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Abstract: Oceanic islands harbor unique yet fragile marine ecosystems that require evidence-based
environmental management. Among these islands, the Galapagos archipelago is well known for
its fish diversity, but the factors that structure communities within and between its islands remain
poorly understood. In this study, water quality, physical habitats and geographical distance were
assessed as potential predictors for the diversity and structure of fish assemblages. Differences in the
structure of fish assemblages of the two studied islands (Santa Cruz and Floreana) were most likely
driven by temperature and nutrient concentrations. In the relatively highly populated island Santa
Cruz, the structure of fish assemblages was more affected by water conditions than physical habitats
while the contrary was true for the more pristine area of Floreana. A wide variety of species with
different geographical origins were distributed over the different islands, which indicates that most
fish species are able to reach the islands of the archipelago. However, temperature gradients and
elevated nutrient levels cause large differences in the structure of local fish assemblages. In addition,
in Santa Cruz nutrient concentrations were negatively correlated with α diversity. Since pollution is a
clear pressure on the fish assemblages of oceanic islands, environmental management of the coastal
areas is of paramount importance.

Keywords: coastal ecosystem; video monitoring; Tropical Eastern Pacific fish assemblage; Galapagos;
water quality; anthropogenic pressure
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1. Introduction

Due to their isolated position, oceanic islands harbor some of the last near-pristine
marine ecosystems and associated fish assemblages [1,2]. Anthropogenic pressures, such
as fishery, pollution, and the introduction of invasive species, threaten, however, many
of these already fragile marine communities, and sound evidence-based management is
required to protect them from extinction [3,4]. Among these oceanic islands, the Galapagos
archipelago is key due to its exceptionally rich biodiversity and its role as stepping stone
between the Tropical Eastern and Central Pacific [5,6]. Although the rich biodiversity of the
Galapagos archipelago has been attributed to it being located at the intersection of multiple
warm and cold ocean currents [7], it remains unclear what the drivers behind the diversity
and structure of the local fish assemblages are.

The observed differences in the marine communities seem to coincide with sharp
differences in environmental conditions, which have given rise to the delineation of mul-
tiple bio-geographical regions [8,9]. The strong regional divisions in fish assemblages
observed by Edgar et al. (2004) were considered to reflect both the local environmental con-
ditions and connectivity of fish larvae with external source regions, such as the Indo-Pacific,
Panamic and Peruvian region [5]. However, at the same time, the high species richness on
the far-northern isolated islands of Wolf and Darwin suggested high immigration rates
and a strong connectivity of fish assemblages between the islands [5]. In the case of high
inter-island connectivity, it is expected that fish are able to reach the different available
habitats and that their prevalence is mainly determined by local environmental conditions,
rather than by dispersal limitation. Based on differences in temperature, Harris (1969)
identified five potential bio-geographical regions in the archipelago [8], but these were
significantly different from the regions proposed by Edgar et al. (2004), which were based
on differences in the structure of fish and macroinvertebrate assemblages [5]. According
to Edgar et al. (2004), there was no sound evidence to subdivide the area east of Isabela
and south of Marchena in the three zones suggested by Harris (1969) [5,8]. Since the
within-island biological variability of this Central-Southeastern zone was larger than the
between-island biological variability [5], local differences in environmental conditions, e.g.,
temperature and physical habitat characteristics, may indeed have been crucial to shape the
observed fish assemblages. Nevertheless, studies that assess the effect of local environmen-
tal conditions have been few. Jennings et al. (1994) and Edgar et al. (2004) provided strong
evidence for differences in fish assemblages, but they were unable to identify any relation-
ships with environmental conditions due to lacking data [5,9]. Llerena-Martillo et al. (2018)
combined visual census data with environmental measurements to study fish assemblages
in mangrove ecosystems in Santa Cruz, but the number of sites and number of variables
remained limited [10].

Besides natural stressors, anthropogenic pressures may also affect fish assemblages.
During the last three decades, the Galapagos archipelago has been witnessing an increase
in population, tourism, and waste production at an annual rate of 4.08, 6.71, and 4.02%,
respectively, but good waste management procedures have not been evolving at the same
pace [11–14]. Since pollution has been identified as a major threat to marine ecosystems [15],
understanding the drivers behind the structure of fish assemblages in the Galapagos
archipelago is crucial to evaluate and/or propose conservation guidelines [16].

The aim of this study was to identify the factors responsible for patterns in diversity
and the structure of fish assemblages on the rocky shores of the Central-Southeastern zone
of the Galapagos archipelago. To this end, the coastal areas of two cities, significantly
different in size, on two different islands were assessed using underwater video transects.
Difficulties in separating the effects of the potential drivers, i.e., dispersal limitation, water
conditions and physical habitats, were partially circumvented by applying a multi-scale
approach [17]. First, dispersal limitation can prevent fish to track and respond to envi-
ronmental differences and, therefore, can affect ecologically processes at a larger, more
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regional scale (>100 km) than environmental preferences [18–20]. Second, the wide range
of water conditions in the archipelago, which are the result of distinct oceanic currents
and urbanization, are more likely to affect communities at a more intermediate scale
(0.1–100 km) [16,21,22]. Finally, the composition of physical habitats (e.g., sand and bare
rock) seems to mainly vary at a relatively fine scale [23], causing it to potentially affect com-
munities at a more local scale (1–100 m). A hierarchical multi-scale repeated-observations
sampling design was used to collect biological data in the Central-Southeastern zone of the
archipelago. These data were used to compare fish assemblages between islands, between
locations and within locations.

Given the expected differences in variation and magnitude of anthropogenic pressures
and environmental conditions between and within the islands of Santa Cruz and Floreana,
we hypothesize that fish assemblage structure and diversity will differ accordingly and will
be affected by different factors. We hypothesize that, in the highly populated bay of Santa
Cruz, local anthropogenic pressures induce pronounced gradients in water conditions,
which affect the structure and diversity of the fish assemblages. Fish diversity is expected
to be negatively affected by human-induced changes of the water quality. In the sparsely
populated bay of Floreana, we expect less pronounced gradients in water conditions and,
therefore, a stronger effect of the composition of the physical habitat.

