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Abstract: Vibration analysis using the component mode method has been less popular than before,
since computers are powerful enough to solve complicated structures by a single large finite model.
However, many structural engineers designing local structures on a ship still need simple tools to
check anticipated vibration problems during their design work. Since most of local structures on a
ship are simple enough to consist of several substructures, the component mode method could be of
use as long as good, natural mode functions can be provided so that reasonable natural frequencies
can be yielded. In this study, since mode polynomials based on static deflection of cantilever beams
fail to work to cover the various configurations of L-type beams with a free end, two alternatives
are suggested. One is based on more flexible mode functions—we call them adaptive polynomials.
The other is a purely mathematical approach, which makes realistic mode functions unnecessary.
Suggested alternatives yield very good numerical results.

Keywords: L-type beam structure; adaptive polynomials; pure mathematical functions

1. Introduction

Two component mode methods are well-known: component mode synthesis, sug-
gested by Hurty [1,2] and Craig [3,4], and the branch mode method, suggested by Hunn [5]
and Gladwell [6].

The L-type beam structure with a free end studied here has been used for the explana-
tion of the branch mode method, where normal modes of cantilevers, together with rigid
mode, are suggested for generating branch modes [7].

Bhat suggested higher mode functions using orthogonal polynomials, and applied
these mode functions for the free vibration analysis of a single plate with different boundary
conditions [8].

Bourquin [9], Hou [10], Hintz [11], and Benfield [12] have studied the constraints at
the junction of the connected structures.

Recent studies have focused on nonlinear mechanics. Pagani et al. explained that the
natural frequency and mode shape can be changed significantly when the metal structure
is subjected to large displacement and rotation under geometrical nonlinear conditions [13].
Carrera et al. developed the Lagrange formula, including cross-sectional deformation, in
order to implement the vibration mode of the composite beam structure in the nonlinear
region [14].

Furthermore, Carrera et al. developed a theory that can be solved by converting a
three-dimensional model for large deformation of a structure into one dimension, which
was developed and applied to the calculation [15].

Pagani and Carrera [16] introduced the unified formulation for geometric, nonlinear
analysis of metal structures, and explained the formula for handling large displacements and
rotations. In order to solve the geometric nonlinear problem of the plate, Pagani et al. [17]
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explained various nonlinear theories, and how these theories affect the nonlinear static
behavior of thin-walled structures in the large displacement and rotation.

Alessandro et al. [18] introduced application of the fundamental model reduction
techniques used in structural dynamics to flexible, multibody systems.

Park [19] suggested mode functions for L-type beam structures with fixed ends, where
constraints at a junction are described using fixed and simple supported boundary condi-
tions. An application of this mode function for plate structure has also been found [20].

As mentioned, if suitable mode functions are available, the component mode method
can be a powerful tool for the free vibration analysis of simple local structures.

The purpose of this study is to provide powerful mode functions for the free vibration
analysis of L-type beam structures, as shown in Figure 1, which can work for various
length ratios (0 ≤ LB/LA ≤ ∞). LA and LB are the lengths of the connected L-type beam
in Figure 1.
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Fundamental mode function, based on a fourth-order polynomial that satisfies four
boundary conditions of a cantilever beam, failed to work for free vibration analysis of an
L-type beam structure with a free end, although it describes deflections of a cantilever beam
reasonably well. It is a reasonable guess that any mode functions that can describe well
the deflections of substructures, which are cantilever beams, may not be able to describe
deflections of the L-type beam structure with a free end.

New fundamental mode functions, using a second-order polynomial together with
higher orthogonal mode functions, are suggested. These new mode functions have been
found to be suitable for the free vibration analysis of L-type beam structures for various
length ratios (0≤ LB/LA ≤ ∞). This good performance is because of the fact that new
mode functions based on lower-order polynomials are flexible enough to describe various
shapes of deflections of varying length ratios. In this sense, these new polynomials can be
named as adaptive polynomials.

