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Abstract: Wave attenuation performance is the prime consideration when designing any floating
breakwater. For a 2D hydrodynamic analysis of a floating breakwater, the wave attenuation per-
formance is evaluated by the transmission coefficient, which is defined as the ratio between the
transmitted wave height and the incident wave height. For a 3D breakwater, some researchers still
adopted this evaluation approach with the transmitted wave height taken at a surface point, while
others used the mean transmission coefficient within a surface area. This paper aims to first examine
the rationality of these two evaluation approaches via verified numerical simulations of 3D heave-
only floating breakwaters in regular and irregular waves. A new index—a representative transmission
coefficient—is then presented for one to easily compare the wave attenuation performances of different
3D floating breakwater designs.

Keywords: floating breakwater; wave attenuation performance; transmission coefficient; regular
wave; irregular wave

1. Introduction

Floating breakwaters have been used to provide safe harborage and to protect shore-
lines. When compared to the conventional bottom-founded breakwaters, floating break-
waters possess several advantages [1]: (i) being less costly when constructed at sites with
soft seabed conditions and large water depth; (ii) the negligible effect of tidal variation
and sea-level rise on these floating structures; (iii) little visual impact on the horizon from
the shore as freeboards are rather small; (iv) being more environmentally friendly because
of better water circulation and smaller benthic footprints; and (v) being easily expanded,
rearranged, removed and relocated. However, floating breakwaters usually have a low
wave attenuation performance for long waves (as compared to the breakwater width).
In addition, their mooring systems may be more susceptible to damage under extreme
wave action.

Most research studies on floating breakwaters are carried out in the 2D domain where
the breakwater is assumed to be infinitely long. For 2D floating breakwaters under regular
waves, the wave attenuation performance is evaluated by using the transmission coefficient
(Kt) which is defined as the ratio between the transmitted wave height (Ht) and the
incident wave height (HI). Numerically or analytically, where the incident wave height is
already given, the transmission coefficient can be obtained by determining the transmitted
wave height at a surface point behind the breakwater (e.g., see [2]). Experimentally, the
incident wave height and transmitted wave height can be determined from the measured
wave elevations. These approaches for determining the transmission coefficients for
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floating breakwaters are similar to those discussed for the traditional bottom-founded
breakwaters [3–5].

As realistic floating breakwaters are 3D where the breakwater length is finite, several
researchers have conducted experimental and numerical studies on 3D floating breakwa-
ters [6–12]. In experimental studies, several researchers (e.g., [7,9]) used the transmission
coefficient at a certain surface point for evaluating the wave attenuation performance of
3D floating breakwaters. In numerical studies, the mean transmission coefficient within a
prescribed surface area has been adopted for the evaluation of the wave attenuation perfor-
mance [10,13]. However, the rationality of these experimental and numerical evaluation
approaches was not discussed.

This paper aims to numerically examine the aforementioned approaches as well as
other possible approaches for quantitatively evaluating the wave attenuation performance
of 3D floating breakwaters in regular and irregular waves. The examination is conducted
by performing hydrodynamic analysis of heave-only floating box-type breakwaters, which
are restrained by piles or mooring dolphins. The classical linear hydrodynamic theory
is adopted for the analysis. In Section 2, we articulate the problem at hand, present the
methodology for the solution and verify the results obtained. In Section 3, the transmitted
wave fields behind 3D heave-only floating breakwaters are presented and various ways for
quantifying the wave attenuation performance of a 3D floating breakwater are discussed.
A new representative transmission coefficient is proposed for better evaluation of the
wave attenuation performance of a 3D floating breakwater. Section 4 presents some
concluding remarks.

2. Problem Definition, Methodology and Verification

Consider a box-type heave-only rigid floating breakwater and the global coordinate
system Oxyz as shown in Figure 1. The breakwater has length L, width B, draft d and
is sited in a constant water depth h. The water domain is assumed to be infinite along
x- and y-directions. The incident wave has a significant wave period Ts and significant
wave height HI,s. The incident wave angle with the x-axis is denoted by θ. The problem at
hand is to determine the transmitted wave field and use this information to quantify the
performance of the 3D floating breakwater under regular and irregular waves.
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Figure 1. (a) Plan view, (b) side view of floating breakwater.

