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Abstract: The growing demand for the application of jacket platforms in deep water requires more
attention on the assessment of structural reliability. This paper is devoted to the dynamic reliability
analysis of jacket platforms subjected to random wave loads with the Monte-Carlo simulation (MCS),
in which a sample size of the order of magnitude of 104 to 105 for repeated time–history analyses is
required for small failure probability problems, and a duration time up to three hours needs to be
considered in the time–history analyses for a specific sea condition. To tackle the difficulty involved
in the MCS, the explicit time-domain method (ETDM) is used for the required time–history analyses
of jacket platforms, in which truncated explicit expressions of critical responses with regards to
the contributing loading terms are first established and then used for numerous repeated sample
analyses. The use of ETDM greatly enhances the computational efficiency of MCS, making it feasible
for the dynamic reliability analysis of jacket platforms under random wave loads. A jacket platform
with 11,688 degrees of freedom was analyzed for the evaluation of dynamic reliability under a given
sea condition, indicating the accuracy and efficiency of the present approach and its feasibility to
practical structures.

Keywords: jacket platform; system dynamic reliability; first-passage failure criterion; explicit time-
domain method; Monte-Carlo simulation

1. Introduction

Jacket platforms have been widely used in the exploitation of offshore oil and gas.
A reliability analysis is of great concern to the design of jacket platforms due to the
uncertainties inevitably involved in wave loads and structural resistances [1,2]. Traditional
static methods for the reliability analysis based on the design-level strength are frequently
used, such as the first-order and second-order reliability methods [3–7]. However, as wave
loads are dynamic in nature, the static analysis methods are inadequate to account for the
dynamic effects associated with jacket platforms, and the first-passage dynamic reliability
analysis is of interest in practical applications.

Over the past few decades, the power spectrum method (PSM) based on the equiv-
alent linearized Morison equation for wave drags [8,9] was frequently adopted for the
first-passage dynamic reliability analysis of jacket platforms, in which certain assumptions
regarding the probability distribution of the level-crossing number, e.g., the Poisson process
assumption or the Markov process assumption, need to be considered [10,11]. Furthermore,
such level-crossing process-based methods can only obtain an approximate solution for
component reliability, and for the system reliability problems involving different compo-
nent failure modes, only the upper and lower bounds of the failure probability can be
estimated [12,13].
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The Monte-Carlo simulation (MCS) is the most versatile method to implement the first-
passage dynamic reliability analysis of jacket platforms under random wave loads, in which
the more accurate nonlinear Morison equation can be directly taken into account for wave
drags. An accurate solution to the component reliability can be obtained without additional
assumptions regarding the probability distribution of level crossings. Furthermore, for the
system reliability problems, the partial correlation properties among different failure modes
can be automatically reflected in the process of MCS, leading to accurate results of the
system failure probability without using the upper and lower bounds formula. However,
as the failure probabilities of jacket platforms are generally set to be adequately small, large
sample sizes are required for accurate estimations of the reliability with the MCS, leading
to enormous computational effort. In particular, for the dynamic reliability analysis of
jacket platforms under a stationary sea condition, a typical duration time of wave loads
up to three hours needs to be considered, which makes it even more difficult to apply the
MCS in ocean engineering practice [14,15].

The importance sampling (IS) and subset simulation (SS) techniques are often em-
ployed to reduce the sample size of the MCS for the assessment of small failure probability.
However, the IS technique requires information about the failure region for the construction
of the sampling distribution function, which is difficult to achieve in high-dimensional
reliability problems [16–18]. On the other hand, the SS technique converts the original
problem into the estimation of a sequence of large conditional probabilities [19,20], in
which conditional samples from a specially designed Markov chain need to be generated
and the generation method has a significant influence on the solution accuracy [21]. As
an alternative strategy to enhance the efficiency of the MCS, the Constrained NewWave
model reduces the duration time of wave loads by using statistical methods to predict the
most probable highest-wave surface elevation within a short time duration of hundreds of
seconds [22–27]. Nevertheless, certain assumptions regarding the probability distribution
of the amplitude of the wave surface elevation are required, which inevitably result in
additional errors for the dynamic reliability analysis.

