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Abstract: Geocells are increasingly used in engineering applications, but the design of riverbank
slope reinforcements that use only geocells limits reinforcement performance. Moreover, the design
and use of anti-slide piles with geocells are mainly based on experiences that are unsupported by
theoretical models. In this paper, by combining the confinement effect and vertical action mechanism
of geocells, the horizontal friction mechanism of the geocell layer and the vertical support mechanism
of piles, a theoretical model of riverbank slope reinforced by anti-slide piles with geocells was
constructed. In addition, to describe the mechanical behavior of a riverbank slope reinforced by
anti-slide piles with geocells, the slip-resisting mechanism of the anti-slide pile with interaction
between geocells and their internal filler is considered in the model. Furthermore, to investigate
the influence of changes in water level on riverbank slope stability, the developed model takes into
account settlement, lateral displacement, pile bending moment and pile axial force. The model
predications were validated by the field measurement data. The results from a series of parametric
studies show that the use of anti-slide pile and geocells can effectively reduce the settlement and
the lateral displacement of a riverbank slope. The developed model could contribute to an optimal
design of anti-slide pile with geocells for enhancing the stability of a riverbank slope.

Keywords: anti-slide pile; geocells; combined reinforcement systems; mechanical model; riverbank slope

1. Introduction

Piles and geocells are widely used to reinforce soft foundation because they reduce soil
settlement [1-3]. However, research on riverbank slope reinforcement using anti-slide piles
with geocells is limited, and the application of geocells in engineering practice is mainly
based on experience. Therefore, it is important to understand fundamental mechanical
mechanisms underlying anti-slide piles and geocell-enhanced slopes.

In terms of soil and pile interaction, piles are mainly subjected to vertical and lateral
forces in geotechnical engineering [4]. Under external loads, the lateral compressive
soil surrounding a pile may induce lateral movement of the pile [5]. Kavitha, P.E. [6]
further found that pile—soil interaction depends on the properties of the pile and soil, pile
material, load, and so on. In terms of the axial load, the pile mainly transfers the axial
load to the soil through side friction, based on the soil-pile interface resistance of the soil
bed [7,8]. Furthermore, Kiigtikarslan, S. [9] used a load-displacement curve to describe the
behavior of piles, while the interaction between soil and pile has been fully studied in the
above literature, and the method of using anti-slide piles without geocell in the process of
strengthening geotechnical engineering limits the potential performance of piles.

The interaction between soil and geocells has also been extensively investigated [10-14].
What is established about geocells is as follows: The lateral resistance effect of soft soil
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foundation that is strengthened by geocells was analyzed by establishing an interaction
model for soil and geocells [15,16]. Mehdipour’s research [17] indicated that geocells can
disperse stress during the process of transmission by absorbing the load, which in turn
reduces both permanent transverse and longitudinal deformation. Hegde, A. et al. [18] and
Liu, Y. et al. [19] proposed a method for building three-dimensional (3D) geocell models.
Dash, S.K. et al. [20] proposed that frictional resistance develops at soil-geocell interfaces.
Also, geocells have been inferred to play an important role in governing the characteristics
of interface friction [21,22]. In this regard, geocells can significantly improve the frictional
characteristics at the interface and can substantially arrest lateral spreading of railway
subgrade [23]. Lambert, S. et al. [24], Sheikh, LR. et al. [25] and Siabil, SM.A.G. et al. [26]
also conducted research on the interaction between soil and geocells with fruitful results.
Based on existing mechanical models of and experience with geocells, the above research
has explored the interaction and relationship between the geocell structure and soil layer.

However, quantitative studies of models of anti-slide pile with geocell are lacking.
Therefore, existing mechanical models and experiences with geocells have been unable to
fully meet the needs of engineering practice in the aspects of settlement, lateral displace-
ment and water level change, especially riverbank slope engineering.

Similarly, research literature on the interaction between soil and geocell-reinforced
pile is very limited and still at the exploratory stage. Emersleben, A. and N. Meyer. [27]
used a geocell compound structural layer on top of an anti-slide pile to study the process
of load transformation and dispersion. Tafreshi, S.M. et al. [28] and Zhao et al. [29] used
geocells with piles to reinforce geotechnical engineering and verified that the reinforcement
provided by geocells played a major role.