The breakwater is assumed to be deployed in locations where irregular waves can be
represented by the Bretschneider spectrum [14]. Examples of such locations are the west
coast of Ireland [15], and the Dutch coast [16]. The spectral density of the Bretschneider
spectrum is given by:

S(ωi) = 0.1687
H2

I,sω4
s

ω5
i
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(
−0.675

ω4
s

ω4
i

)
, i = {1, 2, ..., nω}, (1)

where ωi is the wave frequency of the ith spectral component, ωs = 2π/Ts, nω is the number
of discrete spectral components for accurate representation of continuous wave spectrum.
The resolution frequency is ∆ω = (ωU − ωL)/nω, where ωL and ωU are respectively the



J. Mar. Sci. Eng. 2021, 9, 388 3 of 17

lower and upper bounds of wave frequencies where the spectral density value vanishes.
The ith spectral component has the wave height HI(ωi) = 2

√
2S(ωi)∆ω.

Regular waves are also considered for a comparison study. The wave period, wave
height, wavelength and frequency for a regular wave are denoted as T, HI, λ and ω,
respectively. In comparing the wave attenuation performances of the floating breakwater
under irregular waves and regular waves, we shall use a representative regular wave
where its wave period and height are, respectively, equal to the significant wave height
HI,s and the significant wave period Ts [4,17–19].

To quantify the effectiveness of a floating breakwater in attenuating a regular wave at
a given surface point, the following transmission coefficient Kt is used:

Kt =
Ht

HI
, (2)

where Ht is the transmitted wave height at the point considered.
For irregular waves, the transmission coefficient at a given surface point is defined as:

Kt =
Ht,s

HI,s
, (3)

where the significant transmitted wave height Ht,s is given by:

Ht,s = 4

√
nω

∑
i=1

[Ht(ωi)/HI(ωi)]
2S(ωi)∆ω, (4)

where Ht(ωi) is the transmitted wave height at the considered point for the component
wave frequency ωi. The squared term under the square root in Equation (4) is usually
referred to as a transfer function between the spectrum of the transmitted waves St(ω) and
the incident wave spectrum S(ω). We have the following relation:

St(ω) = [Ht(ω)/HI(ω)]2S(ω). (5)

From Equations (3)–(5), we can see that the transmission coefficient is also equal to
the square root of the ratio between the energy of the transmitted waves and that of the
incident waves.

In the hydrodynamic analysis, the fluid is assumed to be inviscid and incompressible,
and the fluid motion is irrotational. The classical linear potential wave theory is adopted for
modelling the fluid motion. The breakwater is modelled as a plate [20]. Note that the linear
wave theory has been widely adopted for estimating the transmission coefficients of floating
breakwaters, e.g., in research study [1] and in design guidelines [21]. It is expected that the
accuracy of transmission coefficients obtained by using the linear wave theory decreases
as the wave steepness (i.e., the ratio between the wave height and wavelength) increases.
However, the limit of wave steepness where the linear wave theory can still be valid has not
been clearly established due to the lack of comparison between numerically estimated and
measured transmission coefficients. The validity of the linear wave theory is also affected by
the breakwater configuration and cross-sectional shape. An existing comparative study [22]
between measured and numerically estimated transmission coefficients obtained by using
the linear wave theory showed that for box-type floating breakwaters and wave steepness
of about 0.04, a good agreement between experimental and numerical results was obtained.
For a larger wave steepness of about 0.07 and the Berkeley Wedge breakwater, the difference
between the numerically estimated and measured transmission coefficients was shown to
be up to 35% at resonance [23].

The finite element-boundary element (FE-BE) method is adopted for solving the fluid–
structure interaction problem in the frequency domain. As this method is well-known,
only a brief of the method is presented in this paper for brevity. Details of the FE-BE
method may be obtained from the literature, such as from papers by Kim et al. [24], and
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Nguyen et al. [25]. Note that the FE-BE method has been developed for a general case
where elastic deformations of floating structures and flexible connections between structure
modules can be accounted for. When using this method for the present hydrodynamic
problem (where the breakwater is assumed to be rigid), the rigidity of the structure is
simply set to an infinitely large value.