In this paper, the system dynamic reliability analysis of the jacket platforms sub-
jected to nonlinear random wave loads is conducted with the MCS based on the explicit
time-domain method (ETDM) [28–30]. Owing to the explicit formulation of the dynamic
responses in terms of random loads at different time instants, there is no need to repeatedly
solve the equation of motion of the structure for different sample analyses. Furthermore,
in view of the long duration time of the wave loads involved in the dynamic reliability
analysis of the jacket platforms, truncated explicit expressions of critical responses with
contributing loading terms are further adopted for the truncated sample analyses. The
use of ETDM greatly enhances the computational efficiency of the MCS for the dynamic
reliability analysis of jacket platforms under random wave loads. An engineering example
involving a jacket platform with 11,688 degrees of freedom (DOFs) is analyzed for the
dynamic reliability under a given sea condition, indicating the accuracy and efficiency of
the present approach and its feasibility in practical structures.

2. Equation of Motion

The equation of motion for a jacket platform subjected to wave loads can be ex-
pressed as

M
· ·
U(t) + C

·
U(t) + KU(t) = LF(t) (1)

where M and C are the total mass and damping matrix of the system, respectively; K is the

stiffness matrix of the structure; U(t),
·

U(t) and
· ·
U(t) are the nodal displacement, velocity

and acceleration vector of the structure, respectively; and L is the orientation matrix of the
concentrated wave loading vector F(t).

In Equation (1), the total mass matrix M consists of two parts and can be expressed as

M = M0 + MA (2)
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where M0 and MA are the structural mass matrix and the added mass matrix induced by
the accelerated sea water, respectively. The added mass matrix MA can be obtained through
the distributed added mass mA = 1

4 CAρπD2 of a cylinder in sea water, in which CA is the
added mass coefficient [31–33], and ρ and D are the water density and the diameter of the
cylinder, respectively.

The total damping matrix C in Equation (1) also consists of two parts, which can be
expressed as

C = C0 + CH (3)

where C0 and CH are the structural damping matrix and the hydrodynamic damping
matrix induced by the blockage of sea water, respectively. The hydrodynamic damping
matrix CH can be determined by towing tank tests using the small-scale model of the jacket
platform [34].

The concentrated wave loading vector F(t) in Equation (1) can be expressed as

F(t) = FI(t) + FD(t) (4)

where FI(t) and FD(t) are the concentrated inertial force and drag force vector, respec-
tively, which can be determined through the distributed inertial force vector fI(t) and the
distributed drag force vector fD(t) acting on the cylinder in sea water. According to the
nonlinear Morison equation [35], they can be expressed as

fI(t) =


fIx
fIy
fIz

 = KM


·
vNx
·
vNy
·
vNz

, fD(t) =


fDx
fDy
fDz

 = KD|vN|


vNx
vNy
vNz

 (5)

in which KM = 1
4 CMρπD2 and KD = 1

2 CDρD, with CM and CD being the inertia and drag

coefficient, respectively, and vN =
[
vNx vNy vNz

]T and
.
v N =

[ ·
vNx

·
vNy

·
vNz

]T
are the

fluid–particle velocity and acceleration vector normal to the cylinder, respectively, with the
superscript T denoting the transposition of matrix, and |vN| =

√
v2

Nx + v2
Ny + v2

Nz.

The distributed inertial force vector fI(t) and the distributed drag force vector fD(t)
in Equation (5) are illustrated in Figure 1, in which the x-direction refers to the direction
of the wave propagation, which is supposed to be the same as the direction of the in-line
steady current, and the z-direction refers to the vertical direction with the origin O located
at the still water level. P(x, y, z) represents an arbitrary point on a cylinder member C1C2
with inclined angles with respect to the x-, y- and z-directions denoted as αx, αy and αz,
respectively. For clarity, the current–particle velocity vc along the x-direction, the wave–
particle velocities vx and vz and the wave–particle accelerations

·
vx and

·
vz along the x-

and z-directions for a two-dimensional swell model are also shown in Figure 1. Then, the
fluid–particle velocity vector normal to the cylinder, vN, in Equation (5) can be obtained as

vN =


vNx
vNy
vNz

 =

 1− cos2 αx − cos αx cos αz
− cos αx cos αy − cos αy cos αz
− cos αx cos αz 1− cos2 αz

{ vc + vx
vz

}
(6)

It can be seen from Equations (4)–(6) that the nonlinear wave loads can be determined
using the current–particle velocity vc, the wave–particle velocities vx and vz and the wave–
particle accelerations

·
vx and

·
vz. It is worth noting that, in this study, the influence of the

current–particle velocity has been taken into consideration in the wave loads.
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Figure 1. Distributed wave loads and fluid–particle velocities and accelerations. 
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Figure 1. Distributed wave loads and fluid–particle velocities and accelerations.