Although the main aim of this study was to determine the main factors that steer the
fish assemblages of the Galapagos, the obtained results are also of direct use for the many
other tropical oceanic islands that face increasing anthropogenic pressures.

2. Material and Methods
2.1. Data Collection and Sampling Design

Data collection included 540 observations distributed evenly among 10 locations on
two islands. Two cities on two different islands within the Central-Southeastern zone of
the Galapagos archipelago, which were expected to have significantly different levels of
anthropogenic pollution, were selected: Puerto Ayora (Academy Bay) on Santa Cruz island
and Puerto Velazco Ibarra on Floreana island. Puerto Velazco Ibarra is the smallest city
of the archipelago with 111 inhabitants, while Puerto Ayora is the largest city with 11,822
inhabitants and the highest number of visiting tourists, according to a survey of 2015 [24].
Per city, five locations with rocky habitats were chosen along the coast to use fixed video
transects to study fish assemblages. Video transects were chosen over traditional visual
census techniques, as the former allows us to (i) store video data for later analysis, (ii)
reduce the amount of time spent on field work and (iii) improve the standardization of data
collection [25,26]. The fish data collection was based on a standard operation procedure
developed by the Aquatic Ecology Research Group of Ghent University (see further). On
each location, three transects with a length of 50 m each were laid out using ropes. For fish
to be included, they had be recorded within 2.5 m of either side of the transect line (area =
50 × 5 = 250 m2). Observers were trained to recognize whether fish had to be considered,
depending on the estimated distance from the rope. All transects were monitored at
a constant depth of 1.5 m, parallel to the coastline, and only locations with a limited
exposure to waves were selected to guarantee the safety of the observers and to avoid
predominant effects of wave exposure on the structure of fish assemblages. All transects
were approximately 20 m apart. In practice, this meant that transects were placed next
to each other along the coastline. To account for observer bias and sampling variability,
each of these transects was recorded six consecutive times with single GoPro cameras
(GoPro Hero 5 Black, 1080p, 60 fps, wide FOV) by three different observers equipped with
a mask and snorkel. Hence, ten locations × three transects × three observers × six repeats
yielded 540 observations (18 per transect) (Figure S1.1). In summary, two islands, with five
locations each, were studied. In each location, three transects were each covered six times
by each of the three observers.

The observers covered the transects in a browsing fashion, similar to the S-type
transects introduced by Pelletier et al. (2011) [27]. Observers browse through the transect
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at a fixed speed, but varying angle and can zoom in if needed to find individuals hiding
in crevices. This S-transect was chosen over the more standarized I-transect with fixed
angle and without zooming because the former had been found to enable detection of
more individuals and species compared to the latter [27]. Transects were placed during
low tide and monitored during flood tide of consecutive days from the 19 until the 31 of
August 2017. The duration of each observation was approximately 4.6 min (±0.7 min).
The time between each observation was at least one minute and subsequent observations
were found independent in terms of diversity and assemblage structure (Section S2). Per
day, one location was monitored. The analysis of the videos included species identification
and an estimation of the number of individuals per species, determined as MaxCount, i.e.,
the total number of individuals per species per observation. The videos were analyzed
once by one out of two video analysts; videos were assigned randomly to these analysts to
reduce inter-observer bias [28].

Halfway the biological monitoring of a specific location, physical-chemical conditions
were determined once using in situ measurements. In situ measurements were based
on standard operation procedures developed in the Aquatic Ecology Research Group of
Ghent University: Water temperature, acidity (pH), electrical conductivity (EC), dissolved
oxygen (DO) and chlorophyll were measured with handheld multiprobes (WTW for tem-
perature (◦C), pH (-) and DO concentration (mg L−1); Aquaread (AP5000 version 4.07)
for EC (mS cm−1), and chlorophyll (µg L−1)). Due to unstable measurements, chloro-
phyll concentrations were only used to compare average values of both islands and were
not considered as a parameter in the constructed models. Nutrient concentrations of ni-
trite (mg NO−2 -N L−1), nitrate (mg NO−3 -N L−1), ammonium (mg NH+

4 -N L−1), sulfate
(mg SO2−

4 L−1), phosphate (mg PO3−
4 -P L−1), total phosphorus (total P) (mg P L−1), and to-

tal nitrogen (total N) (mg N L−1) were determined spectrophotometrically (ThermoFisher
Genesys 10S UV-VIS) using Merck kits. Measurements that were below the detection
limit, were given the value of the detection limit. This was only the case for ammonium
concentrations in Floreana and at location B10 in Santa Cruz, which were given a value of
0.01 mg NH+

4 -N L−1. To assess how the anthropogenic influences differed between islands,
in five locations in Floreana and three locations in Santa Cruz, the presence/absence of
coliforms and Escherichia coli was determined as a measure of fecal contamination. To
assess the underlying causes of patterns in water quality (i.e., variability in natural con-
ditions or variability in anthropogenic pollution) satellite imagery and simulations from
remote sensing based models were used. Results suggested that Floreana has lower levels
of anthropogenic pollution but more clear signs of natural upwelling than Santa Cruz.
More information is provided in Section S3.

For each transect, the percentage cover of different habitat classes (i.e., bare rock,
rock with sediment deposition, vegetated rock and sand) was determined within 2.5 m
of each side of the rope through visual inspection of the video data. Physical habitats
are often complex and difficult to classify. Therefore, each transect was covered multiple
times to assess how closely fish assemblages were associated with a specific (series of)
micro-habitat(s). Since the scale and the intensity of the biological and environmental
sampling differed, the biological data was aggregated to the level of transects (30 transects,
i.e., 2 islands × 5 locations × 3 transects) to fit the scale of the abiotic data before applying
constrained ordination. In addition, because of the spatially nested nature of the data,
the geographical distances between sampling units (i.e., transects) were at significantly
different scales (i.e., between islands, between locations and between transects). Therefore,
similarities between nearby locations and transects may be the result of the spatial structur-
ing of species distributions rather than local environmental conditions [29–31]. This spatial
structuring, which manifests itself in the data as spatial auto-correlation, was accounted
for by explicitly integrating the geographical distance between the sampling units in the
different models [31].