Given the above introduction, a theoretical model of anti-slide pile with geocell-
reinforced riverbank slope was constructed based on the failure mechanism of the slopes.
The model accounts for the confinement effect and vertical action mechanism of geocells,
the horizontal friction mechanism above and below the geocell layer and the vertical sup-
port mechanism of the pile for the geocell composite layer. Using a riverbank slope project
in a port located in South China as a case study, the developed model was implemented
to analyze the stability of the riverbank slope. The model predictions were validated by
using the field measurement data. After model validation, the effectiveness of different
enhancement methods, such as anti-slide pile, geocells and anti-slide pile with geocell were
theoretically assessed.

2. Materials and Methods

In this study, a theoretical model was first developed to investigate the working
mechanism of the anti-slide pile and geocell system for riverbank slope enhancement. The
loads applied on the system include the surcharge loading (Q1) of filling, etc., imposed
on the top of the riverbank slope and water pressure (Q2) imposed on the left boundary
of the riverbank slope. Figure 1b shows the loading condition of the geocells, which is a
three-dimensional structure with excellent lateral confinement effect, horizontal friction,
pull-out resistance and shear resistance [30]. The model was then validated by the field
measurement data.
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Figure 1. The proposed theoretical model for investigating an anti-slide pile and geocell system for
riverbank slope enhancement. (a) Detailed design of anti-slide pile with geocells (Q1: Surcharge
loading imposed on top of the riverbank slope; Q2: Water pressure imposed on the left boundary of
the riverbank slope); (b) Loading condition of the geocell layer; (¢) Loading condition of the anti-slide
pile; and (d) Load transfer between the anti-slide pile and geocell.

2.1. Theoretical Model Development

Under external loading on the riverbank slope, the increase in soil stress inside the
geocells results in the outward deformation of its side walls as well as the lateral binding
force and vertical friction force of the side wall of the geocell on the internal sand and
aggregate, as shown in Figure 1b. Therefore, the geocells provide both the riverbank slope
lateral and vertical resistance under external loads on the whole. Assuming the lateral
restraint stress (Ac3) is determined by the deformation behavior of the soil inside the
geocells and the mechanical properties of the geocell material [31], and using membrane
theory proposed by Henkel and Gilbertd et al. [32-34], Ac; can be expressed as

A0'3 = 216\1/([)85 . 1,1&
Y M)
i
where M is the modulus of the geocell material (kN/m), dy is the initial diameter of the
geocell, e is the allowable radial strain of the geocell, and ¢, is the axial strain of the geocell.
The vertical load imposed on the riverbank slope is partially carried by the anti-slide
piles and the geocell layer through both confinement and beam effects. Assuming that
maximum vertical friction on the geocell walls is determined by the friction angle between
the geocells and soil and the lateral pressure on the wall, the maximum vertical friction
stress (T) can be expressed as

2tan ¢y

— S Ac, 2
tan(§ + %) ”

T=o03-tangy +

where 073 is the total lateral pressure and ¢; is the internal friction angle of the soil, and ¢,
is the internal friction angle between the geocell material and the internal soil of geocell,
and Ac is the cohesion incremental.

As shown in Figure 1b,c, considering the interaction between soil and geocell, the
geocell layer could provide anti-slide forces for the riverbank slope. The friction forces on
the top surface (f1) and bottom surface (f,) of the geocell layer can be defined as

f] = ¢+ pjtan @3, 3)

fo=c+prtan gy, 4)
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where c is the cohesion of the soil, p1 and p, are the stress imposed on the top and bottom
surfaces of the geocell layer, respectively, ¢3 and ¢4 are the internal friction angle between
the material of the top and bottom surfaces of the geocell layer and the soil, respectively.

F= /Ol (A + f2)dx, ®)

where [ is the length of the geocell layer.

As shown in Figure 2a, the geocell layer can be modelled as a beam on elastic founda-
tion with the loads imposed on the geocell layer, as shown in Figure 1d. The loading on
a geocell beam element is shown in Figure 2b. g(x) is the surcharge loading imposed on
the top of the riverbank slope Q1, which distributes the loading on the top surface of the
geocell layer. p(x, y) is the reaction force on the bottom surface of the geocell layer.

9(x)

’ *
f / " \

a0 L/ lovdp )Mram
’ /

TPT ]
®

Figure 2. (a) Modelling the geocell layer as a beam on elastic foundation; (b) A geocell beam element.