3. Explicit Formulation of Structural Responses
3.1. Explicit Expressions of Structural Responses

Define the state vector of the jacket platform as V(t) =

[
U(t)T ·

U(t)T
]T

. Solve the

equation of motion shown in Equation (1) with a specific numerical integration scheme,
in which, without loss of generality, assume V0 = V(0) = 0 and F0 = F(0) = 0. Then, the
explicit expression of the state vector can be derived as [30]

Vi = Ai,1F1 + Ai,2F2 + · · ·+ Ai,i−1Fi−1 + Ai,iFi (i = 1, 2, · · · , n) (7)

where n denotes the number of time steps for the time–history analysis; Vi = V(ti) and
Fj = F

(
tj
)
(1 ≤ j ≤ i ≤ n), in which ti = i∆t and tj = j∆t, with ∆t being the time step; and

Ai,j(1 ≤ j ≤ i ≤ n) are the coefficient matrices expressed in the closed forms as{
A1,1 = Q2 , A2,1 = TQ2 + Q1 , Ai,1 = TAi−1,1 (3 ≤ i ≤ n)
Ai,j = Ai−1,j−1 (2 ≤ j ≤ i ≤ n)

(8)

in which T, Q1 and Q2 can be derived through the Newmark-β integration scheme and
expressed as

T =

[
H11 H12
H21 H22

]
, Q1 =

[
R1
R3

]
L , Q2 =

[
R2
R4

]
L

H11 = K̂−1(S1 − S3M−1K
)

, H12 = K̂−1(S2 − S3M−1C
)

H21 = a3(H11 − I) + a5M−1K , H22 = a3H12 − a4I + a5M−1C
R1 = K̂−1S3M−1 , R2 = K̂−1 , R3 = a3R1 − a5M−1 , R4 = a3R2
K̂ = K + a0M + a3C
S1 = a0M + a3C , S2 = a1M + a4C , S3 = a2M + a5C
a0 = 1

β∆t2 , a1 = 1
β∆t , a2 = 1

2β − 1 , a3 = γ
β∆t , a4 = γ

β − 1 , a5 = ∆t
2

(
γ
β − 2

)
(9)

where I denotes the unit matrix, and β and γ are the two parameters associated with
integration accuracy and stability. In this paper, β = 0.25 and γ = 0.50 are adopted for the
unconditionally stable integration scheme.

From the point of view of engineering applications, only certain critical responses are
required for the system dynamic reliability analysis of jacket platforms. Suppose that s(t)
is the response vector comprised of the critical responses. With the explicit formulation
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of Vi shown in Equation (7), the explicit expression of the critical response vector can be
obtained as

si = φ Vi = ai,1F1 + ai,2F2 + · · ·+ ai,i−1Fi−1 + ai,iFi (1 ≤ i ≤ n) (10)

where si = s(ti), φ is the response transfer matrix and the coefficient matrices ai,j for si can
be obtained from Ai,j as

ai,j = φAi,j (1 ≤ j ≤ i ≤ n) (11)

Note that, when the specific critical response in s represents the displacement or
velocity of a certain DOF, the corresponding row in φ consists of 0 and 1, and when the
specific critical response in s represents an element force component, the corresponding
row in φ contains the entries in element force–displacement matrix.

The substitution of Equation (8) into Equation (11) yields{
ai,1 = φAi,1 (1 ≤ i ≤ n)
ai,j = ai−1,j−1 (2 ≤ j ≤ i ≤ n)

(12)

It can be observed from the above equation that a recursive relationship exists among
the coefficient matrices ai,j(1 ≤ j ≤ i ≤ n).

3.2. Truncated Explicit Expressions of Structural Responses

It can be seen from Equation (10) that the coefficient matrix ai,m represents the influence
of Fm at time tm on the critical response vector si at time ti. From the physical point of view,
for a damped structure, Fm will exert little influence on si when tm is sufficiently far away
from ti, leading to the norm ‖ai,m‖ approaching zero. Therefore, to further enhance the
computational efficiency, Equation (10) can be truncated as

si = ai,m+1Fm+1 + ai,m+2Fm+2 + · · ·+ ai,i−1Fi−1 + ai,iFi (1 ≤ i ≤ n) (13)

when
‖ai,m‖
‖ai,i‖

≤ ε (14)

where ε denotes the truncation index and can be taken as a small value, e.g., ε = 10−3.
Obviously, only a number of (i—m) contributing loading terms are kept in Equation (13).