To aggregate the biological data within transects the median of the 18 observations
per transect was chosen over the mean or maximum. Since fish tend to be very mobile,
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occasional observations of different species moving between locations, may yield question-
able results. Using the median rather than the mean accounts for this bias, though it comes
at a cost, since individuals of cryptic, rare, and easily scared species will also be less likely
to be observed during multiple observations.

2.2. Data Analysis

All analyses were performed using the R software [32] and the Primer v6 multivariate
statistics package [33] with PERMANOVA add-on [34]. In Figure S1.2, the data analysis
roadmap is presented.

2.2.1. Spatial Variability of Water Conditions and Habitats

In this study, geographical distance, i.e., normalized longitude (X) and latitude (Y),
was used to account for spatial auto-correlation and dispersal. The distances between the
locations within one island were negligible compared to the distance between the two
islands. Despite the aim of selecting locations at similar distances of each other, due to
logistic constraints this was not always possible. In Floreana, the locations were more or
less at equal distances from each other along the coast, but this was not the case for Santa
Cruz, where locations were positioned within a bay, spatially clustering locations B2 and
B3, as well as B9 and B10, while B6 was more isolated (Figure 1). The average distance
between locations for Santa Cruz and Floreana was 734 ± 544 m (SD) and 525 ± 397 m
(SD), respectively.

The DISTance-based Linear Model (DISTLM) (see further) does not make any assump-
tions about the distributions of the covariables, but these distributions should nevertheless
be appropriate for linear modelling [34,35]. Therefore, to assess whether distributions of
covariables were not skewed or contained outliers, draftsman plots were constructed and
analyzed. To deal with the detected skewness and outliers of some of the covariables, these
were transformed before normalization (subtraction of mean and division by standard devi-
ation). Nitrite, nitrate, ammonium, total N, total P, phosphate, and DO concentration were
log(V) transformed and sulfate concentration was -log(2-V) transformed. Similarly, the
cover of different habitat classes was often left or right skewed. Therefore, the percentage
cover of the physical habitats was arcsine square root transformed prior to conducting the
analyses [36]. The resulting histograms and residual plots indicated a better fit compared
to the case of no transformation (tested for all covariables) or logit transformation (tested
for the cover of the habitat classes).

Principal Component Analysis (PCA) was used to visually assess any potential group-
ing of the water variables and the physical habitats. Tests of homogeneity of dispersions
(PERMDISP) based on Euclidean resemblance matrices of the physical habitats and water
conditions allowed to determine and compare the variability of both series of environmen-
tal variables in both islands. Additional PERmutational Multivariate dissimilarity-based
ANOVA (PERMANOVA) analyses allowed to assess whether physical habitats and water
conditions were significantly different between islands and locations (nested in islands).
The PERMANOVA analyses were done using 105 unrestricted permutations of the raw
data. To compare the physical habitats of the islands, locations were considered as a ran-
dom factor. To compare the physical habitats of the locations, one analysis was performed
for both islands together. If both PERMANOVA and PERMDISP tests were found to be
significant, additional Canonical Analysis of Principal coordinates (CAP) tests were used
to assess the distinctiveness of the considered groups.
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A

B

C

D

Isabella

Santa Cruz

Floreana

San Cristobal

Figure 1. Map of the study area. (A) South-American continent with depiction of the Galapagos
archipelago. (B) Galapagos archipelago with depiction of the two studied islands. (C) The city Puerto
Ayora on Santa Cruz island with indication of the study locations. (D) The city Puerto Velazco Ibarra
on Floreana island with indication of the study locations. Landsat 8 imagery was used to construct
the maps.

2.2.2. Fish α and β Diversity

In literature, there have been many different definitions for both α diversity and β
diversity, underlining the importance of a clear description of the definition used in each
study. In this study, we mainly adopted the definitions provided by Gray (2000) [37], which
are closely related to the original definitions provided by Whittaker (1975) [38]. The number
of species observed per sampling unit is referred to as point species richness. Since it is
unlikely that only one sampling unit would be representative for the entire study area, a
sample typically comprises multiple sampling units within the area. The number of species
found within a sample is referred to as sample species richness, which is more closely
related to Whittaker’s α diversity. In this study, the number of species observed during
a single observation is defined as the point species richness, while the total number of
species within an island, location or transect is referred to as the sample species richness.
The sample species richness was assessed visually using Species Accumulation Curves
(SACs) (105 permutations) for the different islands (n = 270 per island) and locations
(n = 54 per location) (Section S10.1). SACs depict the number of observed species with
increasing sampling effort and are typically used to estimate the number of species in a
particular area [39]. To statistically compare the sample species richness of islands and
locations (Wilcoxon rank sum tests) and to assess correlations with environmental variables,
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respectively, the total number of observed species per location and transect (maximum
sample species richness) were retained for analysis. To compare the point species richness
of both islands, a linear mixed model with island as fixed effect, location and transects as
nested random effects and observer as crossed random effect were constructed. To compare
the point species richness of the locations, one analysis was performed for both islands
together using a linear mixed model with location as fixed effect and transect and observer
as nested and crossed random effects, respectively.

Although β diversity can be defined in numerous ways, in this study it is defined as
the variability in species composition among samples for a given area at a given spatial
scale [38,40,41]. Differences in β diversity at the spatial scale of (1) islands and (2) locations
were assessed using a PERMDISP test on the Sorensen resemblance matrix of the samples,
in which a sample corresponds with the aggregated data of a single transect. The distance
to centroid in a two-dimensional Principal Coordinate (PCO) space is considered a measure
of β diversity [40]. To compare (1) islands and (2) locations, the centroids of the samples
of (1) each island and of (2) each location were used, respectively. To assess if there were
any relationships between environmental conditions and diversity, Pearson correlation
coefficients (r) of the diversity measures versus the transformed environmental variables
were determined.