According to the FE-BE method, the equation of motion for floating breakwaters in
the frequency domain may be written in the following matrix form [25]:[

−ω2(M + Ma)− iωCd + K + Krf

]
u = Fexc, (6)

where i is the imaginary unit (i =
√
−1) M is the global mass matrix, Ma is the matrix

of added mass, Cd is the matrix of hydrodynamic damping, K is the global stiffness
matrix, Krf is the global matrix of the restoring force resulting from the combination of the
buoyancy force and the gravitation force acting on the breakwater, u is the nodal vector of
the complex amplitudes of the displacements, Fexc is the vector of the complex amplitude
of the excitation wave force. The vectors of breakwater displacements and excitation wave
forces acting on the breakwater at the time t are, respectively, given by:

ure = Re
(

ue−iωt
)

, (7)

Fexc,re = Re
(

Fexce−iωt
)

, (8)

where Re(.) indicates the real part.
The matrices K, Krf and M are obtained using the finite element method [25]. The

boundary condition due to the presence of the mooring system that the breakwater only
moves up and down is imposed in the numerical model by modifying the stiffness matrix
K using the penalty method [26]. The added mass and hydrodynamic damping matrices
Ma and Cd are obtained by applying the boundary element method procedure for the
linear hydrodynamic problem where the fluid motion can be expressed in terms of the
velocity potential ϕre. In the frequency domain, the velocity potential can be written in the
following form:

φre = Re
(

φe−iωt
)

(9)

where ϕ is the complex amplitude of the velocity potential and is usually referred to as the
spatial velocity potential that must satisfy the Laplace equation and boundary conditions
on the linearized free surface, the seabed, at infinity, and on the wetted surface of the
breakwater, as follows [27,28]:

∇2φ(x, y, z) = 0 (10)

∂φ

∂z
=

ω2

g
φ on the linearized free surface (z = 0), (11)

∂φ

∂z
= 0 on the seabed, (12)

∂φ

∂n
= −iωujnj on the wetted surface of the breakwater, (13)

lim
|x|→∞

√
|x|
[

∂(φ− φin)

∂|x| − ik(φ− φin)

]
= 0, (14)

where g is the gravitational acceleration (g = 9.81 m/s2), ∂/∂n indicates the differential along
the unit formal vector pointing from the structure to the fluid, uj (where j = {1, 2, 3}) are the
complex amplitudes of the displacements along the x-, y- and z- directions, nj indicates
the unit normal vector, |x| is given by |x| =

√
x2 + y2, k is the wave number and can be
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obtained by solving the dispersion relation k tanh(kH) = ω2/g, ϕin is the complex amplitude
of the incident velocity potential and is given by:

φin =
gA
ω

cosh k(z + H)

cosh kH
eik(x cos θ+y sin θ). (15)

The complex amplitude pd of the hydrodynamic water pressure can be calculated
from the spatial velocity potential using the following equation [28]:

pd = −iωρwφ. (16)

where ρw (= 1025 kg/m3) is the mass density of water.
The FE-BE method was implemented in MATLAB, and its convergence, accuracy

and validity were confirmed by comparing with the results reported by Diamantoulaki
et al. [6] who also used the boundary element method (BEM) for solving the fluid part, but
a semi-analytical approach for solving the structure part. The breakwater has L = 20 m,
B = 4 m, d = 0.77 m and is subjected to regular waves with θ = {0◦, 45◦}, and B/λ = [0.1, 1.1].
The water depth h = 10 m. The transmission coefficients along y = 0 and 2 m ≤ x ≤
40 m are presented in Figure 2. The normalized heave motion amplitudes (|u3|/A) of
the breakwater are given in Figure 3. The results reported by Diamantoulaki et al. [6]
are indicated by ‘3D Ref.’, while the results from the present study are indicated by ‘3D
Present’. It can be seen that the present results are in good agreement with the results
obtained by Diamantoulaki et al. [6].

The accuracy and validity of the developed FE-BE method have also been confirmed
by comparing with the published numerical and experimental results for several other
structures such as floating pontoon-type structures, interconnected floating structures, and
oscillating wave surge converters. Details of the verification for these problems have been
presented by Nguyen and Wang [29,30].
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Figure 2. Transmission coefficients along y = 0 and 2 m ≤ x ≤ 40 m, θ = 45◦: (a) B/λ = 0.3,
(b) B/λ = 0.6, (c) B/λ = 1.1.
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3. Results and Discussions

Numerical studies were carried out for three large heave-only floating breakwaters
(FB#1, FB#2, FB#1L) with their dimensions as shown in Table 1. FB#1 has a width of 20 m
and a draft of 10 m whilst FB#2 has a larger width of 30 m but a smaller draft of 6.7 m.
Both the floating breakwaters have the same length of 200 m and about the same volume
of displaced water. FB#1L has the same width and draft as FB#1 but it has a longer length
of 500 m. The interaction between the freeboard and the water (e.g., overtopping) was not
considered in the numerical model for simplicity and due to the limitation of the linear
wave theory. Thus, the freeboard depth is not specified in Table 1. The water depth is
assumed to be 40 m. The incident wave angles θ = {0, 30} ◦ are considered. A wide range of
wave frequencies (ω = [0.31–1.48] rad/s) is examined. The significant wave height is taken
as 1 m (i.e., HI,s = HI = 1 m).