Note that, if Equation (14) cannot be satisfied until m = 0, with ‖ai,0‖ defined as 0, it
means that Equation (10) cannot be truncated for the current time instant, and in this case,
Equation (13) actually turns back into Equation (10).

Using the recursive relationship shown in Equation (12), one can rewrite Equations (13)
and (14) in the following forms:

si = ai−m,1Fm+1 + ai−m−1,1Fm+2 + · · ·+ a2,1Fi−1 + a1,1Fi (1 ≤ i ≤ n) (15)

when
‖ai−m+1,1‖
‖a1,1‖

≤ ε (16)

It should be noted that, as compared with the original explicit formulation of the
critical responses shown in Equation (10), the explicit formulation shown in Equation (15)
represents the truncated calculations of the critical responses, which is particularly suitable
for the response time–history analysis of the complex jacket platforms in consideration of a
long duration time of random wave loads up to three hours for a specific sea condition.
Furthermore, it can be observed from Equation (15) that, among the coefficient matrices
shown in Equation (12), only a1,1, a2,1, · · · , ai−m−1,1 and ai−m,1 need to be stored for the
truncated formulation of the critical structural responses.
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4. System Reliability Analysis with MCS Based on ETDM
4.1. Simulation of Wave–Particle Velocities and Accelerations

In the MCS, the wave–particle velocities and accelerations, which are generally mod-
eled as zero-mean stationary Gaussian random processes, need to be generated for deter-
mination of the drag and inertial forces via Equations (5) and (6). Within the framework of
linear random wave theory [36], the wave–particle velocities and accelerations shown in
Figure 1 can be simulated using the spectral representation method [37,38], which can be
expressed as follows:

vx(x, z, t) =
nω

∑
i=1

√
2Svx (z, ωi)∆ωi · cos(κix−ωit + εi) (17)

vz(x, z, t) =
nω

∑
i=1

√
2Svz(z, ωi)∆ωi · sin(κix−ωit + εi) (18)

·
vx(x, z, t) =

nω

∑
i=1

√
2S ·

vx
(z, ωi)∆ωi · sin(κix−ωit + εi) (19)

·
vz(x, z, t) = −

nω

∑
i=1

√
2S ·

vz
(z, ωi)∆ωi · cos(κix−ωit + εi) (20)

where Svx (z, ω) and Svz(z, ω) are the power spectrum density functions of the wave–
particle velocity along the x- and z-directions, respectively; S .

vx
(z, ω) and S .

vz
(z, ω) are

the power spectrum density functions of the wave–particle acceleration along the x- and
z-directions, respectively; nω is the number of representative frequencies; ωi and ∆ωi
(i = 1, 2, · · · , nω) are the ith representative frequency and the corresponding frequency
interval, respectively; κi is the wave number of the ith cosine wave; and εi is the random
phase angle of the ith cosine wave with uniform distribution in [0, 2π].

The above power spectrum density functions of wave–particle velocities and accelera-
tions can be expressed as

Svx (z, ω) = H2
z (z, ω)Sη(ω) (21)

Svz(z, ω) = H′2z(z, ω)Sη(ω) (22)

S ·
vx
(z, ω) = ω2H2

z (z, ω)Sη(ω) (23)

S ·
vz
(z, ω) = ω2H′2z(z, ω)Sη(ω) (24)

where Sη(ω) is the power spectrum density function of the wave surface elevation, and
Hz(z, ω) and H′z(z, ω) are the depth-dependent functions, expressed as

Hz(z, ω) =
ω cosh[κ(z + h)]

sinh(κh)
(25)

H′z(z, ω) =
ωsinh[κ(z + h)]

sinh(κh)
(26)

where h is the water depth of the sea site, and κ and ω should satisfy the following
dispersion relationship:

ω2 = gκ · tanh(κh) (27)

where g is the gravitational acceleration.