2.2.3. Fish Assemblage Structure

Differences in the structure of fish assemblages between islands are not necessarily the
result of their position along an environmental gradient, but rather the result of fragmenta-
tion due to migration barriers, local extinction or colonization [42,43]. Therefore, parametric
methods, such as Multivariate dissimilarity-based ANOVA (MANOVA), PCA, CCA, and
RDA, which assume an underlying environmental model of species distributions [44],
are not appropriate. In addition, ecological data, especially those originating from visual
census, are often overdispersed and zero-inflated, limiting the use of traditional parametric
methods. On the other hand, purely non-parametric approaches, such as ANOSIM, are
unable to partition variability, assess interactions or model more complex patterns [34].
Semi-parametric multivariate techniques, such as PCO, PERMANOVA, CAP, and distance-
based Redundancy Analysis (dbRDA), combine the advantages of both approaches and
rely on the actual values of the resemblance matrix instead of relative ranks, but still
use permutations rather than distributional assumptions [34]. Nevertheless, by using the
actual dissimilarity values instead of ranks, the choice of transformation, aggregation and
measure of resemblance become more important [34].

The analyses were performed on the Bray-Curtis resemblance matrix of the original
fourth-root transformed biological data set. Prior to applying PERMANOVA, a PERMDISP
analysis was performed to test for homogeneity among the dispersions of the different
islands and locations [45] (Section S10.2). Although PERMANOVA is quite robust to
heterogeneity of variances for balanced designs when compared to other methods, such
as ANOSIM or the Mantel test [46], significant differences in multivariate variability may
complicate interpretations of PERMANOVA analyses. More specifically, if both PERMDISP
and PERMANOVA yield significant results, there is not necessarily a significant discrepancy
in the structure of the fish assemblages other than the difference in variability. Therefore,
additional CAP discriminant analyses were applied to assess the distinctiveness in the
structure of fish assemblages between the islands, locations and transects. The leave-
one-out misclassification error was used as a measure of the distinctiveness of each of
the groups.

To compare islands using PERMANOVA, the considered factors were island (fixed),
location (random and nested within island), transect (random and nested within location)
and observer (random and crossed). To compare locations using PERMANOVA, irrespec-
tive of the islands, the factor island was dropped and the factor location was treated as the
fixed factor. The assessment of the main effects and pair-wise comparisons were obtained
using 104 permutations of residuals under a reduced model. The square root components of
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variation (σ
′
) were estimated by equating the mean squares of the PERMANOVA models

to their expectations [34]. To determine the proportion of the variability explained by
the different grouping factors, the percentage of variation of each component to the total
variation was used. PCO analyses were performed to visualize the multivariate patterns.
The fish species that were characteristic for the differences among the islands and locations
were found by superimposing vectors corresponding to Pearson correlations of individual
species with the resulting PCO axes.

CAP analyses were also performed to describe the correlation of the aggregated
multivariate biological data to gradients of water variables, physical habitats and geo-
graphical distance. The first PCA axis, describing each series of variables, being habitat,
water conditions and distance, was retained and plotted against the first CAP axis of the
aggregated biological data set and the corresponding canonical correlation of both axes
was determined.

To assess the relative importance and overlap of geographical distance, water condi-
tions and physical habitats in shaping the observed fish assemblages, they were considered
as separate subsets of variables in DISTance-based Linear Models (DISTLMs). While CAP
finds linear combinations of the biotic and abiotic variables that are maximally correlated
with one another, DISTLM finds linear combinations of the abiotic variables that are best to
predict patterns in the biotic data set [34]. As such, DISTLM models take into account the
potential overlap of different predictors. Data was aggregated to the level of transects (me-
dian) and spatial auto-correlation was accounted for by explicitly integrating geographical
distance. Because the number of spatial variables was limited compared to the number of
variables of the other two series, the polynomials up to 3rd order of the coordinates, i.e., X
(longitude) and Y (latitude), were included, as well. Since the number of variables exceeded
the amount of observations, no interactions were considered and subsets of variables were
established for each series using forward selection based on the multivariate analogue to
the small-sample-size corrected version of the Akaike Information Criterion (AICc) and
sequential conditional distance-based Redundancy Analysis (dbRDA). To compare the
series, ideally the number of variables per subset should be the same. However, the optimal
number of variables based on the AICc can differ between the series. Therefore, the effect
of including fewer or more variables was assessed and the variability of the results was
evaluated (Section S9). These subsets were then compared using the AICc values, forward
selection and sequential conditional dbRDA. Models were also constructed for all variables
independent of the series they were assigned to, using forward selection. Finally, this
approach was extended by assessing all possible combinations of variables to construct
q-variable models with q ranging from one to six.

It is important to note that for the analyses that only considered biological data (i.e.,
PERMDISP, PERMANOVA, and CAP) the full biological data set was used (n = 540), while,
for the analyses that considered both environmental and biological data (i.e., DISTLM and
CAP-PCA), the aggregated biological data set was used (n = 30).

3. Results
3.1. Spatial Variability of Water Conditions and Habitats

There were significant differences between both islands (p < 0.05; Wilcoxon rank
sum test) in some of the measured water variables (Table S4.1). In Floreana, nitrite and
sulfate concentrations were significantly higher, while, in Santa Cruz, ammonium concen-
trations, temperature, pH, and DO concentrations were significantly higher. Although
not significant, nitrate, phosphate, total P and chlorophyll concentration were on average
higher in Santa Cruz than in Floreana, while total N and EC were on average higher in
Floreana. Although rocky habitats were targeted for the transects, sandy patches were
often unavoidable and sand cover was significantly higher in Santa Cruz (the abiotic
data is depicted visually in PCA plots (Figures S4.1–S4.3). PERMANOVA tests using all
available water variables also highlighted significant differences in water quality between
both islands (p < 0.05), and the lack of significant differences in distances to the centroids
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(PERMDISP tests) suggests that the significant PERMANOVA was due to true differences
in multivariate water quality data rather than to differences in variability. However, when
PERMANOVA was performed only on the selection of water parameters identified in
Section 3.3 as potential drivers of the structure of fish assemblages (temperature, ammo-
nium, phosphate, nitrite and sulfate concentration), both PERMANOVA and PERMDISP
yielded significant results, showing a higher multivariate dispersion among locations in
Santa Cruz than in Floreana and potentially questioning a significant island effect on the
abiotic environment. However, the CAP leave-one-out cross-validation misclassification
error was exactly 0%, suggesting that both islands could still be perfectly distinguished
from each other based on their water parameters.

