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Abstract: In the current shipping industry, quantitative measures of ship fuel consumption (SFC)
have become one of the most important research topics in environmental protection and energy man-
agement related to shipping operations. In particular, the rapid development of sensor technologies
enables multisource data collection to improve the modeling of the SFC problem. To address the
features of such heterogeneous data, this paper proposes an integrated model for the estimation of
SFC that includes three modules: a multisource data collection module, a heterogeneous data feature
fusion module and a fuel consumption estimation module. First, in the data collection module, data
related to SFC are collected by multiple sensors installed aboard the ship. Second, the feature fusion
module employs a series of moving overlapped frames to merge different frequency data into small
frames so that fusion features can be extracted from the heterogeneous data of multiple sources. Fi-
nally, in the fuel estimation module, the fusion features provide a novel way to consider the modeling
and estimation of SFC as a classical time-series analysis using various machine learning techniques.
Experimentally, linear regression (LR), support vector regression (SVR), and artificial neural network
(ANN) were employed as the machine learning methods to train SFC models. Compared with the
traditional feature extraction method, the accuracy of LR, SVR, and ANN were improved by 8.5,
0.35 and 51.5%, respectively, using the proposed method. The main contribution of this work is
to consider the multisource and heterogeneous problem of sensor-based SFC data and propose an
integrated model to extract the information of SFC data. Moreover, the experimental results showed
that the estimation accuracy can be greatly improved.

Keywords: fuel consumption estimation; multisource data collection; heterogeneous data fusion;
time series analysis; machine learning

1. Introduction

The shipping industry is one of the pillars of the world economy, as more than 80%
of world merchandise trade by volume is carried by sea [1]. However, shipping causes a
great deal of environmental pollution compared with other modes of transportation, and
the carbon dioxide emissions generated account for a large part of total global greenhouse
gas emissions [2]. In recent years, the issue of carbon emissions from ship operations has
become a focus of many organizations, including the International Maritime Organization
(IMO) and most shipping operators. Global carbon emissions from the shipping industry
need to be significantly reduced in the future. Meanwhile, fuel costs have become the
largest expenditure item in shipping operations, which has also been a topic of many
concerned parties and shipping enterprises [3]. Therefore, in the face of rising fuel costs
and the need for environmental protection, the IMO, which includes major shipping
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countries, urgently needs an effective and quantifiable fuel consumption assessment and
estimation method to improve ship energy management.

For modeling ship fuel consumption (SFC), many studies have used artificial neural
networks (ANNs) to quantify the relationships between the SFC and its influencing fac-
tors [4–11]. Leifsson et al. combined physical knowledge with ANN to build a grey-box
model [12]. Ioannis et al. combined a type of neural network named long short-term
memory (LSTM) with an Elman neural network (ENN) to forecast fuel consumption of
passenger ships [13]. Mou et al. conducted a theoretical analysis to ascertain the principal
fuel consumption influencing factors and used random forest regression (RFR) to model
inland water SFC [14]. Ran et al. also adopted RFR to establish a model of SFC predic-
tion [15]. Gkerekos et al. used several machine learning methods, such as support vector
regression (SVR), extra tree regression (ETR) and ANN to model SFC, and found that ANN
showed better performance results than ETR and SVR [16]. Yun et al. adopted models such
as gradient boosting regression (GBR), RFR, linear regression (LR) and k-nearest neighbor
regression [17]. Several studies have considered domain knowledge of fuel consumption to
build SFC models. Meng and Du used two experience formulas to model fuel consumption
and estimated the formula coefficients using the trust region algorithm [18]. Igor et al.
adopted the numeric fitting method for the recorded SFC data [19]. Some researchers used
multiple linear regression analysis, ridge regression and Lasso regression to model SFC
and obtained excellent experimental results [20,21]. Omer et al. compared Lasso with ridge
regression and found that Lasso had a better performance [22]. Bocchetti et al. used maxi-
mum likelihood estimation to estimate the experience formula coefficients [23]. Bialystocki
and Konovessis applied polynomial regression analysis to depict the relations between
SFC and its influence factors, such as speed and wind [24]. With the recent development
of sensor technologies, the kinds and amounts of collected SFC data are growing rapidly.
However, the existing SFC models, especially those based on machine learning techniques,
cannot easily parse such unstructured data. The multisource and heterogeneous character-
istics of novel fuel consumption data brings challenges to the data tailoring process and
feature extraction.

