two cases was very similar, with 89.2%
and 88.8% for thrusters 3 and 6 compared to 86.1% and 88.1% for thrusters 2 and 7 in
Reference [20]. Figures 10–13 demonstrate the position and heading keeping capabilities of
the PID motion control with the pseudo-inverse thruster allocation algorithm and provide
a good basis for examining the PNN thruster allocation capability.
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4.2. Intelligent PNN Model

Recently, [36] studied a neural network approach to control the allocation of a ship-
shaped vessel and different types of thrusters using DP. The study proposed a new static
NN strategy for the thruster allocation control using PID motion control with a wave
filter. It took a similar approach to the proposed scheme for DP using PNN allocation but
without prediction optimization. Research studies in this sector have been on the drill
ships, meaning that more research is needed on semisubmersible platforms. In this paper,
the DP simulation results show the semisubmersible platform position and heading using
the developed intelligent algorithm based on a combination of PID and PNN controls.

The framework developed in this study has been employed in the simulation of the
semisubmersible model under particular environmental conditions for drilling operations
to investigate whether the platform could maintain its position in the drilling zone. Safety
zones have been applied to assess the safety of DP drilling operation position and head-
ing [37]. Drilling safety zones are defined as the Red region viewed as unacceptable,
leading to an incident (24 m diameter), Yellow region viewed as caution and may lead
to an incident (18 m diameter), and the Green region viewed as satisfactory and safe for
drilling operations (12 m diameter). The semisubmersible platform in the simulation was
commanded to maintain the position and heading at x, y = 0 m and ψ = 10 degrees, and
it was modeled as full scale in the DP simulation. The figures presented here show the
semisubmersible platform position, heading performance map and the corresponding
thruster force and angle efficiency. Environmental angles of attack from the north (head
sea) and east (beam sea) were tested using PID and PNN controls. The north environmental
angle of attack (head sea) condition is presented in Figures 14–18.
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Figure 14. DP simulation with PID control showing platform position (Head sea).
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Figure 15. DP simulation with PID and PNN controls showing platform position (Head sea).
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Figure 16. DP simulation with PID and PNN controls showing platform heading (Head sea).
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(a) 

 
(b) 

Figure 18. DP simulation with PID and PNN controls showing thruster angle (Head sea): (a) Thruster 1; (b) Thruster 5. Figure 18. DP simulation with PID and PNN controls showing thruster angle (Head sea): (a) Thruster 1; (b) Thruster 5.

It is clear that the PID control could not maintain the platform position within the
limit of the green, safe zone, as shown in Figure 14. In addition, the heading performance
is improved in terms of settling time when using the PNN as compared to the PID only
control, as presented in Figure 16. These findings show that the PNN algorithm is able to
stabilize the force and direction of the thrusters effectively. The results clearly show that
PID control requires the thrusters to operate at or close to their maximum 700 kN rating
and with large thrust direction deviations that lead to high wear and tear, as illustrated in
Figures 17 and 18. By using the PNN algorithm for thruster allocation, the wear on these
thrusters is significantly reduced. The impact of using the computationally efficient PNN
control to minimize the cost function in the development of an intelligent DP system (PNN
algorithm) can be seen in the simulation results. The dynamic response of the PID controller
is not fast enough to control the nonlinear system, and it requires the use of the PNN where
the gradient can be computed rapidly by the Newton-Raphson optimization algorithm.
The intelligent DP system improved the platform position and heading performance by
distributing the thruster maximum forces with smaller angles than in the PID case.

The east environmental angle of attack (beam sea) condition results are presented in
Figures 19–23, showing comparisons of the semisubmersible platform position, heading
performance map, corresponding thruster force and angle efficiency using PID and PNN
controls.
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Figure 19. DP simulation with PID control showing platform position (Beam sea).
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Figure 20. DP simulation with PID and PNN controls showing platform position (Beam sea).
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Figure 21. DP simulation with PID and PNN controls showing platform heading (Beam sea).
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From the DP simulation using PID control only with head and beam sea angles of
attack, as shown in Figures 14 and 19, it is clear that the DP control has difficulty in
maintaining the platform within the limit of the green, safe zone. Meanwhile, the DP
simulations using PID and PNN controls with head and beam sea angles of attack are
shown in Figures 15 and 20. The heading performance shows a faster response and less
overshoot, shorter settling time to the set heading using PNN control in Figures 16 and 21,
but they are almost the same peak and rise time in the head seas. One of the advantages of
the intelligent DP framework developed in this study is the rapid response of the PNN
thruster allocation in allowing the DP system to easily adjust to a step change and minimize
the position error. The commands provided by the PNN are sensitive to variations in the
generalized force command. These simulation results show improved position accuracy
when using the PNN thruster allocation but less impact the platform’s heading because the
head sea effect on the platform heading is the most significant. It was clear that the PID
plus PNN maintained the platform in the drilling zone, giving it a higher margin of safety
when compared to using PID alone. It improves the position and heading accuracy to keep
the platform in the green drilling zone as shown in Table 6.

Table 6. Position and heading accuracy improvement percentage.