In addition, a purely mathematical approach is suggested, where no efforts to describe
meaningful mode functions are necessary. Instead, pure mathematical polynomials that
only satisfy geometrical boundary conditions at a free end are used.

2. Problem Description and Mathematical Model

An L-type beam structure with a free end is shown in Figure 1:
Where mA = mB = m, EIA = EIB = EI are assumed to be same for notational simplicity;

m is mass per unit length of beam, and E and I are the Young’s modulus and moment of
inertia, respectively.

x1 and x2 are coordinates of substructrues of L-type structures in Figure 1.
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In addition, x1 and x2 are non-dimensionalized, such that ζ = x1
LA

, ξ = x2
LB

.
WA(ζ) and WB(ξ) are lateral deflections of the horizontal and vertical beam, respectively:

WA(ζ, t) =
m

∑
i = 1

φi(ζ)pi(t) (1)

WB(ξ, t) =
n

∑
j = 1

ψj(ξ)qj(t) (2)

UB(ξ, t) = r1(t) (3)

where pi(t), qj(t), and r1(t) are the generalized coordinates, and φi(ζ) and ψj(ξ) are corre-
sponding mode functions to describe lateral deflections of beams A and B. UB(t) is vertical
displacement of beam B.

The method proposed by Bhat to generate higher orthogonal polynomials is as follows:

φ2(ζ) = (ζ − B1)φ1(ζ) (4)

φk(ζ) = (ζ − Bk)φk−1(ζ)− Ckφk−2(ζ) (5)

Bk =
∫ 1

0
ζ·φ2

k−1(ζ)dζ/
∫ 1

0
φ2

k−1(ζ)dζ (6)

Ck =
∫ 1

0
ζ·φk−1(ζ)φk−2(ζ)dζ/

∫ 1

0
φ2

k−2(ζ)dζ (7)

It can be shown that the polynomial φk(ζ) satisfies the orthogonality condition:
The coefficients Bk and Ck are implemented using the orthogonal formula of the

beam function: ∫ 1

0
φk(ζ)φl(ζ)dζ =

{
0 i f k 6= l
1 i f k = l

}
(8)

Note that this polynomial φk(ζ) only satisfies geometrical boundary conditions, al-
though a fundamental polynomial can be chosen to satisfy natural boundary conditions.

Given mode functions, generalized mass is

mAij = mLA

1∫
0

φiφjdζ (9)

mBij = mLB

1∫
0

ψiψjdξ (10)

mBrr = mLB

1∫
0

dξ (11)

and generalized stiffness (k) is

kAij =
EI
L3

A

1∫
0

φ′′ iφ
′′

jdζ (12)

kBij =
EI
L3

B

∫ 1

0
ψ′′ iψ

′′
jdξ (13)

where, mAij, mBij, mBrr and kAij, kBij are generalized mass and generalized stiffness of
substructures of L-type structure.
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Applying displacement continuity (r1) at the junction results in the following:

r1 = ∑ φi(1)pi = (φ1(1)p1 + φ2(1)p2 + · · ·+ φm(1)pm) (14)

Similarly, applying slope continuity (qn) yields,

qn =
LB
LA

(
φ′1(1)
ψ′n(0)

p1 +
φ′2(1)
ψ′n(0)

p2 + · · ·+
φ′m(1)
ψ′n(0)

pm −
ψ′1(0)
ψ′n(0)

q1 −
ψ′2(0)
ψ′n(0)

q2 − · · · −
ψ′n−1(0)

ψ′n(0)
qn−1

)
(15)

The mass and stiffness matrices (MA and KA, respectively) using the suggested poly-
nomials are shown in Equations (16) and (17):

[MA] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1φ1 . . . φ1φm φ1ψ1 . . . φ1ψn
...

. . .
...

...
. . .

...
φmφ1 . . . φmφm φmψ1 . . . φmψn
ψ1φ1 . . . ψ1φm ψ1ψ1 . . . ψ1ψn

...
. . .

...
...

. . .
...