4.2. System Limit-State Function

For the system dynamic reliability evaluation of the jacket platforms subjected to
random wave loads, the failure event is generally defined as the event that the von Mises
stress of any structural member exceeds the yielding stress of the steel material [1,39].
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Therefore, the system reliability of the jacket platforms can be modeled as a series system
reliability problem. Assuming that the system failure mode consists of nf component failure
modes, the system limit-state function can be defined as

Z(td) = min
q=1,2,··· ,nf

Zq(td) (28)

where td is the duration time of random loads, and Zq(td) (1 ≤ q ≤ nf) denotes the qth
component limit-state function.

Based on the first-passage failure criterion, the component limit-state function can be
defined as

Zq(td) =
fy, q

max
0<t≤td

σq(t)
− 1 (1 ≤ q ≤ nf) (29)

where σq(t) (1 ≤ q ≤ nf) is the von Mises stress that controls the qth component failure
mode, and fy, q is the yielding stress of the steel material for the qth component.

The substitution of Equation (29) into Equation (28) yields the system limit-state
function as

Z(td) = min
1≤q≤nf

 fy

max
0<t≤td

σq(t)
− 1

 (30)

The above system limit-state function corresponds to the reliability problem of series
systems. For parallel systems or series–parallel-coupled systems, the system limit-state
function can be found in reference [40].

4.3. ETDM-Based MCS for System Reliability Analysis

To enhance the efficiency of the MCS, the truncated ETDM with Equation (15) is
incorporated into MCS for repetitive time–history analyses of the jacket platforms subjected
to wave loads. This hybrid approach is termed as ETDM-based MCS, and the solution
procedure for the system dynamic reliability analysis of the jacket platforms using this
approach is summarized as follows:

(1) Determine the system failure event for the jacket platforms subjected to random
wave loads and the corresponding system limit-state function Z(td) by Equation (30), in
which the critical response vector s can be determined.

(2) Calculate the matrices T, Q1 and Q2 by Equation (9), and according to the selected
critical response vector s, determine the coefficient matrices a1,1, a2,1, · · · , ai−m−1,1, ai−m,1
in Equation (15) by Equations (8) and (12).

(3) Generate a sufficient number of samples of wave–particle velocities and accelera-
tions by Equations (17)–(20) and determine the corresponding samples of the nonlinear
wave loading vector Fk(t) (k = 1, 2, · · · , M) by Equations (4)–(6), in which M denotes the
number of samples.

(4) For the kth sample of the wave loading vector Fk(t)(1 ≤ k ≤ M), calculate the
critical stress vector sk

i (1 ≤ i ≤ n) by Equation (15), and then, determine the corresponding
von Mises stresses for the critical sections of the structural members.

(5) Determine the value of the system limit-state function Zk(td) by Equation (30), and
check whether Zk(td) < 0. If yes, a first-passage failure event occurs. Assume that a total
number of Mf failure events occur among the M sample cases. Then, when M is sufficiently
large, the system failure probability can be obtained as Pf = Mf/M.

It can be seen from Step (2) that the coefficient matrices required in Equation (15) for
the explicit formulation of the structural responses need to be calculated just once and can
be used for repetitive time–history analyses corresponding to all the sample cases involved
in the MCS. This feature leads to a significant reduction in the computational cost compared
with the traditional MCS, in which the equation of motion shown in Equation (1) needs to
be solved for each sample case. In addition to this, by using Equation (15), the truncated
calculations of the critical responses can be easily conducted, which further enhances the
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computational efficiency of the MCS for the dynamic reliability analysis of the complex
jacket platforms in consideration of the three-hour storm condition.

5. Engineering Example
5.1. Jacket Platform and Sea Condition

In this section, the dynamic reliability evaluation of a steel jacket platform subjected
to random wave loads for a specific sea condition is conducted with ETDM-based MCS.
The height of the jacket platform is 86.80 m, and the depth of water is 62.00 m. The jacket
platform is modeled with three-dimensional beam elements, and the finite element (FE)
model is shown in Figure 2, which consists of 2303 beam elements and 1964 nodes, leading
to a total number of 11,688 DOFs. The structural and hydrodynamic damping ratios are
taken as 2% and 8%, respectively [34].
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The power spectrum density function of the wave surface elevation is assumed to be
the two-parameter Pierson–Moskowitz wave spectrum, expressed as [15]

Sη(ω) =
5

16
ω4

P
ω5 H2

Se exp
[
−5

4

(ωP

ω

)4
]

(31)

HSe = [1.0 + 0.5 exp(−h/25)]HS (32)

where the significant wave height HS and the spectral peak frequency ωP of the wave
surface elevation are taken as 11.50 m and 0.44 rad/s, respectively, for a 100-year return
period; HSe denotes the effective significant wave height based on the modified Wheeler
stretching method in consideration of the influence of the wave loads above the still water
level [41]; and h is the water depth of the sea site.