Environmental Attack Angle X Position (%) Y Position (%) Heading (%)

Northerly 43.24 −57.89 1.45
Easterly −53.97 12.55 8.23

The PID thruster force and angle efficiency in Figures 17, 18, 22 and 23 show high
wear and tear are likely to develop with maximum forces in every direction. In addition,
the corresponding PNN thruster forces and angle efficiency illustrate that the forces and
directions are more stable, and less wear and tear would result in terms of forces with
directions in excess of ±40 degrees minimizing the thrust loss effect. In addition, the
average and the standard deviation of the thruster force and angle, as shown in Table 7,
clearly demonstrates that the PID plus PNN has larger average force, but lower average
angle. In addition, the standard deviation for both force and angle is lower than for PID
alone.

It is clear that PID control alone cannot handle the high sea condition typically ex-
perienced by vessels operating in sea state seven or more. However, the intelligent DP
system based on the PNN control can increase the accuracy and maintain safe drilling
operation. The results further show that the semisubmersible platform could maintain
the position and heading in the safe drilling zone under different environmental angles of
attack by using PID control for motion and PNN control for organizing the thruster forces.
In addition, the PID control would potentially cause significant wear and tear in terms of
the thruster forces and directions, while the PNN control is able to minimize this through
appropriate thruster allocation. Although drilling is not expected to continue in such
extreme conditions, one of the work targets is extending the weather window in which
drilling can occur. This study offers a timely input to the increasing demand for reliability
in intelligent DP control technology. The system developed in the study would also allow
faster and more precise response action to avoid experiencing a critical situation during
DP drilling operations. The study also offers a framework for improving environmental
pollution protection by minimizing the risk of drilling platform accidents instead of the
continued use of the conventional control strategy that has a significant failure record.
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Table 7. Standard average and deviation analysis of Thrusters’ forces and angle.

Thruster
No.

Northerly

PID PNN

Average
Thrust
(kN)

SD Thrust
(kN)

Average
Angle
(deg)

SD Angle
(deg)

Average
Thrust
(kN)

SD Thrust
(kN)

Average
Angle
(deg)

SD Angle
(deg)

1 605.95 164.50 40.04 56.27 698.88 13.81 16.17 27.10
2 611.01 163.41 40.90 57.73 699.09 12.00 16.56 29.35
3 610.01 164.73 41.19 58.43 698.22 28.15 16.87 29.83
4 607.07 167.96 40.36 56.90 698.29 23.93 16.74 28.77
5 610.15 164.70 41.63 58.21 696.99 25.40 16.22 26.46
6 616.53 159.45 44.55 61.43 694.85 36.02 15.08 22.66
7 613.87 160.36 43.74 59.91 695.67 37.25 14.84 23.00
8 607.21 163.63 40.86 56.97 698.14 21.87 15.62 24.67

Thruster
No.

Easterly

PID PNN

Average
Thrust
(kN)

SD Thrust
(kN)

Average
Angle
(deg)

SD Angle
(deg)

Average
Thrust
(kN)

SD Thrust
(kN)

Average
Angle
(deg)

SD Angle
(deg)

1 600.17 168.58 88.05 102.08 694.88 45.38 17.66 25.42
2 611.19 162.29 91.97 105.07 693.88 45.90 18.83 28.56
3 609.77 161.91 88.38 102.37 696.18 29.56 18.21 26.48
4 598.47 168.09 84.46 98.69 698.09 19.32 17.48 24.95
5 590.17 172.71 82.57 96.39 699.34 8.45 17.92 26.42
6 589.76 167.37 83.28 97.10 699.77 3.64 18.48 29.30
7 587.75 175.18 84.71 99.08 698.60 18.23 18.75 30.28
8 590.21 174.57 84.61 99.18 696.80 31.61 18.16 27.29

5. Conclusions

In this study, a hull of an existing semisubmersible drilling platform has been modeled
in accordance with certified DNV Classification Society standards using DNV Sesam
(GeniE and HydroD), SIMO and WAMIT software. The study developed a framework for
a generic intelligent DP control strategy for drilling vessels. The results reported in this
paper confirmed improvements in the DP thruster allocation control accuracy by adding a
PNN to the existing basic DP system, enhancing safety and zone keeping of DP operations
in harsh weather. Additionally, the study shows that by integrating artificial intelligence
into the thruster allocation control, the system becomes safer and more reliable than the
conventional dependence on the DP operator to handle all drilling operations themselves.
It also demonstrates that an intelligent DP control system instead of a conventional control
strategy, can offer environmental pollution protection by minimizing errors that could
cause a drilling platform to ground leading to potential oil spillage from a collapsed drilling
well. The forces and directions predicted by the PNN allocation control are more stable
even for a small angle deviation. They offer less wear and tear in terms of the forces,
minimizing the thrust loss effect. It is expected that further research will be needed to fully
develop thruster allocation control performance, using advanced motion control based
on PNN with sliding mode and backstepping controls. Using new prediction methods
in the thruster allocation control, such as nonlinear automatic regression with recessive
exogenous (NARX), requires further investigation.
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