ψnφ1 . . . ψnφm ψnψ1 . . . ψnψn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(16)

[KA] =
8EI
L3

A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ
′′
1 φ
′′
1 . . . φ

′′
1 φ
′′
m φ

′′
1 ψ
′′
1 . . . φ

′′
1 ψ
′′
n

...
. . .

...
...

. . .
...

φ
′′
mφ

′′
1 . . . φ

′′
mφ

′′
m φ

′′
mψ

′′
1 . . . φ

′′
mψ

′′
n

ψ
′′
1 φ
′′
1 . . . ψ

′′
1 φ
′′
m ψ

′′
1 ψ
′′
1 . . . ψ

′′
1 ψ
′′
n

...
. . .

...
...

. . .
...

ψ
′′
n φ
′′
1 . . . ψ

′′
n φ
′′
m ψ

′′
n ψ
′′
1 . . . ψ

′′
n ψ
′′
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

and MB and KB can be expressed in a similar manner. Using the displacement and slope
continuity in Equations (14) and (15) yields Equation (18):

p1
...

pm
q1
...

qn−1
qn
r1


=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1φ1 . . . φ1φm φ1ψ1 . . . φ1ψn
...

. . .
...

...
. . .

...
φmφ1 . . . φmφm φmψ1 . . . φmψn
ψ1φ1 . . . ψ1φm ψ1ψ1 . . . ψ1ψn

...
. . .

...
...

. . .
...

ψnφ1 . . . ψnφm ψnψ1 . . . ψnψn

α
ψ′1(1)
φ′n(0)

. . . α
ψ′m(1)
φ′n(0)

−αψ′1(1)
φ′n(0)

. . . −αψ′n−1(1)
φ′n(0)

φ1(1) . . . φm(1) 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



p1
. . .
pm
q1
. . .

qn−1


(18)

where α is the ratio of length for the subcomponents (α = LB/LA):

3. FEM (Finite Element Method) Analysis

For comparison, FEM analysis was performed first. The eam properties used are
shown in Table 1, and Figure 2 shows the L-type finite element method (FEM) model and
geometric boundary conditions.

Table 1. Properties of the finite element method (FEM) model.

Property WA Cross Section

Density (kg/m3) 7850
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In Figure 2, m is mass per unit length of beam, E and I are Young’s modulus and
moment of inertia, respectively.

Natural frequencies are shown in Figure 3, Figure 4, Figure 5.
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It is worth noting that the natural frequencies for the length ratio LB/LA are relatively
similar to those for the length ratio LA/LB as like Figure 6, although mode shapes are
different; this is somewhat interesting. However, it can be understood because this structure
becomes a cantilever beam as LA or LB approaches zero.
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4. Fundamental Mode Function Using Fourth-Order Polynomial and
Numerical Results

The fourth-order polynomial for fundamental mode function ∅1(ζ) can be easily
obtained from four boundary conditions of a cantilever beam:

w(0) = w′(0) = 0,w′′ (1) = w′′′ (1) = 0

The lower four polynomials are shown in Table 2.

Table 2. The mode function using fourth-order polynomial.

i Mode Functions (φi)

1 φ1(ζ) = ζ4 − 4ζ3 + 6ζ2

2 φ2(ζ) = ζ5 − 4.8022ζ4 + 9.2088ζ3 − 4.8132ζ2

3 φ3(ζ) = ζ6 − 5.4477ζ5 + 12.2838ζ4 − 10.6580ζ3 + 2.6575ζ2

4 φ4(ζ) = ζ7 − 6.0363ζ6 + 15.4515ζ5 − 17.7016ζ4 + 8.8724ζ3 − 1.5534ζ2
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Free vibration analysis using these mode functions for a cantilever beam was per-
formed.

The numerical results was compared with those of the analytical solution of Euler’s
beam [21] and are shown in Table 3. For reference, the comparison result in Table 3 is
the calculated value of the relationship between the natural frequency of the beam and
the properties.

Table 3. Comparison of FEM result and using a fourth-order polynomial.