Table 1. Design parameters (in meter) used for numerical studies.

Parameter FB#1 FB#2 FB#1L

L 200 200 500
B 20 30 20
d 10 6.7 10

In the numerical model, the eight-node linear serendipity elements were adopted for
discretization [25]. To select appropriate meshes of elements, convergence studies were
performed. Figure 4 shows the transmission coefficients along y = 0 and 10 m < x ≤ 200 m
for FB#1, θ = 0◦, ω = {1.57, 1.05} rad/s, and for four meshes of elements. Square elements
were used sizes of 10 m, 5 m, 3.33 m and 2m for the four element meshes, respectively.
For ω = 1.57 rad/s, Figure 4a shows that the mesh of elements with a size smaller than
5 m is able to give converged results. For ω = 1.05 rad/s, converged results can generally
be obtained by using the mesh of elements with the largest size (10 m × 10 m). The
observation in Figure 4 agrees well with the recommended size of elements (at least λ/4)
given by Utsunomiya [31]. Based on the convergence study and the recommendation in
the literature [31], the element size is taken to be smaller than λ/4 in the next sections. For
irregular waves, 100 regular wave components were used for the accurate representation
of the continuous wave spectrum. The upper and lower bounds of wave frequencies
are 3.12 rad/s and 0.31 rad/s, respectively. These bounds were selected so that the wave
spectrum density is almost zero at these frequencies. The computations were performed
on the high-performance computing (HPC) system at The University of Queensland.



J. Mar. Sci. Eng. 2021, 9, 388 7 of 17

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 7 of 17 
 

 

continuous wave spectrum. The upper and lower bounds of wave frequencies are 3.12 
rad/s and 0.31 rad/s, respectively. These bounds were selected so that the wave spectrum 
density is almost zero at these frequencies. The computations were performed on the high-
performance computing (HPC) system at The University of Queensland. 

  
(a) (b) 

Figure 4. Transmission coefficients for mesh 1 (10 m × 10 m), mesh 2 (5 m × 5 m), mesh 3 (3.33 m × 3.33 m), mesh 4 (2 m × 
2 m): (a) ω = 1.57 rad/s, (b) ω = 1.05 rad/s. 

3.1. Transmitted Wave Field in Regular and Irregular Waves 
Figures 5 and 6 show the contours of the wave elevation amplitude normalized with 

respect to the incident wave amplitude of regular waves for FB#1 and FB#1L. The contours 
of the normalized wave elevation amplitude behind the breakwaters reflect the transmis-
sion coefficients. It can be seen from Figure 5 that the transmission coefficients generally 
decrease as B/λ increases from 0.2 to 0.63. This result is expected, and has been widely 
seen for 2D floating breakwaters (e.g., see [32,33]). 

  
(a) (b) 

  
(c) (d) 

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

K
t

x (m)

Mesh 2 Mesh1
Mesh 4 Mesh 3

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

K
t

x (m)

Mesh 2 Mesh1
Mesh 4 Mesh 3

Figure 4. Transmission coefficients for mesh 1 (10 m × 10 m), mesh 2 (5 m × 5 m), mesh 3 (3.33 m × 3.33 m), mesh 4
(2 m × 2 m): (a) ω = 1.57 rad/s, (b) ω = 1.05 rad/s.