Similarly, PERMDISP tests indicated a significantly larger variability of the physical
habitats among locations in Santa Cruz compared to Floreana. Here, PERMANOVA tests
were only marginally significant (p < 0.1), suggesting that there were no clear differences in
habitat classes between both islands, in addition to the difference in variability. This was
supported by the high CAP leave-one-out cross-validation misclassification error (20%;
note that a misclassification error of 50% is expected by chance alone). Between locations,
no significant differences were found for both PERMDISP and PERMANOVA.

Coliforms and E. coli were found more often in Santa Cruz than in Floreana (Table S4.2).
In three out of three locations in Santa Cruz, both coliforms and E. coli were found, while,
in Floreana, the respective frequencies were three out of five and one out of five locations.

3.2. Fish α and β Diversity

The linear mixed models did not indicate any significant difference in point species
richness between both islands (p > 0.05). Similarly, Wilcoxon rank sum tests did not
indicate any significant difference in sample species richness. The total amount of species
recorded in Santa Cruz and Floreana was 39 and 33, respectively (Figure S5.1). There
was a significant effect of the factor Location in the linear mixed models for the locations,
irrespective of the islands. Pairwise comparisons with Tukey correction of these models
revealed significantly higher point species richness in location B9 compared to locations
C1, B3 and B6; and in location C4 compared to location B3.

β diversity among locations was significantly larger in Santa Cruz than in Floreana
(p < 0.05), indicating stronger variability in species composition in Santa Cruz (Figure S5.2).
The distance-to-centroid for Santa Cruz was on average 31.8% (SE of 2.4%), while, for
Floreana, it was only 17.5% (SE of 2.4%). Pairwise comparisons between locations, without
correction for multiple comparisons, did only result in some marginally significant differ-
ences (p < 0.1) in β diversity. However, it should be noted that the number of transects per
location was limited to three, impeding strong statements on potential differences between
locations due to limited statistical power. The range of distance-to-centroid values was
quite large, from 3.82% to 27.63%, but more data is required to assess the β diversity at this
fine spatial scale (Table S5.4 and Figure S5.2).

There was only a limited amount of significant correlations between diversity mea-
sures and environmental variables. Nitrite concentration was negatively correlated with
the sample species richness of locations in Floreana (r = −0.96). In Santa Cruz, Total
P concentration (r = −0.94) and habitat class sediment deposition on rocks (r = −0.91)
were negatively correlated with point species richness, while EC was positively corre-
lated (r = 0.94) with point species richness (Table S5.2). Although not all types of nutrient
concentrations showed significant correlations with point species richness and sample
species richness, correlations between nutrient concentrations and point species richness
and sample species richness were always negative in Santa Cruz. In Floreana, on the
other hand, there were both positive and negative non-significant correlations between
nutrient concentrations and point species richness and sample species richness. In Floreana,
β diversity was positively correlated with nitrate (r = 0.91) (Table S5.3). In Santa Cruz,
β diversity was negatively correlated with DO (r = −0.92) and sand cover (r = −0.88).
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A positive, but not significant (p = 0.13), Pearson correlation (r = 0.52) was found between
β diversity and physical habitat variability (Table S5.4).

3.3. Fish Assemblage Structure

PERMDISP tests on the full biological data set indicated significant heterogeneity
of multivariate dispersion at the level of islands, locations, and transects (p < 0.05), but
not at the level of the observers. Multivariate variability was significantly larger for
Santa Cruz than for Floreana, as the average distance-to-centroid of Santa Cruz was
35.44% (SE = 0.48%), while, for Floreana, it was only 27.30% (SE = 0.49%). PERMANOVA
models revealed significant effects at the level of islands and locations (p < 0.05). Within
the island of Santa Cruz, more significant differences (p < 0.05) were found between
locations (B10-B3; B10-B6; B10-B9; B3-B9; B6-B9) than between the locations of Floreana
(C1–C4). The p-values were not corrected since the permutation p-values provide an
asymptotically exact test of each individual null hypothesis of interest [34] (Section S10.3).
Because PERMDISP and PERMANOVA analyses both yielded significant results, there
was not necessarily a significant difference in the structure of the fish assemblages in
addition to the difference in variability. However, CAP discriminant misclassification
errors were generally low, indicating that the locations and transects of both islands
could be relatively well distinguished from each other. Hence, the structure of the fish
assemblages differed between islands, locations and transects. Differences among locations
and transects were clearer (i.e., had lower misclassification errors) at Santa Cruz than at
Floreana (Tables S8.1–S8.4). These results are clearly visualized in the PCO plot, where
the fish assemblages of both islands were clearly separated (Figure 2), and where there is
much more overlap among locations at Floreana than at Santa Cruz (Figures S7.1 and S7.2).
In addition to the factors Island (Table S6.1: 57.09%) and Location (12.47%), the factor
Transect also explained a substantial part of the variation (12.74%), whereas the factor
Observer alone explained a negligible fraction of the data variation (0.27%). The interaction
of Observer with the factors Island (0.06%), Location (2.97%), and Transect (4.39%) still
never explained more than 7.5% of the observed variation. In Santa Cruz, variability
explained by the locations (38.05%) was larger than the variability explained by the transects
(28.72%), while the opposite was true for Floreana (i.e., locations and transects explained
16.62% and 17.60% of the variation, respectively).