Fundamental (βnl)2 Second (βnl)2 Third (βnl)2 Remark

FEM result 3.51 21.99 61.44
(βnl)2 = wn /

√
EI
ρl4

Using fourth-order polynomial 3.51 22.00 61.70

However, free vibration analysis for the L-type structure with a free end using these
mode functions was not satisfactory, as shown in Figures 7 and 8.
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5. Fundamental Mode Function Using Second-Order Polynomial (Adaptive
Mode Function)

In order to make mode functions as flexible as possible, a second-order polynomial
was chosen as a fundamental mode function, and higher orthogonal polynomials were
generated, as suggested before by Bhat. In order to consider the rigid rotation of a vertical
beam, ψ1(ξ) = ξ is added.

The lower four mode functions are shown Table 4.

Table 4. The mode function using adaptive polynomials.

i and j Horizontal Component (φi) Vertical Component (ψj)

1 ζ2 ξ

2 ζ3 − 0.8333ζ2 ξ2

3 ζ4 − 1.5ζ3 + 0.5357ζ2 ξ3 − 0.8333ξ2

4 ζ5 − 2.1ζ4 + 1.4ζ3 − 0.2917ζ2 ξ4 − 1.5ξ3 + 0.5357ξ2

The numerical results are shown in Table 5, Table 6, Table 7. Thirteen mode functions,
seven for ∅i and five for ψj, were used for this numerical analysis.

Table 5. Comparison of FEM results and using adaptive polynomials: First mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 1.67 1.70 1.80 1.99 2.10 2.20 2.10 1.97 1.80 1.70 1.67

Adaptive polynomial 1.67 1.71 1.82 2.00 2.10 2.20 2.10 1.97 1.80 1.71 1.67

Table 6. Comparison of FEM results and using adaptive polynomials: second mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 10.45 11.10 10.70 7.80 6.30 6.10 7.00 9.10 11.30 11.10 10.45

Adaptive polynomial 10.45 11.10 10.75 7.87 6.30 6.10 6.96 9.10 11.30 11.10 10.45

Table 7. Comparison of FEM results and using adaptive polynomials: third mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 29.20 28.00 17.30 18.90 23.90 29.80 26.90 23.00 25.10 30.80 29.20

Adaptive polynomial 29.20 28.90 17.40 19.00 24.12 29.80 27.00 23.20 25.40 31.50 29.20

Typical corresponding natural modes are shown in Figure 9.
The numerical results showed very good agreement with the FEM results. This good

agreement is due to the fact that suggested mode functions are flexible enough to follow
anticipated deflections of an L-type beam with a free end. In that sense, we named these
mode polynomials as having “adaptive mode function”.
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6. Pure Mathematical Method

Mode functions for typical structures have been proposed, including this study [22,23].
There may be some structures where suitable mode functions may not be easy to generate.

In this case, a purely mathematical approach is suggested, where no meaningful higher-
order mode functions are necessary. We may take mode functions in the following form:

WA(ζ) =
m

∑
i = 1

φi(ζ)pi =
m

∑
i = 1

ζ i + 1 pi (19)

WB(ξ) =
n

∑
j = 1

ψj(ξ)qj =
n

∑
j = 1

ξ jqj (20)

UB(ξ) = r1 (21)

Note that no higher-order mode functions are assumed. Most accurate natural fre-
quencies are obtained using the how approach, although the eigenvectors obtained have
no physical meaning.

This is due to the fact that no assumption for higher mode functions has been made.
The numerical results were compared with those obtained from FEM analysis. Figure 1
was used for the calculation model and the beam properties mentioned in Table 1. The
calculation results are shown in Table 8, Table 9, Table 10.

Table 8. Comparison of FEM results and using mathematical function: First mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 1.67 1.70 1.80 1.99 2.10 2.20 2.10 1.97 1.80 1.70 1.67

Mathematical function 1.67 1.71 1.82 1.99 2.10 2.20 2.10 1.97 1.82 1.71 1.67

Table 9. Comparison of FEM results and using mathematical function: Second mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 10.45 11.10 10.70 7.80 6.30 6.10 7.00 9.10 11.30 11.10 10.45

Mathematical function 10.45 11.16 10.75 7.87 6.34 6.08 6.96 9.10 11.33 11.15 10.45



J. Mar. Sci. Eng. 2021, 9, 300 10 of 11

Table 10. Comparison of FEM results and using mathematical function: Third mode.