3.1. Transmitted Wave Field in Regular and Irregular Waves

Figures 5 and 6 show the contours of the wave elevation amplitude normalized
with respect to the incident wave amplitude of regular waves for FB#1 and FB#1L. The
contours of the normalized wave elevation amplitude behind the breakwaters reflect the
transmission coefficients. It can be seen from Figure 5 that the transmission coefficients
generally decrease as B/λ increases from 0.2 to 0.63. This result is expected, and has been
widely seen for 2D floating breakwaters (e.g., see [32,33]).
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Figure 5 also shows that the transmission coefficients vary significantly in the lee
side of the breakwater. As this is not seen for the case of 2D floating breakwaters, the
variation in the transmission coefficients should be due to the end effects (caused by the
diffraction and radiation at the two ends of the finite length breakwater). The variation
in the transmission coefficient is seen to decrease when λ decreases. This variation is also
observed for the long floating breakwater FB#1L in Figure 6, but it is less significant. This
means that the variation in the transmission coefficient decreases as L increases. In sum, it is
observed that the variation in the transmission coefficient decreases as L/λ increases. Note
that this variation was discussed for bottom-founded breakwaters [34]. When designing
a 3D breakwater, minimizing the end effects should be desired for maximizing the wave
attenuation performance of the breakwater. One possible way is to increase the length
of the breakwater so that L/λ is large (e.g., L/λ ≈ 9, as in Figure 6c). However, this
solution is not always good because increasing the breakwater length translates to higher
costs. Another possible way to minimize the end effects is to alter the plane shape of the
3D floating breakwater, e.g., arc-shaped breakwaters. This possibility is currently being
investigated in our project and the results will be reported in the future.

Figure 5 also shows that the transmission coefficients within certain surface areas are
larger than unity for relatively long waves (e.g., see Figure 5a). This was also observed
from the experimental results for 3D breakwaters integrated with oscillating water column
wave energy converters [11]. Such large transmission coefficients cannot be seen in the
conventional 2D analysis of floating breakwaters (e.g., see results reported in [1,35]) due
to the conservation of energy. This indicates that the large transmission coefficient phe-
nomenon results from the 3D diffraction and radiation. Let us consider a 3D diffraction
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problem where the motion of FB#1 is not considered. Figure 7 shows the transmission
coefficients for the diffraction problem. It can be seen from Figure 7 that all the transmis-
sion coefficients in the wave field behind the breakwater have a smaller unity for FB#1
(without motion) and B/λ = 0.2. For this wave condition and the breakwater FB#1, the
large transmission coefficient phenomenon occurs when the breakwater motion is con-
sidered (as seen in Figure 5a). For the considered B/λ ratio of 0.2, the corresponding
wave frequency is close to the heave resonant frequency (ω ≈ 0.75 rad/s) of FB#1, as seen
in Figure 8. The large transmission coefficient phenomenon also occurs for FB#1L and
FB#2 when the wave frequency is close to the heave resonant frequency of the breakwater
(about 0.65 rad/s for FB#1L and 0.75 rad/s for FB#2, as seen in Figure 8). The occurrence
of such a phenomenon for FB#1L can be seen in Figure 6a for B/λ = 0.15 (or frequency of
0.65 rad/s). Figures 5 and 7 also show that due to the effect of 3D diffraction and radiation,
the normalized wave elevation amplitude may be close to, or even higher than, 2 in the
region just in front of the breakwater. This phenomenon was also observed in a previous
numerical study [6] on 3D floating breakwaters.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 17 
 

 

due to the conservation of energy. This indicates that the large transmission coefficient 
phenomenon results from the 3D diffraction and radiation. Let us consider a 3D diffrac-
tion problem where the motion of FB#1 is not considered. Figure 7 shows the transmission 
coefficients for the diffraction problem. It can be seen from Figure 7 that all the transmis-
sion coefficients in the wave field behind the breakwater have a smaller unity for FB#1 
(without motion) and B/λ = 0.2. For this wave condition and the breakwater FB#1, the large 
transmission coefficient phenomenon occurs when the breakwater motion is considered 
(as seen in Figure 5a). For the considered B/λ ratio of 0.2, the corresponding wave fre-
quency is close to the heave resonant frequency (ω ≈ 0.75 rad/s) of FB#1, as seen in Figure 
8. The large transmission coefficient phenomenon also occurs for FB#1L and FB#2 when 
the wave frequency is close to the heave resonant frequency of the breakwater (about 0.65 
rad/s for FB#1L and 0.75 rad/s for FB#2, as seen in Figure 8). The occurrence of such a 
phenomenon for FB#1L can be seen in Figure 6a for B/λ = 0.15 (or frequency of 0.65 rad/s). 
Figures 5 and 7 also show that due to the effect of 3D diffraction and radiation, the nor-
malized wave elevation amplitude may be close to, or even higher than, 2 in the region 
just in front of the breakwater. This phenomenon was also observed in a previous numer-
ical study [6] on 3D floating breakwaters. 