In both Santa Cruz and Floreana, Endemic, Peruvian, Indo-Pacific, Panamic, and
widespread species were observed (Table S5.1). Using the correlations of the biological
data with the first PCO axis, the differences between islands could be partly attributed to
some typical species. For Santa Cruz, these included the Bullseye puffer fish (Sphoeroides
annulatus; r = −0.62), Yellowtail damselfish (Microspathodon bairdii; r = −0.83) and Pacific
spotfin mojarra (Eucinostomus dowii; r = −0.64), while, for Floreana, they comprised the
Bravo clinid (Gobioclinus dendriticus; r = 0.56), Galapagos ringtail damselfish (Stegastes
beebei; r = 0.83) and Chameleon wrasse (Halichoeres dispilus; r = 0.87). In Santa Cruz, the
abundances of the Yellowtail damselfish and Pacific spotfin mojarra were positively corre-
lated with DO and pH, while the abundances of the Bullseye puffer fish were positively
correlated with phosphate and negatively correlated with EC. In Floreana, the abundance
of the Galapagos ringtail damselfish was positively correlated with nitrite, while that of
the Bravo clinid was negatively correlated with the percentage of bare rock and that of the
Chameleon wrasse was positively correlated with phosphate.
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Figure 2. Principal Coordinate (PCO) based on Bray-Curtis resemblance matrix with distinction of
the different locations in Santa Cruz (locations B) and Floreana (locations C). The fish species with a
Pearson correlation of more than 0.4 with the ordination axes are represented as vectors.

The squared canonical correlations of PC1 with CAP1 indicate how well differences in
the structure of fish assemblages can be explained by the water conditions, physical habitats
and geographical distance. Compiling data of both islands, these correlations (n = 30) were
quite high: 0.85, 0.66, and 0.90, respectively (Table 1). At the level of individual islands, the
squared correlations were 0.75, 0.76, and 0.36 for Santa Cruz (n = 15), while, for Floreana
(n = 15), they were much lower: 0.03, 0.28, and 0.16, respectively.

When focusing on water conditions, the most parsimonious model that best explained
fish community variation for both islands contained five variables: Temperature, ammo-
nium, phosphate, nitrite and sulfate (q = 5). When focusing on the habitats, three variables
were retained in the most parsimonious model: Cover of vegetated rock, bare rock and
rock with sediment deposition (q = 3). When focusing on the geographical distance, Y and
X3 were retained in the most parsimonious model (q = 2). For Santa Cruz, total P and
temperature (q = 2), cover of rock with sediment deposition (q = 1), and Y3 X and Y (q = 3)
were retained. For Floreana, nitrite (q=1), cover sand and bare rock (q = 2) and X3 (q = 1)
were retained (Table S9.1).

For the full data set, water conditions explained the largest share of the variation,
followed by the geographical distance and physical habitats (marginal tests in Table ??).
The sequential conditional tests indicated that the most parsimonious model contained only
geographical distance. If geographical distance was not included, the most parsimonious
model only comprised water conditions. Changing the number of variables per subset
of each series (i.e., geographical distance, water conditions and physical habitats) did not
change the order of importance of the series but did affect the number of series to be
included in the parsimonious model (Table S9.3).

Within each island, geographical distance was not included in the most parsimonious
models (Table ??). Indeed, the sequential conditional tests for Floreana only retained
physical habitats to explain the structure of the fish assemblages, while, for Santa Cruz,
only water conditions were retained in the most parsimonious model. However, for Santa
Cruz, the AICc of the model using solely geographical distance was only slightly higher
(∆AICc < 2). In addition, care should be taken when comparing these results, because the
number of variables included in the subsets had an effect on the order and nature of the
series retained in the parsimonious model of Santa Cruz (Table S9.2). If one instead of
two variables per series were included, both physical habitat and geographical distance
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were added to the parsimonious model, but water conditions were left out (Table S9.2).
For Floreana, there was no effect of the number of variables on the order or nature of
included series. To visualize the outcomes of these models ordinations of their fitted values
are represented in Figures S9.1, S9.3, S9.4, S9.6, and S9.7. As the main patterns of the
unconstrained PCO ordination plots (Figures S9.2, S9.5, and S9.8) and constrained dbRDA
plots are relatively similar (comparing original values and fitted values, respectively [34]),
the models appear adequate to find and explain the most important patterns in the data.

Table 1. Squared canonical correlations of the first Principal Component Analysis (PCA) axis (PC1)
with the first Canonical Analysis of Principal (CAP) axis (CAP1) for the different series of variables:
Water parameters (Water), physical habitats (Habitat), and geographical distances (XY) for both
islands, together (n = 30) and separately (n = 15).

Variable Series Both Islands Santa Cruz Floreana

Water 0.85 0.75 0.03
Habitat 0.66 0.76 0.28

XY 0.90 0.36 0.16

Table 2. Results of DISTance-based Linear Model (DISTLM) analyses using series of predictors (water parameters (Water),
physical habitats (Habitat) and geographical distances (XY)). The optimal number of predictors per series was determined
using the Akaike Information Criterion (AICc). For each marginal test, the AICc weights (wAICc) were also determined.
Models were constructed for both islands, together (n = 30) and separately (n = 15).