In order to improve the predictive ability of SFC models, this paper proposes an
integrated model that includes three modules: a multisource data collection module, a
heterogeneous data feature fusion module and a fuel consumption estimation module. First,
in the multisource data collection module, data related to SFC estimation are collected by
multiple sensors attached to ships. Second, the heterogeneous data feature fusion module
employs a series of moving overlapped frames to merge the different sensor data into
small frames, so that common features can be extracted from various sensors with different
sampling frequencies in the time domain. Finally, in the fuel consumption estimation
module, several machine learning methods, such as LR, SVR and ANN, are adopted to
train the SFC models based on the fusion features with an increased accuracy rate of
8.5%, 0.35%, and 51.5% respectively. The main contribution of this paper is to consider
the multi-source and heterogeneous problem of sensor-based SFC data and propose an
integrated model. This model merged the time domain of various sensors, performed
feature extraction to exploit information of SFC data and greatly improved the prediction
accuracy. Moreover, the integrated model could enable more sensor-based SFC data to be
used in fuel consumption estimation.

The remainder of this paper is structured as follows. Section 2 provides a literature
review of SFC data processing methods. Section 3 introduces the proposed model including
multisource data collection, heterogeneous feature fusion and modeling of fuel consump-
tion. This is followed by comparative experiments and result discussions in Section 4.
Section 5 presents the conclusions.
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2. Literature Review
2.1. Advances of SFC Estimation

In recent years, scholars have been committed to the innovative modeling of fuel
consumption models, but rarely paid attention to the issue of data processing. In the
practice of marine navigation, SFC-related data can be divided into two categories: log-
based data and sensor-based data.

2.1.1. Log-Based SFC Data Collection and Modeling

For log-based data, Luan et al. performed outlier elimination with SFC data by
considering three outlier types, namely univariate, multivariate and statistical model
noises [9]. After data preprocessing, the various influencing factors were combined with
different machine learning methods, such as multiple linear regression and multilayer
perception artificial neural network, to model SFC estimation. Tayfun et al. removed
the abnormal SFC data related to human error [21]. An SVR, tree-based algorithm, a
boosting algorithm, multiple linear regression and ridge regression were used. Ioannis
et al. conducted a correlation analysis among SFC influence factors and combined LSTM
with ENN to perform SFC predictions [13]. Ran et al. removed the SFC data for speed
of less than five knots or no cargo loaded [15]. The RFR was then applied to build the
models. With the built model, the navigation speed was optimized subject to minimum
fuel consumption and punctual arrival. The experiments showed fuel consumption could
be reduced by 2–7% with the proposed methods. Gkerekos et al. removed the recorded
anomalies of engine transient data [16]. Domain knowledge was then used to generate new
features. For example, forward and aft draught could be transformed into draft amidships
and trim. Next, feature standardization was conducted. Processed data were put into
various machine learning models to validate the effectiveness of the models. Several
other scholars attempted to find a mathematical relationship between fuel consumption
and its influencing factors, including draft and displacement. Bialystocki and Konovessis
performed three initial corrections to correct recorded SFC data, including draft, weather
and hull roughness [24]. Polynomial regression analysis was then adopted to depict the
relationships between fuel consumption and speed under different weather conditions.
The built SFC model could offer decision support for ship owners and crew members
in voyage planning. Igor et al. also conducted noise removal [19]. In order to tackle
the problem of nonuniform time SFC data, a moving average was adopted. After data
preprocessing, numeric fitting of the recorded data was carried out. Various fitting methods
were compared. Lu et al. used an empirical theory to model SFC [25]. Fuel consumption
could be obtained from engine load at varying speeds and sea states. Several other
investigators provided formulas for SFC modeling. Meng and Du proposed a procedure
for outlier removal based on prior domain knowledge [18]. When the changing rate of SFC
data did not match the sailing speed and wind force scale, the data points were classified as
outliers. In the experiments, the trust region algorithm was used to estimate the parameters
of the SFC experience formula. For data processing, Wang et al. conducted Z-scores for all
feature vectors [20], then Lasso regression was carried out to estimate formula parameters
and implement feature selection to eliminate the high correlations among feature variables.
Compared with SVR and ANN, it was found to have better prediction accuracy. Yang et al.
used a genetic algorithm (GA) to estimate formula parameters [26]. First, due to shipping
companies having specific recording requirements, some information needed for SFC
modeling was not recorded and was calculated from known items. GA was then applied
to determine the formula parameters and the estimation accuracy was good at the frequent
operating conditions of ships.