The force and moment balance of the beam element lead to

d4
EIZS +p(xy) = q(x), (©)

where E is elastic modulus of the geocell layer and I is the moment of inertia of the
geocell layer.
Furthermore, the moment of inertia of the geocell layer I can be defined as

bh3
= @)

where b is the geocell layer width and / is the geocell layer height.

2.2. Boundary Conditions
In this study, we assumed the following boundary conditions:

e  The connection between the anti-slide piles and the geocell layer is rigid. The settle-
ment of piles and rotation at the top of the piles are relatively small due to the large
stiffness of the piles (i.e., atx =0,y =0 and 6 = 0) [29].

e At the end of the geocell layer without pile support, both bending moment and shear
force are zero (i.e., free end).

Assuming p(x, y) = ky where k is the elastic foundation coefficient and g(x) = g, the

deflection of the geocell layer can be obtained by solving Equation (6) together with the
boundary conditions, that is,
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y= %(e_’gx(cos Bx +sinBx) + 1), 8)
where = { % is the eigenvalue and L = 1/ is the characteristic length.

2.3. Problem Description

The model developed in this study was implemented to investigate a 391 m long
riverbank slope in a port of the Pearl River Estuary in southern China. This riverbank slope
had some small-scale landslides in the early stage of construction, as shown in Figure 3 [35].
The height of the riverbank slope is 2.8 m with a slope gradient of 1:2. Figure 4 shows
the flowchart of the riverbank slope monitoring system in this study. The riverbank slope
model consisted of five anti-slide piles (pre-stressed high-strength concrete, diameter of
40 cm and 37 m long each) with 1 m spacing. To investigate the influence of the anti-slide
piles, 1.5 times the depth of the pile was used as the depth of the model. The height and
thickness of the geocells were 100 mm and 1.2 mm, respectively, and the geocell layer was
filled with sand and aggregate. Due to its weak and soft structure, the riverbank slope was
enhanced by anti-slide piles and a geocell layer, with the joint point of the geocells and
piles connected by concrete. While sand and aggregate were used to fill the geocell layer,
sand cushion was laid under the geocell layer [36]. The details of the material properties
of the riverbank slope soil, anti-slide piles and geocells are shown in Table 1. The section
of material of the riverbank slope’s soil is shown in Figure 4. Furthermore, these material
parameters will be used for numerical analysis.

Figure 3. Location of the riverbank slope for the model developed in this study.

/_

L] [ ] [ ] ]

Original artificial fill Silt clay Silt Clay New artificial fill

Figure 4. The section of material of the riverbank slope’s soil.
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Table 1. The material properties of the riverbank slope’s soil, anti-slide piles and geocells.

Soil Layer Name Thickness (m) Deformation Poisson’s Severe y Cohesion Internal Friction
Modulus (MPa) Ratio v (kN/m?3) c (kPa) Angle ¢ (°)
Original artificial fill 10.4 14 0.2 19.5 10 12
Silt 9.3 1.5 0.42 16.5 5 2
Mucky soil 6.7 1.8 04 17 10 35
Clay 4.3 4.5 0.35 19.5 30 9
Silt clay 5.5 1.8 0.4 17 10 35
Clay 8.8 4.5 0.35 19.5 22 9
New artificial fill 3.8 14 0.2 18 10 12
Sand 0.5 15 0.25 20 1 25
Anti-slide pile 37.0 30,000 0.2 25 —_— —_—
Geocell 0.2 40 0.2 20 e

For the proposed riverbank slope reinforcement model, this paper compares model
calculations with actual measurements to verify the model’s effectiveness. Compared with
the adjacent soil, the geocell structure had higher stiffness and strength, and functioned
to diffuse stress and homogenize the riverbank slope deadweight. To a certain extent,
the geocell structure can improve distribution of stress from the riverbank slope and anti-
slide pile. In the horizontal direction, the geocells have a certain limiting effect on the
lateral displacement of riverbank slope and the bending moment of the anti-slide piles.
Furthermore, in the vertical direction, the main factor of variation in anti-slide pile axial
force is the deadweight of the geocell layer and its upper soil, the anti-slide piles have an
excellent supporting effect on the geocell layer, limiting the vertical displacement of the
riverbank slope. Therefore, using model calculations, measured values of horizontal and
vertical displacements of the slope, axial force end and bending moment of the anti-slide
piles, the effect of a riverbank slope that is reinforced by anti-slide pile with geocell can
be verified.