Variable
Series

Marginal Tests Sequential Tests
Pseudo-F p-Value R2 AICc wAICc Pseudo-F p-Value Cum. R2

Both
islands

XY (q = 2) 21.43 0.001 0.61 202.11 0.73 21.43 0.001 0.61
Water (q
= 5) 10.71 0.001 0.69 204.18 0.26 / / /

Habitat (q
= 3) 9.03 0.001 0.51 211.89 0.01 / / /

Santa
Cruz

Water (q
= 2) 5.52 0.001 0.48 103.17 0.48 5.52 0.001 0.48

XY (q = 3) 4.95 0.001 0.58 103.96 0.32 / / /
Habitat (q
= 1) 4.91 0.001 0.27 104.97 0.20 / / /

Floreana

Habitat (q
= 2) 4.00 0.001 0.40 94.46 0.66 4.00 0.001 0.40

XY (q = 1) 1.74 0.144 0.12 97.06 0.18 / / /
Water (q
= 1) 1.56 0.187 0.11 97.24 0.16 / / /

When no prior clustering of predictors in series (water conditions, physical habitats,
or geographical coordinates) was done, a parsimonious model for the full data set con-
tained the predictors Y, cover of rock with sediment deposition, temperature, ammonium
concentration, and cover of vegetated rock (Table ??). For Santa Cruz, a two-variable
model containing cover of rock with sediment deposition and temperature was considered
best, while, for Floreana, a two variable model containing cover of sand and bare rock
was optimal.
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Table 3. Results of DISTLM analyses using all predictors, without grouping them in different series of variables. Predictors
were selected using AICc. For both islands, together (n = 30) and separately (n = 15).

Variable
Marginal Tests Sequential Tests

Pseudo-F p-Value R2 AICc Pseudo-F p-Value Cum. R2

Both
islands

Y (latitude) 32.81 0.001 0.54 204.89 32.81 0.001 0.54
Rock with
sediment
deposition

9.08 0.001 0.24 201.96 5.33 0.001 0.62

Temperature 19.37 0.001 0.41 200.09 4.25 0.001 0.67
Ammonium 17.45 0.001 0.38 199.26 3.31 0.004 0.71
Vegetated
rock 9.95 0.001 0.26 199.18 2.73 0.012 0.74

Santa Cruz

Rock with
sediment
deposition

4.91 0.001 0.27 104.97 4.91 0.002 0.27

Temperature 4.00 0.003 0.24 102.66 5.30 0.002 0.50

Floreana
Sand 3.94 0.003 0.23 94.97 3.94 0.004 0.23
Bare rock 3.31 0.011 0.20 94.47 3.34 0.023 0.40

4. Discussion

Although the α diversity, β diversity, and structure of the fish assemblages were clearly
different between both islands, elucidating the drivers of these differences is not evident
because of the complex interplay of often intercorrelated environmental variables and
spatially confounded factors (e.g., occurrences of natural upwelling and anthropogenic
pollution) [47,48]. It is, however, advisable to consider such a large set of potential drivers
as other metrics to characterize fish assemblages of similar islands in the Tropical Eastern
Pacific have been found to be affected by multiple different environmental, biogeograph-
ical and anthropogenic factors [6,49,50]. Nitrite, ammonium, sulfate, DO concentration,
temperature, and pH were significantly different between both islands and sand cover
was significantly higher within the transects of Santa Cruz. In addition, variability of the
water conditions and physical habitats were both larger in Santa Cruz than in Floreana.
Furthermore, Santa Cruz was characterized by strong anthropogenic pressures and little
natural upwelling, while the contrary was true for Floreana. Because the series of variables
were characterized by many correlations among their variables, there was no sound statis-
tical ground to separate the effects of geographical distance, water quality and physical
habitats on diversity and the structure of fish assemblages based on this observation alone.
However, by collecting data over multiple scales, i.e., islands, locations, and transects, a
more detailed assessment could be made [51].

4.1. Diversity

Although the point species richness and sample species richness did not seem to differ
between the islands, the total number of species and β diversity in Santa Cruz were higher
than in Floreana. This suggests that on a habitat scale, i.e., within transects and within
locations, the number of species may have been the same, but that the variability in species
composition was larger in Santa Cruz than in Floreana. This is expected as the variability in
observed water conditions and physical habitats of the different locations was also higher
in Santa Cruz than in Floreana, and more different niches are more likely to harbor more
different species [52,53]. In addition, the β diversity did not differ significantly between
the locations, which corroborates the absence of significant differences in the variability of
physical habitats between the locations. However, it should be noted that the number of
transects per location, and, therefore, the statistical power, was limited. The fact that the β
diversity of locations showed a weak positive correlation with physical habitat variability
and that β diversity of the islands seemed positively affected by the variability of water
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conditions and physical habitats, suggests that environmental conditions may be important
for diversity on multiple spatial scales. Nevertheless, more fine-scale studies are required.

In Santa Cruz, lower levels of α diversity (both point and sample species richness)
were associated with higher nutrient concentrations, which is in line with the results
of meta-analyses on the effects of anthropogenic pollution on marine communities [54].
Nitrate and phosphate concentrations measured during this study in Santa Cruz were
found to be four and two times higher than those recorded in June 2007 [55] and eight and
seven times higher than those recorded in 1968 [21], underlining the increasing risk fish
communities are facing. In addition, Mateus et al. (2019) found some strong relationships
between population increase and nutrient concentrations in coastal sites of Santa Cruz
during a 9-year study period [16]. However, whether the underlying cause behind elevated
nutrient concentrations is natural or man-made remains often hard to determine. This is
especially the case for the hydrodynamically complex area of the Galapagos archipelago,
being subject to local upwelling of cold, saline, nutrient rich waters originating from the
eastward Cromwell current [16,21,56]. A combination of satellite imagery, remote sensing
based models and in situ nutrient measurements indicated that Floreana was characterized
by strong natural upwelling, while high nutrient concentrations in Santa Cruz were more
likely the result of anthropogenic pollution (Section S3.3). This result corroborates results of
earlier studies [16,57]. Furthermore, the fact that fecal coliforms and E. coli were found more
often in the coastal waters of Puerto Ayora, indicates a stronger anthropogenic pollution
compared to Floreana [11,58].