Length (LA:LB) 0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0

FEM 29.20 28.00 17.30 18.90 23.90 29.80 26.90 23.00 25.10 30.80 29.20

Mathematical function 29.20 28.40 17.48 19.11 24.12 30.00 27.19 23.31 25.47 31.50 29.20

To better understand how good results can be obtained, use mode shapes together
with eigenvectors. The mode shape is shown in Figure 10, while the eigenvectors are
shown in Table 11.
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Table 11. Eigenvectors of the mode shape.

Coordinate 2.1 Hz 6.96 Hz 27.2 Hz Coordinate 2.1 Hz 6.96 Hz 27.2 Hz

P1 (ζ2) 1.00 1.00 1.00 P11 (ζ12) 2.23 26.60 −15.65
P2 (ζ3) 1.10 3.78 2.65 P12 (ζ13) 2.36 29.07 −18.33
P3 (ζ4) 1.22 6.45 2.36 P13 (ζ14) 2.49 31.54 −21.04
P4 (ζ5) 1.34 9.05 1.08 P14 (ζ15) 2.62 34.00 −23.75
P5 (ζ6) 1.46 11.61 −0.75 P15 (ζ16) 2.76 36.47 −26.48
P6 (ζ7) 1.58 14.14 −2.91 P16 (ζ17) 2.89 38.93 −29.23
P7 (ζ8) 1.71 16.65 −5.28 P17 (ζ18) 3.02 41.39 −31.99
P8 (ζ9) 1.84 19.15 −7.78 P18 (ζ19) 3.16 43.84 −34.77
P9 (ζ10) 1.97 21.64 −10.36 P19 (ζ20) 3.29 46.30 −37.57

P10 (ζ11) 2.10 24.12 −12.99 P20 (ζ21) 3.42 48.75 −40.39

7. Discussion

Our work deals with a very classic subject, and little research based on the assumed
mode method has been found in last 20 years. Furthermore, free vibration analysis of an
L-type beam with a free end is a typical example, even in the textbooks, for explaining
component mode synthesis.

However, we believe that our work can renew appreciation of the usefulness of com-
ponent mode method for free vibration analysis, by providing powerful mode functions.

As you can see. it will not be an easy task to find mode functions that can work on
various configurations of L-type beam structures (length ratio LB/LA varies from 0 to ∞).
Certain mode functions that can work for one specific value of LB/LA may not work for
different values of LB/LA.

Although we do not include it in the paper, the suggested mode function comes from
dozens of candidates. If a component is divided into subcomponents which may have
geometrical boundary conditions only at one end, like a cantilever, then free vibration
solutions may be very sensitive to the choice of mode functions. Most methods based on
the Rayleigh–Ritz method use assumed modes.

However, we suggest using pure mathematical functions instead of using an assumed
mode function. Although mode shapes using mathematical functions have nothing to do
with real mode shapes, the results of the proposed method are compared with the FEM
results and shown in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10.

As a result, the function is accurate enough to show an error rate of less than 2% in all
sections, regardless of the length ratio of the connected structure.
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8. Conclusions

A second-order fundamental polynomial, together with higher orthogonal polynomi-
als, is suggested as the most suitable assumed mode functions for an L-type beam structure
with a free end.

The robustness of the suggested polynomials is proven through numerical analysis
for an L-type beam structure with a free end against varying length ratios.

A purely numerical approach has been suggested for the structures where substruc-
tures have geometrical conditions only at one end, like a cantilever beam.

The most accurate natural frequencies are obtained this way, since any assumptions
for higher-mode functions are unnecessary. Once natural frequencies are obtained, the way
to find corresponding natural modes is worth studing.
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