  
(a) (b) 

Figure 7. Contours of normalized wave elevation amplitude for FB#1 without motion (diffraction problem) under regular 
waves, θ = 0°, L/B = 10: (a) B/λ = 0.2, (b) B/λ = 0.27. 

 
Figure 8. Normalized heave motion amplitude of FB#1, FB#2 and FB#1L for various wave frequen-
cies. 

Figure 7. Contours of normalized wave elevation amplitude for FB#1 without motion (diffraction problem) under regular
waves, θ = 0◦, L/B = 10: (a) B/λ = 0.2, (b) B/λ = 0.27.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 17 
 

 

due to the conservation of energy. This indicates that the large transmission coefficient 
phenomenon results from the 3D diffraction and radiation. Let us consider a 3D diffrac-
tion problem where the motion of FB#1 is not considered. Figure 7 shows the transmission 
coefficients for the diffraction problem. It can be seen from Figure 7 that all the transmis-
sion coefficients in the wave field behind the breakwater have a smaller unity for FB#1 
(without motion) and B/λ = 0.2. For this wave condition and the breakwater FB#1, the large 
transmission coefficient phenomenon occurs when the breakwater motion is considered 
(as seen in Figure 5a). For the considered B/λ ratio of 0.2, the corresponding wave fre-
quency is close to the heave resonant frequency (ω ≈ 0.75 rad/s) of FB#1, as seen in Figure 
8. The large transmission coefficient phenomenon also occurs for FB#1L and FB#2 when 
the wave frequency is close to the heave resonant frequency of the breakwater (about 0.65 
rad/s for FB#1L and 0.75 rad/s for FB#2, as seen in Figure 8). The occurrence of such a 
phenomenon for FB#1L can be seen in Figure 6a for B/λ = 0.15 (or frequency of 0.65 rad/s). 
Figures 5 and 7 also show that due to the effect of 3D diffraction and radiation, the nor-
malized wave elevation amplitude may be close to, or even higher than, 2 in the region 
just in front of the breakwater. This phenomenon was also observed in a previous numer-
ical study [6] on 3D floating breakwaters. 

  
(a) (b) 

Figure 7. Contours of normalized wave elevation amplitude for FB#1 without motion (diffraction problem) under regular 
waves, θ = 0°, L/B = 10: (a) B/λ = 0.2, (b) B/λ = 0.27. 

 
Figure 8. Normalized heave motion amplitude of FB#1, FB#2 and FB#1L for various wave frequen-
cies. 
Figure 8. Normalized heave motion amplitude of FB#1, FB#2 and FB#1L for various wave frequencies.

Figures 9 and 10 present the contours of the normalized significant wave height for
FB#1 and FB#1L. The normalized significant wave height is the ratio between the significant
wave height of the disturbed waves (resulting from the interaction with the breakwaters)
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and that of the incident wave. The contours of the normalized significant wave height
behind the breakwaters reflect the transmission coefficients in irregular waves. It can be
seen that the transmission coefficient for irregular waves also varies significantly in the lee
side of the breakwaters.
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Figure 11 presents the difference ∆Kt between the transmission coefficient predicted
for the representative regular wave and that for irregular waves. ∆Kt = Kt,regular—Kt,irregular
where Kt,regular and Kt,irregular are, respectively, the transmission coefficients for representa-
tive regular waves and irregular waves. Figure 11 shows that the difference ∆Kt may be
smaller than −0.4, and larger than 0.1. This finding for box-type heave-only breakwaters
indicates that whilst the representative regular wave analysis is still adopted for predicting
the wave attenuation performance in some design guidelines [4,17,19], the predicted per-
formance may be significantly different from the actual performance of the breakwater in
realistic irregular waves. More studies should be conducted in the future for different types
of floating breakwaters and wave spectra to investigate their wave attenuation performance
using the representative regular wave and irregular wave analyses.
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3.2. Evaluation of Wave Attenuation Performance
3.2.1. From Experimental Studies

In previous experimental studies, some researchers [7,9,11] evaluated the wave atten-
uation performance of 3D breakwaters by using the transmission coefficient taken at only
one particular surface point for simplicity. However, the evaluation approach based on
the transmission coefficient at only one surface point is generally not reasonable as it only
gives a local result and does not reflect the global wave attenuation performance of a 3D
breakwater. A better way is to evaluate the transmission coefficient over an area of interest.
Thus, it is recommended to determine the transmission coefficients at multiple points
within a surface area of interest. This approach was adopted by Loukogeorgaki et al. [8].
However, the required number of measured points and their locations have not been
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clearly established. Another unanswered question is how to determine a representative
transmission coefficient from transmission coefficients at multiple selected points. Perhaps,
the maximum transmission coefficient (within the transmission coefficients at multiple
measured points) may be taken as the representative value from safety consideration.