4.2. Structure of Fish Assemblages
4.2.1. Characteristic Species

DO and pH were significantly higher in Santa Cruz and seemed to have a positive
effect on the abundance of the two most typical species from Santa Cruz, the Yellowtail
Damselfish and the Pacific Spottedfin Mojarra. Hence, the absence of these species in
Floreana may be related to the lower DO and pH. However, the abundances of the two
most typical species of Floreana, the Galapagos Ringtail Damselfish and Chameleon Wrasse,
were correlated only with nitrate and phosphate gradients in Floreana, respectively. These
variables were not significantly different between the islands, hence providing no indication
that environmental conditions are responsible for the relative absence of these species in
Santa Cruz. However, it should be noted that the number of monitored locations per
island was limited and that the measured environmental gradients in Floreana were less
pronounced than in Santa Cruz.

4.2.2. Fish Assemblages

The results suggest that the prevailing environmental conditions, rather than the
geographical distance between the islands, are the underlying cause for the observed
differences in the structure of the fish assemblages. First, in Santa Cruz and Floreana, a
mixture of Endemic, Peruvian, Indo-Pacific, Panamic, and widespread species were found,
confirming the conclusion of Edgar et al. (2004) regarding the strong connectivity of the
archipelago with the surrounding islands and coasts [5]. Second, since, within the islands
of Santa Cruz and Floreana, temperature and the cover of sand turned out to be most
important for the structure of fish assemblages, and given the significant differences of
these variables between both islands, it is likely that environmental conditions, rather than
geographical distances, are the drivers behind the observed differences in the structure
of the fish assemblages of both islands. In addition, the significantly stronger between-
locations variability of the structure of the fish assemblages in Santa Cruz compared to
Floreana, is likely the result of the pronounced environmental differences between the
locations of Santa Cruz compared to those of Floreana.

Although multiple studies on fish assemblage structures of tropical oceanic islands
have highlighted the importance of the degree of isolation, there have been conflicting
results and even indications that other, often confounding, factors are at least equally
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important [6,49,59]. Due to its unique geographical position at the intersection of multiple
oceanic currents and the resulting wide range of environmental conditions, the Galapagos
archipelago provides a unique case to assess the importance of these other factors. Indeed,
despite its comparable degree of geographical isolation, the Galapagos has a relatively high
species richness and functional dispersion compared to other tropical oceanic islands [6,60].
The importance of the wide range of environmental conditions, in a relatively small area,
for the fish assemblage structure had already been suggested in other studies [5,61], but
this is the first study to provide quantitative results in favor of this hypothesis.

Fish assemblages in Santa Cruz, an island characterized by anthropogenic pollution [16,57],
are affected more by water conditions than physical habitats. The contrary is true for
Floreana, where anthropogenic pollution is limited, invoking smaller gradients in water
conditions (especially for those variables that turned out to be potential predictors for
the structure of fish assemblages). To predict the structure of fish assemblages, nutrient
concentrations, i.e., Total P, and temperature gradients were most important in Santa Cruz,
while, in Floreana, the percentage sand cover was most important. Although sand cover
within the observed transects was relatively low in Floreana, significantly different fish
assemblage structures were observed along transects with high versus low sand cover.

Although the most parsimonious model for both islands only contained the geo-
graphical distance, latitude and longitude provided clearly a better representation of the
geographical distance than ammonium, temperature and all other measured variables
could ever provide for the environmental state of the water. Despite being inherent to any
spatial environmental study, this limitation can be partially accounted for by including
multiple spatial scales in the sampling design, as was illustrated here. As such, the main
drivers behind the observed regional and local differences in fish assemblages could be
identified with some level of statistical confidence, adding to the work of Harris (1969),
Jennings et al. (1994), and Edgar et al. (2004) [5,8,9]. As suggested by these authors, tem-
perature was identified as a major driver of fish assemblage structure. However, nutrient
concentrations and the characteristics of the prevailing physical habitats play an additional
important role.

5. Conclusions and Implications for Management

Differences in fish assemblage structure between Santa Cruz and Floreana are more
likely the result of different water conditions rather than geographical distance or different
physical habitats. However, while the fish assemblages in Santa Cruz were mainly affected
by water quality, fish assemblages in Floreana were mainly affected by the type of physical
habitats. This difference was assigned to the different levels of anthropogenic pressure
on the coastal waters of both islands, with Floreana having less anthropogenic pressures
and a more pristine nature than Santa Cruz. In Santa Cruz, higher levels of pollution
seem to correspond with a lower α diversity and significantly different structure of fish
assemblages, highlighting the importance of environmental and waste management in
the populated bays of the Galapagos archipelago and confirming the negative effects of
anthropogenic pressures on fish assemblages of tropical oceanic islands [1,6].

The structure of fish communities can be used as an indicator of human pollution.
However, care should be taken as anthropogenic pressures and natural stressors can eas-
ily be confounded. Therefore, when assessing coastal water quality and anthropogenic
pressures, naturally occurring local and seasonal variations should be taken into account.
Although the sampling effort was distributed in such a way to provide reliable estimates of
the underlying environmental drivers of fish assemblage structure and diversity, separating
anthropogenic from natural stressors remained difficult. In this study, only anthropogeni-
cally influenced areas, with distinct natural stressors, e.g., temperature, were studied.
Future studies should include more islands and stronger gradients of anthropogenic pres-
sures to confirm the found results. In addition, estimates of fishing pressures and boat
traffic should be used in future studies to provide a more complete assessment of the
effect of human presence on the system. Although there have been several studies on the
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water quality of coastal cities of the Galapagos and how it is related to population size
and the number of incoming tourists, the pressures themselves (i.e., agricultural runoffs
and untreated wastewater discharge) remain poorly understood. Mateus et al. (2019),
for example, suggested that elevated phosphorus concentrations in the coastal waters of
Santa Cruz could have been the result of inland pollution and water discharge, but studies
to confirm this or to provide a more detailed description of the pollution sources and
pathways remain absent [16].

This study can serve as baseline for future studies aiming to improve ecological un-
derstanding and/or develop environmental management guidelines of the Galapagos
archipelago and other tropical oceanic islands that face similar threats of increasing an-
thropogenic pressures. Future studies should focus on the development of water quality
criteria adapted to local conditions, identification of pressures on the environment, and
management prioritization of pressures and associated environmental changes with the
strongest effect on local ecosystems.
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