2.1.2. Sensor-Based SFC Data Collection and Modeling

For sensor-based data, many researchers used ANN to predict SFC. The data of [4]
were obtained from an automatic identification system (AIS). First, data normalization was
performed to accelerate the convergence of the ANN. The built model was then used to
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minimize the fuel consumption of a voyage. Petersen took the multisource problem of SFC
data into account [5]. The data beyond the frequent operation conditions were regarded
as outliers and removed. Windows and feature extraction were then applied to handle
asynchronous SFC data. The mean, variance and mean difference were taken as features.
Next, the processed data were put into the ANN model to predict fuel consumption.
Moreover, Petersen et al. considered several influencing factors such as pitch, sailing
speed, trim, draught, and wind [6]. They changed some of the factors, such as pitch and
sailing speed, to survey the changing trends of SFC. Ye et al. and Yin et al. also used
an ANN model to predict SFC [7,8]. Ye et al. adopted global error and batch gradient
descent to train the ANN [7]. Considering that the speed changes sharply during the arrival
and departure of ships, Yin and Xu rejected the data for speed less than 15 knots, and
normalization was carried out for feature variables [8]. The processed data were then set
as inputs to the ANN model. Yin and Xu adopted a dynamic programming (DP) algorithm
to optimize the navigation speed with punctual arrival. The experiment results showed
that the ship could save 0.71% fuel by following the planned navigation speed. Yasser
removed the missing information and noise in raw SFC data with Z-score and Mahalanobis
distance for univariate and multivariate noises, respectively [10]. The RFR algorithm was
adopted to rank the importance of influencing factors. ANN and multiple regression
analysis were performed for SFC modeling. Yun et al. used the GBR, RFR and LR to build
a prediction model and discussed two SFC reduction strategies [17]. Moreira used ANN to
establish relations between the ship speed and the respective propulsion configuration [11].
Leifsson et al. combined physical knowledge with ANN to generate a grey-box model
of SFC estimation, combining the methods either in series or in parallel [12]. For data
processing, missing data were removed. The data were then resampled and resolved
with a period of 15 s. The experimental results revealed that the prediction accuracy was
significantly improved compared with the pure white-box model. Mou et al. applied RFR
to SFC prediction [14]. The singular value and noise of the raw SFC data were removed, and
the denoised data were numbered and subjected to equidistant sampling and normalization.
The processed data were used as input for the RFR. A partial correlation analysis was
carried out to survey the importance of different influencing factors. Several researchers
have used formulas to depict fuel consumption and estimating formula parameters with
some algorithms. Omer et al. applied Lasso and ridge regression and discussed the
influence of the penalty factor on the prediction accuracy [22]. Bocchetti et al. used the
maximum likelihood estimation algorithm [23]. They carried out variable redefinitions,
such as wind direction being transferred into head wind and cross wind. Feature selection
was then adopted to ensure appropriate regressors were used for the SFC estimation,
and maximum likelihood estimation was used to estimate the regression coefficients.
Lokukaluge et al. presented a Gaussian mixture model (GMM) to divide fuel consumption
into three clusters, and principal component analysis (PCA) was applied to investigate
the impacts of each variable, such as speed, trim and wind [27]. In contrast with SFC
prediction, Troden et al. proposed a method to associate fuel consumption with ship
operation activities [28]. They used Kalman filters to clear dirty data, such as data when the
ship was not underway. According to the changing rate of speed and fuel consumption, the
ship operation was divided into different states. Considering the storage and transfer of
massive SFC data, Perera and Mo proposed a data compression and recovery system [29].
First, the outliers were removed and normalization was performed. Next, an autoencoder
system consisting of PCA was used for data compression. Experiments showed that the
fuel data information was well maintained after compression, which offered a way to
process SFC data online.