In order to monitor the vertical and lateral displacements of the riverbank slope more
accurately, we monitored the vertical and lateral displacement of the riverbank slope a
period of time after the completion of riverbank slope construction. Figure 5 shows the
steps used to install monitoring sensors in the riverbank slope.

Figure 5. The steps used to install monitoring sensors in the riverbank slope: (a) sensor calibration;
(b) geocell and anti-slide pile layout; (c) grouting and sealing; (d) filling.
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Based on the monitoring purpose and the working mechanism of the anti-slide piles
and geocells, the following monitoring contents were formulated.

e  Monitor the vertical and lateral displacements of the riverbank slope

For the vertical displacement of the riverbank slope, 15 displacement meters were
arranged along the top of the riverbank slope, as shown in Figure 6. Furthermore, the
typical resolution of the displacement meter was 0.01 mm, and the maximum vertical
displacement of the riverbank slope was located on the measurement range of the displace-
ment meter (maximum measurement range 0.8 m). One inclinometer hole with diameter
110 mm was arranged in the slide mass, and the design depth was 45 m. The inclinometer
pipe was embedded in the riverbank slope in advance, and the inclinometer was used to
monitor the lateral displacement of the riverbank slope.

y& Seftlement plate

Flexible displacement meter
Inclinometer tube
S 0(0,0)

65m e 28m

37m

45m

OO0 0
Rebar stress gage Ll_m.
155m J

Anti-slide Pile

-

Figure 6. A schematic diagram showing the sectional details of monitoring of the riverbank slope
model in this study; point O is the origin of values of model calculation and actual measurement
(155 m wide, 65 m from the riverbank slope toe to the left boundary of the riverbank slope, and 90 m
from the riverbank slope toe to the right boundary of the riverbank slope).

e  Monitor the axial force and bending moment of the anti-slide piles

In general, the lateral critical pile spacing of the pile group effect is about 3 times the
diameter of anti-slide pile [37]. Therefore, for 40 cm diameter anti-slide pile, this paper
ignores the pile group effect under the condition of 1 m distribution spacing. The bending
moment is a main parameter in anti-slide piles design, and the field test is an important
means for inspecting the calculated results for the bending moment. However, the bending
moment is an indirect parameter—it cannot be directly observed in the field, but can be
obtained by measuring the steel stress, with the rebar’s stress gage set in the longitudinal
tension bar of anti-slide pile, as shown in Figure 6. According to the characteristics of the
force in anti-slide piles, 22 rebar stress gages were arranged in equal distances along the
longitudinal tension bar of the anti-slide pile. Furthermore, the axial force of the anti-slide
piles was primarily obtained by model calculation to verify comprehensively the effect of a
riverbank slope that is reinforced by anti-slide pile with geocell.

3. Results and Discussion
3.1. Finite Element (FE) Calculation

In this paper, the riverbank slope reinforced by anti-slide pile and geocell is modeled.
The sand and soil are divided into eight-node quadrilateral high-order elements, and
the anti-slide pile with geocell layer is divided into line beam elements. The model after
meshing is shown in Figure 7; furthermore, the total displacement variation of the model of
riverbank slope with and without the enhancement by anti-slide pile and geocell layer. The
total displacement includes vertical settlement and lateral displacement. The calculation
results are shown in Figure 8. It can be seen from Figure 8 that the total displacement
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of the riverbank slope is reduced after setting the enhancement by anti-slide piles and
geocell layer, which proves the effectiveness of the enhancement by anti-slide piles and
geocell layer.

Figure 7. Computational model after meshing.

DISPLACEMENT
DXY.m

6.04433¢-001
5.66658e-001

5.28879¢-001
4.91102e-001
4.53325e-001
4.15548-001
377771e-001
3.39994e-001
3.02216e-001
2.64440e-001
2.26662e-001
1.88885e-001
1.51108e-001
1.13331e-001
7.55542e-002
3777771e-002
3.80861e-006

(a) The total displacement variation of finite element model of riverbank slope with the enhancement by anti-slide piles and geocell layer.