3.2.2. From Numerical Studies

In previous numerical studies, some researchers [10,13] used the mean transmission
coefficient as the representative value for an area of interest. To examine this approach,
consider the cases of Figure 9b,c. The surface area of interest is assumed to be a semi-
elliptical area (as in Figure 9b,c). The area of interest is user-defined, and it may be of any
shape and size. When pre-defining the area of interest, designers should consider their
sheltered area of concern as well as the transmitted wave field. Here, a semi-elliptical area
is adopted intuitively; we expect that the width of the sheltered area tends to be narrower
far away from the lee side of a finite breakwater (due to the effect of the waves along the
sides of the two ends of the breakwater).

Figure 12 presents the variations of the area percentage with respect to the transmis-
sion coefficient. Here, the area percentage corresponding to a considered transmission
coefficient is defined as the percentage of the area of interest having the transmission
coefficients smaller than the considered transmission coefficient. To obtain the results
in Figure 12, we determined the transmission coefficients at about 8000 points evenly
distributed within the area of interest. Each point was assumed to correspond to the same
area. Figure 12 shows that only less than 60% of the area of interest has a transmission
coefficient smaller than the mean transmission coefficient. If the mean transmission coeffi-
cient is considered as the representative one for the entire area of interest, the wave height
determined from the incident wave height and the representative transmission coefficient
is smaller than the actual wave heights for about 40% of the area of interest. Thus, the wave
attenuation performance of the breakwater may be over-predicted. For greater safety, the
area percentage should be higher, but not the highest (100%) to avoid the localization issue
where the transmission coefficient at only one point is used for evaluating the wave attenu-
ation performance. To obtain the representative transmission coefficient, the target area
percentage needs to be specified. The area percentage is user-defined, and it is assumed to
be 90% in this study. This area percentage (90%) can be acceptable when referring to the
probability of wave heights smaller than the significant wave height (usually referred to as
the representative wave height). Such a probability is about 86.5% by using the probability
formula of the Rayleigh distribution [36]. By setting the target percentage area to 90%,
the representative transmission coefficient Kt,90% for the case in Figure 12a is about 0.79,
which is larger than the mean transmission coefficient by about 20% but smaller than the
maximum transmission coefficient by about 10%. Note that the approach to determine the
representative transmission coefficient based on the area percentage may also be applicable
for experimental studies if the profile of wave elevations within the area of interest can be
captured (such as by using stereo-videogrammetry [37]).
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Figure 12. Transmission coefficient versus area percentage (black solid line) for FB#1, θ = 0◦, irregular
wave: (a) ωs = 0.911 rad/s, (b) ωs = 1.047 rad/s. Square blue marker indicates mean transmission
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corresponding transmission coefficient.

Next, we investigate the representative transmission coefficients of FB#1, FB#1L and
FB#2 in regular and irregular waves. The area of interest is assumed to be a semi-elliptical

area where the ellipse’s equation is (x−B/2)2

L2 + y2

(L/2)2 = 1 (e.g., see Figure 9b). Note that

the area of interest for FB#1 is equal to that of FB#2, but smaller than that for FB#1L by a
factor of 6.25. For reference, the breakwater FB#1L* is also considered. This breakwater
is similar to FB#1L, but its considered area of interest is equal to that of FB#1. The target
area percentage is set to 90%. Figure 13 shows the representative transmission coefficients
Kt,90% for various wave frequencies. It can be seen that for regular waves, FB#1 is generally
more effective than FB#2 in attenuating incident waves when ω > 0.78 rad /s, but it is
less effective for longer waves. This is expected as the width of the breakwater has to be
larger for attenuating wave forces for longer waves. For ω > 0.78 rad /s, the difference in
the wave attenuation performance between the two breakwaters is up to about 39%. For
irregular waves with ωs > 0.78 rad /s, the difference is much smaller (less than 10%).
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irregular waves.