2.2. Limitation of SFC Modeling

It can be noted from the literature that although the structure of log-based data is
simple, log- based data cannot describe the fuel consumption situation accurately because
of its low sampling frequency compared with sensor-based data. Machine learning methods
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can greatly improve the estimation accuracy but have a high requirement for the integration
of multisensor cross-module heterogeneous data. Therefore, the sensor-based SFC data
usually need to be processed by complicated feature extraction methods before use as data
for training machine learning models.

Therefore, this study developed an integrated model for SFC estimation:

• Multisource data collection module;
• Heterogeneous data feature fusion module;
• Fuel consumption estimation module.

3. Methodology
3.1. Overview of SFC Estimation

The process of the integrated model is shown in Figure 1. As described, the integrated
model consisted of three modules. First, data were collected by multiple sensors. Next,
features of heterogeneous data were extracted and fused. Finally, some machine learning
methods were adopted to train the SFC mode.

Figure 1. Overview of fuel consumption estimation process.

3.2. Multisource Data Collection Module

In accordance with the previous literature review, it can be noted that the collection
methods of SFC data are mainly divided into log-based data and sensor-based data. Log-
based data are filled in by crew members with low sampling frequency. Because it is
manually filled in, errors or subjective factors are inevitable, such as the judgment of wind
and wave levels. The SFC data and multisource data are collected by multiple sensors
installed aboard ships as shown in Figure 2a.

With the rapid development of sensor technologies, multiple types of sensors are
installed onboard ships. Much navigation-related information can be precisely measured
and obtained. These sensor-based data are closely correlated with the SFC estimation. For
instance, the propeller pitch can affect the thrust efficiency and the speed through water.
The speed through water goes with SFC. The draught and trim angle indicates the loading
conditions of the vessel, which can affect the ship’s water resistance. Therefore, these
sensor-based data are important and useful for SFC estimation. However, owing to the
different sampling frequencies of various sensors, the collected data are unstructured and
heterogeneous, which impedes data processing and utilization. In order to deal with such
heterogeneous data, feature extraction and fusion were carried out as shown in Figure 2b.

3.3. Heterogeneous Data Feature Fusion Module
3.3.1. Data Framing

Because the sampling frequency of various sensors is different, the data are not unified
in time domain. To unify the time domain of different sensors, the method of framing
was adopted. After framing, the frame was set as a new time unit. For framing methods,
the traditional way is a nonoverlapped frame [5] without considering the continuity of
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time series data, as shown in Figure 3a. This study adopted a moving overlapped frame to
maintain the continuity of time series data, as shown in Figure 3b.

Figure 2. Sensor-based ship fuel consumption (SFC) data and multisource data: (a) multiple sensors
aboard ships; (b) multisource data fusion.

Figure 3. Two different framing methods: (a) nonoverlapped frame; (b) moving overlapped frame.
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Using a moving overlapped frame, the processed data have an overlap section between
two adjacent frames, which maintains the coherence of the time series data.

3.3.2. Feature Extraction

The input dimension of machine learning methods is usually set as a constant. How-
ever, the amount of data for different types of sensors was not constant in a frame. To solve
this problem, common features were extracted for different types of sensor data in a
frame. The well-extracted features provide more information for SFC estimation. Previous
research has mainly extracted the statistical features such as mean, variance and mean
difference (MVD). The mean value can indicate the average intensity of data, variance
reflects changing magnitude, and mean difference gives the variation tendencies [5]. In this
paper, two feature extraction methods are proposed.

(i) Statistics features
Two types of statistical features are used in this paper: statistics feature A (SF. A)

comprising mean, variance, mean difference, mode and median; statistics feature B (SF. B)
comprising lower margin (Min), lower quartiles (Q1), median, upper quartile (Q3), and
upper margin (Max).

The feature extraction adopted in [5] is the mean, variance and mean difference of
data in a frame as shown in Figure 4a. The calculation formulas are shown in Equations
(1–3). The variables x and m are data value and data size, respectively, and t is the time
step of the sampled points. I is the interval of frames. However, when the data in the
frame do not strictly satisfy the normal distribution, these three values are not sufficient
to describe the characteristics of data in a frame. For instance, when the data in the frame
were left-skewed or right-skewed, even though the mean was the same, the distributions
were completely different.