The corresponding power spectrum density functions of the wave–particle velocities
and accelerations can be obtained through Equations (21)–(24). The wave–particle velocities
and accelerations are then generated with the spectral representation method based on
Equations (17)–(20), in which 935 nonuniformly distributed representative frequencies [42]
are considered in the range of 0.26 to 2.80 rad/s, with the minimum frequency interval being
5.15 × 10−4 rad/s for the duration time of td = 10,800 s (3 h), according to reference [15].
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The generated samples of wave–particle velocities and accelerations at the still water
level (z = 0) are depicted in Figures 3 and 4, respectively. The simulated spectra of the
wave–particle velocities and accelerations at z = 0 can be obtained based on 1000 samples
of wave–particle velocities and accelerations, which are presented in Figures 5 and 6.
For comparison, the target spectra of the wave–particle velocities and accelerations at
z = 0, determined by Equations (21)–(24) and Equations (31) and (32), are also depicted in
Figures 5 and 6. It can be observed from Figures 5 and 6 that the simulated spectra are in
good agreement with the target spectra.
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In addition to the wave–particle velocities, the current–particle velocities are also
required in Equation (6), which can be determined based on the current profile, given
as [15]

vc(z) = vc,tide(0)
(

h + z
h

)1/7
+

1
2

vc,wind(0)
[

1 + sgn
(

50 + z
50

)]
(33)

where vc,tide(0) = 0.514 m/s and vc,wind(0) = 0.50 m/s are the tide current velocity and
the wind-generated current velocity at the still water level (z = 0), respectively; and sgn(·)
denotes the sign function.

To obtain the wave loads from the fluid–particle velocities and accelerations, the
hydrodynamic coefficients involved in Equation (5) are set as CM = 2.00 and CD = 1.30 [34].
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Besides, to obtain the added mass matrix in Equation (2), the added mass coefficient is
taken as CA = CM − 1 = 1.00 [34].

5.2. Three-Hour-History Analysis of Jacket Platform with ETDM

Under the action of the three-hour wave–particle velocities and accelerations, among
which, the samples for z = 0 are shown in Figures 3 and 4, the nonlinear wave loads for
the jacket platform can be obtained by Equations (4)–(6), in which the influence of the
current–particle velocities determined by Equation (33) is also included. The time–history
analysis of the critical responses of the jacket platform is carried out using the truncated
ETDM with Equation (15). For comparison, two truncation indices, ε = 5 × 10−3 and
5 × 10−2, are adopted in the truncated ETDM. To validate the accuracy of the present
approach, the direct Newmark-β method is also used for the time–history analysis of the
jacket platform subjected to the same wave loads. In the above analysis, the duration time
of the wave loads is taken to be td = 10,800 s (3 h) for the specified sea condition, and the
time step is taken as ∆t = 0.20 s, leading to a total of 54,000 time steps.

For critical sections B and D of the battered legs of the jacket platform, shown in
Figure 2, the time histories of the normal stresses and shear stresses are depicted in
Figures 7 and 8, respectively, from which it can be seen that the results obtained by the
truncated ETDM with ε = 5 × 10−3 are in good agreement with those obtained by the
Newmark-β method, indicating the accuracy of the present approach. However, cer-
tain discrepancies can be observed for the results obtained by the truncated ETDM with
ε = 5 × 10−2, which means that the truncation index ε = 5 × 10−2 chosen is larger than
required for the truncated ETDM.
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The computation times for the truncated ETDM and the Newmark-β method are
shown in Table 1, from which it can be seen that the truncated ETDM has a much higher
efficiency than the direct Newmark-β method. It should be noted that, for the truncated
ETDM with ε = 5 × 10−3, according to Equation (16), at most, only 92 contributing loading
terms need to be considered in Equation (15) for the calculations of the responses at
different time instants from t1 = 0.2 s to t54,000 = 10,800 s, while, for the nontruncated ETDM,
the numbers of the terms in Equation (10) range from 1 to 54,000, corresponding to the
responses at time t1 to t54,000. This indicates that a large number of terms were omitted in
Equation (15) while the high accuracy of the method remained, which is the major reason
for the high computational efficiency observed in the truncated ETDM.