Figure 13 also shows that FB#1L is generally significantly more effective than FB#1 in
attenuating incident waves (even though its area of interest is 6.25 times larger). The wave
attenuation performance of the longer breakwater is even higher when the area of interest is
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equal to that of FB#1 (see the transmission coefficients for FB#1L*). The significant difference
in the wave attenuation performance between these two breakwaters of different lengths
implies that it is necessary to perform a 3D hydrodynamic analysis of finite breakwaters so
that the breakwater end effects on the wave attenuation performance is fully accounted
for. The use of a 2D analysis for a floating breakwater with finite length may result in a
non-conservative prediction (i.e., overprediction) of the wave attenuation performance.

Figure 14 shows the representative transmission coefficient Kt,90% for the heave-only
and motionless breakwaters FB#1 and FB#2. It can be seen that when the breakwaters are
fixed, FB#2, with a larger width, is more effective than FB#1 in attenuating incident waves.
Their associated representative transmission coefficients increase as the wave frequency
decreases and are generally significantly lower than the representative transmission coeffi-
cients for the heave-only FB#1 and FB#2. The difference in the representative transmission
coefficient between the motionless breakwaters and the heave-only breakwaters indicates
the necessity of considering breakwater motions in the hydrodynamic analysis. Figure 14
also shows that the representative transmission coefficients for the motionless breakwa-
ters (i.e., diffraction problems) are always smaller than unity, and the large transmission
coefficient phenomenon (Kt,90% > 1) only occurs for the heave-only breakwaters (i.e., com-
bined diffraction-radiation problems). Such a large transmission coefficient phenomenon
may result from the interaction between the diffracted waves and the radiated waves for
wave frequencies close to the heave resonant frequency of the breakwater (as discussed in
Section 3.1).
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Figure 14. Representative transmission coefficients Kt,90% in regular waves for heave-only and
motionless FB#1, FB#2.

Following the definition of significant wave height, we may alternatively define a
representative transmission coefficient as the mean of the highest third of the transmission
coefficients within the area of interest (Kt,1/3). Figure 15 shows the representative trans-
mission coefficients Kt,1/3, Kt,85%, Kt,90%, Kt,95% for FB#1, FB#2, and FB#1L. Here, Kt,85%,
Kt,95% are the representative transmission coefficients corresponding to the area percentage
of 85% and 95%, respectively. It can be seen that, for the cases considered, Kt,1/3 is close
to Kt,90% and Kt,85%, and it is smaller than Kt,95% by up to about 10% for irregular waves.
Note that the largest transmission coefficient (Kt,100%) is considered when determining
Kt,1/3. This consideration is similar to the consideration of the largest wave height in the
wave spectrum when determining the significant wave height. The consideration of the
largest wave height is necessary as there is a possibility that the largest wave height occurs
at any point within a prescribed surface area. However, for transmission coefficients, the
largest transmission coefficient may occur at only certain areas such as near the lee side
of the floating breakwater or the rear end of the area of interest, as seen in Figure 9b,c.
This may make the consideration of the largest transmission coefficient less necessary
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when compared to the consideration of the largest wave height. Thus, the definition of the
representative transmission coefficient based on the area percentage (such as Kt,90%) may
be adopted, without considering the largest transmission coefficient as in the definition
of Kt,1/3.
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4. Conclusions

This paper numerically examines the transmitted wave field and possible approaches
for quantifying the wave attenuation performance of 3D floating breakwaters in regular
and irregular waves. Numerical hydrodynamic analyses were carried out for heave-
only floating box-type breakwaters based on the classical linear hydrodynamic theory.
It is found that using the transmission coefficient at a selected single surface point for
evaluating the wave attenuation performance is unreasonable. In addition, it may be
unsafe if the mean transmission coefficient within a prescribed area of interest is used for
the evaluation of the wave attenuation performance. Instead, we propose a new index
called the representative transmission coefficient for a prescribed area of interest. Within
the area of interest, the probability of having transmission coefficients smaller than the
representative transmission coefficient is set to a desired value, e.g., 90%. The proposed
representative transmission coefficient allows one to easily compare the wave attenuation
performances of different breakwater designs. Although the illustrative examples in this
numerical study are only for straight box-type heave-only 3D floating breakwaters, the
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representative transmission coefficient can be applied to evaluate the wave attenuation
performance of any floating breakwaters.
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