DISPLACEMENT
DXY.m

640275¢-001
6.00261e-001

5.60241e-001
5.20225¢-001
4.40190e-001
4.00173¢-001
3.60155¢-001
3.20138e-001
2.80121e-001
240103¢-001
2.00086e-001
1.6006%-001
1.20052¢-001
8.00345¢-002
4.00173¢-002
4.03446e-006

(b) The total displacement variation of finite element model of riverbank slope without the enhancement by anti-slide piles and
geocell layer.

Figure 8. The finite element analysis result.

3.2. Displacement of Riverbank Slope under Different Water Levels

As the left side of the riverbank slope was in contact with water, the influence of water
on the riverbank slope should be considered when analyzing riverbank slope stability.
However, this influence is complex, and this paper provides a qualitative analysis of the
influence of changes in water level through changes in vertical settlement of the top surface
of the riverbank slope in the horizontal direction, and the lateral displacement under
different water levels. Based on the distance between the water level and the measurement
datum, the water levels of the Xiyong River can be divided into high, normal, and low



J. Mar. Sci. Eng. 2021, 9, 394 9 of 14

water level. Further, the distance between high water level and normal water level as
well as the distance between low water level and normal water level is 1 m. The change
curve of the settlement value of the riverbank slope’s top surface at different water levels
is shown in Figure 9, and the lateral displacement change of riverbank slope at different
water levels is shown in Figure 10. Due to the elastoplastic deformation of geocell, the
settlement change and lateral displacement change of riverbank slope are irreversible.

Lateral displacement (m)
-1.4 -1.2 -1 -08 . __-06 -0.4 -0.2 0
3 3

I 1 1
%) — =
S & =)

1
[%5)
(=}

3
Depth from the top surface of the slope (m)

—e6— Lateral displacement under normal water level

[ —>— Lateral displacement under high water level % 45
—€— Lateral displacement under low water level D
L L [ [ [ [ 50

Figure 9. The depth-dependent lateral displacement of the riverbank slope under different
water levels.

The distance from O point in X direction (m)
00 10 20 30 40 50 60 70
3 3 3 T T T
—6— Vertical settlement under normal water level
3 —p— Vertical settlement under high water level

&R —6— Vertical settlement under low water level

Vertical settlement (m)

0.8 r r r r r r

Figure 10. Vertical settlement of the top surface of the riverbank slope in the horizontal direction
under different water levels.

3.3. Model Validation

For the case study analysis, the left and right surface boundaries of the model were
constrained horizontally while the bottom surface boundary of the model was fixed. The
magnitude of the ultimate force was determined using the Mohr-Coulomb theory [38].
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3.3.1. Vertical Settlement on the Top Surface of the Riverbank Slope

The vertical settlement on the surface of the riverbank slope was measured after
riverbank slope construction had been completed for a period of time under the high
water level. The measurements are presented in Figure 11, which compares the measured
and predicted vertical settlement on the surface of the riverbank slope with and without
riverbank slope enhancement by anti-slide piles and geocell layer. The results show that the
theoretical predictions agreed with the field measurements reasonably well. The maximum
vertical settlement of the riverbank slope occurred at around 30 m from the top of the
riverbank slope. In addition, the figure demonstrates that the maximum vertical settlement
of the riverbank slope enhanced by anti-slide piles and geocell layer could be reduced by
15% compared to that without riverbank slope enhancement, moving the maximum vertical
settlement point back to around 10 m. Therefore, riverbank slope with anti-slide piles and
geocell enhancement can be effectively reduced by the maximum vertical settlement.

According to the maximum value of vertical settlement of high water level, the
theoretical predictions maximum value of vertical settlement without anti-slide piles and
geocell enhancement is compared with the actual measured maximum value of the vertical
settlement. It was found that the percentage of influence of high water level on the vertical
settlement of riverbank slope in the above two situation reaches 11% without anti-slide
piles and geocell enhancement and 5% with anti-slide piles and geocell enhancement,
respectively. Therefore, the riverbank slope with anti-slide piles and geocell enhancement
can be effectively reduced by the influence of water level.

The distance from O point in X direction (m)
0 10 20 30 40 50 60 70
U U U U

3

—e— Measured data (anti-slide piles and geocell enhancement)

—H&— Theoretical predictions (anti-slide piles and geocell enhancement)

—>— Theoretical predictions (without anti-slide piles and geocell enhancement)
03 X —+— FE calculations (anti-slide piles and geocell enhancement)
—o— FE calculations (without anti-slide piles and geocell enhancement)

|
<
'S

|
e
[

Vertical settlement (m)

-0.6

0.7 [ r r r r [
Figure 11. Vertical settlement of the top surface of the riverbank slope in the horizontal direction.