Table 1. Computation time for different methods. ETDM: explicit time-domain method.

Method Elapsed Time (s)

Truncated ETDM 56.45
Newmark-β method 2980

Note: All the above computations were done on a PC with an Intel(R) Xeon(R) Platinum 8160 CPU with a
2.10-GHz processor and 256-GB RAM.
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5.3. Dynamic Reliability Analysis of Jacket Platform with ETDM-Based MCS

The ETDM-based MCS presented in Section 4.3 was used to conduct the system
dynamic reliability analysis of the jacket platform under nonlinear random wave loads. It
was found that large von Mises stresses occurred at sections A, B, C and D of the battered
legs, which are shown in Figure 2. Therefore, for this example, it was supposed that failure
occurred once the von Mises stress of any one of the above four sections exceeded the
yielding stress of the steel material, which was taken as fy = 235 MPa for sections A and C
and fy = 350 MPa for sections B and D.

Under the three-hour sea condition described in Section 5.1, different sample sizes of
the MCS were first investigated to obtain the convergent system failure probability of the
structure. The system failure probabilities obtained with different sample sizes are shown
in Figure 9. It can be observed from Figure 9 that the convergent result Pf = 0.37% can be
achieved with a sample size of M = 30,000, which satisfies the well-recognized condition
M ≥ 100/Pf [43]. In what follows, similar investigations will be conducted to determine
the sample sizes for different levels of failure probabilities.
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Figure 9. System failure probabilities with different sample sizes (td = 3 h).

To investigate the influence of the duration time on the reliability analysis, the sys-
tem failure probabilities Pf with different duration times are evaluated and shown in
Figure 10, from which it can be seen that the system failure probability increases with
the increase of the duration time. Therefore, for a typical three-hour sea condition, it is
necessary to consider a duration time of td= 3 h for the dynamic reliability analysis of the
jacket platforms.
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In addition to the system failure probability Pf, the component failure probabilities
Pf,A to Pf,D, corresponding to critical sections A to D, are also depicted in Figure 10, from
which it can be seen that the component failure probabilities are different from each other
and are smaller than the system failure probability. This indicates that the component
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reliability analysis will underestimate the failure probability level of the jacket platform,
and therefore, the system reliability analysis is necessary for the reasonable evaluation of
the failure probability.

In this example, for the system dynamic reliability analysis of the jacket platform
subjected to the specified three-hour sea condition, the computation time of the ETDM-
based MCS is presented in Table 2. The present method first takes 56 s to calculate the
coefficient matrices for the truncated explicit expressions of the critical responses shown
in Equation (15). Then, based on Equation (15), it takes 13,500 s to carry out a total of
30,000 sample analyses in the MCS, leading to an extremely short computation time of
0.45 s for each sample analysis on average. The total computation time of the present
approach is 13,556 s (approximately 3.8 h), which can be accepted beyond question for such
a practical engineering problem. Nevertheless, if we use the direct Newmark-β method
for the time–history analysis, it will take 2980 s for a single sample analysis, as shown in
Table 1, and obviously, the method can hardly be used in the MCS for a sample size of
M = 30,000.

Table 2. Computation time of the ETDM-based Monte-Carlo simulation (MCS).

Calculation of Coefficient
Matrices in Equation (15)

(s)

MCS Based on Equation (15)
(M = 30,000)

(s)

Total
(s)

56 13,500 13,556

Note: All the above computations were done on a PC with an Intel(R) Xeon(R) Platinum 8160 CPU with a
2.10-GHz processor and 256-GB RAM.

6. Conclusions

An efficient ETDM-based MCS was developed for the evaluation of the first-passage
system dynamic reliability of jacket platforms subjected to a specific three-hour sea con-
dition. To avoid repeatedly solving the equation of motion for numerous time–history
analyses of the jacket platform under different samples of wave loads, the explicit formu-
lation of the structural state vector is first established with regards to the wave loads at
different time instants. To further enhance the computational efficiency for the time–history
analysis with a three-hour duration time of wave loads, truncated explicit expressions
of critical responses with a very limited number of contributing loading terms were con-
structed, which could then be used throughout the whole process of MCS. A jacket platform
with 11,688 DOFs was used as an example for the dynamic reliability analysis under a given
three-hour sea state, which indicated the accuracy and efficiency of the present approach
and its feasibility to practical engineering problems.
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