3.3.2. Depth-Dependent Lateral Displacement of the Riverbank Slope

Figure 12 compares the measured and predicted depth-dependent lateral settlement
of the riverbank slope, with and without the riverbank slope enhancement by anti-slide
piles and geocell layer. It shows that the theoretical predictions fit the field measurements
well. In addition, it indicates that the lateral displacement of the riverbank slope initially
increased with depth, reached maximum value (around 0.45 m) at around 17 m, and
then gradually decreased. Most importantly, the theoretical results demonstrate that the
anti-slide piles and geocell layer could decrease the maximum lateral displacement by
around 40%.
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Figure 12. Depth-dependent lateral displacement of the riverbank slope.

3.4. Mechanical Behavior of the Anti-Slide Piles

Due to the above analysis results, the model was implemented to investigate the
mechanical behavior of the anti-slide piles in the riverbank slope. Figure 13 compares the
depth-dependent axial force of the No. 1 anti-slide pile, with and without geocell layer.
Among them, the results of FE calculation are similar with theoretical prediction. It shows
that the axial force in this pile initially increased with increase in depth, reached maximum
value at a depth of around 23 m, and then gradually decreased. In addition, although the
application of the geocell layer could increase the axial force in the anti-slide piles, the
increase in maximum axial force was limited (around 7%).

Axial force in the pile (kN)

300

Depth from the top surface of the slope (m)

—e— Theoretical predictions with anti-slide piles only

_35L —P— Theoretical predictions both anti-slide piles and geocell layer 4

—+— FE calculations with anti-slide piles only

—&— FE calculations with both anti-slide piles and geocell layer
r

[

40

Figure 13. Depth-dependent axial force in the No. 1 anti-slide pile.

In addition to axial force, the anti-slide piles were also subject to bending moment,
which can be calculated using the interaction model of anti-slide pile and soil. Figure 14
shows that the anti-slide piles located at riverbank slope boundaries were subject to a
relatively large bending moment. Geocell layer and anti-slide piles are jointly composed of
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a slope side pressure support system. The outermost No. 1 anti-slide pile is near the free
face above the water surface, which bears the force of the soil behind the riverbank slope,
anti-slide piles and geocell layer. Therefore, the bending moment of the No. 1 anti-slide
pile is relatively large. Furthermore, the No. 5 anti-slide pile is subjected firstly to the force
of the soil behind the riverbank slope, so the bending moment is also relatively large. The
No. 2 anti-slide pile, No. 3 anti-slide pile and No. 4 anti-slide pile are located in the middle
part of the pile group, and undertake the force of the soil behind the riverbank slope and
the geocell layer jointly. Therefore, the bending moment of the No. 2 anti-slide pile, No. 3
anti-slide pile and No. 4 anti-slide pile is relatively small.

115 T T T T [
(113.50)
Z 1ok 1
&
=
g (107.18)
=]
=]
o0
£ 1051 T
e
E (103.31)
=]
=
E
(100.21)
é 100~ (99.48) I .
No.1 No.2 No.3 No.4 No.5

Pile number
Figure 14. Maximum bending moment of individual anti-slide piles.

4. Conclusions

In the present study, a theoretical model was proposed to investigate the effects of
riverbank slope enhanced by anti-slide piles and geocell layer. The model was validated
using field measurement data. The following are the major findings.

The theoretical predictions fit the field measurements reasonably well. The model
predicted that the maximum vertical settlement position of the top surface of the riverbank
slope would be around 30 m from the edge of the top of the riverbank slope, and the use of
the anti-slide piles and geocell layer would reduce vertical settlement by 15% and move
the maximum vertical settlement point back by around 10 m.

The lateral displacement of the riverbank slope initially increased with depth, reached
its maximum value (around 0.45 m) at around 17 m, and then gradually decreased. The
use of the anti-slide piles and geocell layer was measured to decrease maximum lateral
displacement by around 40%.

The axial force in the pile initially increased with increase in depth, reached its maxi-
mum value at a depth of around 23 m, and then gradually decreased. The application of
the geocell layer was found to increase axial force in the anti-slide piles to some extent.
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