Mean(I) =
1
m

m

∑
i=0

xi (1)

Variance(I) =
1
m

m

∑
i=0

(xi −Mean(I))2 (2)

Mean di f f erence(I) =
1

m− 1

m

∑
i=1

xi − xi−1

∆t
, ∆t = ti − ti−1 (3)

Therefore, mode and median were introduced. The median and mode could be used
to reflect the skewed distribution of data in the frame. The mean, variance, mean difference,
mode and median of frame data were extracted as SF. A, as shown in Figure 4b.

The extraction steps of SF. A are listed as follows:
(1) Divide the sensor data into frames. Data from different sensors were divided into

different sensor frames.
(2) Calculate mean, variance, mean difference, mode and median of data in the

respective sensor frame.
(3) Use the mean, variance, mean difference, mode and median as the SF. A of the data

in the sensor frame.
For feature extraction, the principal characteristics of the data were extracted in a

frame. The mean and variance of SF. A could be easily affected by outliers in the frame.
Therefore, SF. B was introduced as shown in Figure 4c. Min, Q1, median, Q3 and Max were
adopted as SF. B [30]. Data larger than Max or smaller than Min were treated as outliers in
each frame.

The extraction steps of SF. B are listed as follows:
(1) Divide the sensor data into frames. Data from different sensors were divided into

different sensor frames.
(2) Sort the data in the respective sensor frame according to the data value. Find the

median, Q3 and Q1 of the data.
(3) Calculate the inter-quartile range, IQR= Q3-Q1.
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(4) Calculate Max and Min of the data in the sensor frame. Min = Q1 − 1.5IQR;
Max = Q3 + 1.5IQR.

(5) Use Min, Q1, median, Q3, Max calculated above as the SF. B of the data in the
sensor frame.

Figure 4. Statistics feature extraction: (a) MVD; (b) SF. A; (c) SF. B.

(ii) Time sequence feature (TSF)
The prementioned statistics feature only considered the distribution of the data. How-

ever, the collected data were time-series data. Therefore, a method for extracting TSF was
proposed based on hierarchical clustering.

The data value and time step were adopted as clustering attributes to extract the
TSF of data in a frame using the following steps. First, the number of TSF points k needs
to be set up before hierarchical clustering. Then, the Euclidean distance of every two
adjacent sampled points is calculated in the time domain. The two adjacent data points
with minimum distance are combined by taking the mean value of those two points.
The prementioned process is repeated until the predefined number of feature points k is
obtained. The pseudo code for extracting TSF is shown in Algorithm 1.

Algorithm 1 Time Sequence Feature (TSF) extraction

Input: d (data in a frame), k (number of feature points)
Output: TSF
1: epoch=length(d)-k
2: for i=1 to epoch do
3: for j=1 to length(d) do
4: dis(j)=dist(d(j), d(j+1))
5: end for
6: minidx=Min(dis)
7: d(minidx)=(d(minidx)+d(minidx+1))/2
8: delete(d(minidx+1))
9: end for
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After applying the TSF extraction algorithm, a series of centers, c1, c2, . . . , ck, were
obtained as shown in Figure 5. These cluster center rankings in time order expressed the
time sequence characteristics of the data in the frame. These values c1, c2, . . . , ck were
adopted as the TSF.

Figure 5. Extraction of TSF from sensor frame.

3.3.3. Data Structure and Feature Fusion

In the previous section, SFC-related data were collected. Considering that the time
domain of these sensors was not unified, framing and feature extraction were applied. Two
types of feature extraction methods were proposed, statistical features and TSF. In this
section, data structure and fusion features were are presented.

(i) Data structure
In this section, the input and output matrices of the SFC models are introduced.

As shown in Equation (4), this integrated model tries to find a relationship f between input
matrix X and the output matrix Y. The influence factors of the ith frame were adopted to
predict the SFC of the (i + 1)th frame.

X =



x1
x2
...

xi
...

xl−1


, Y =



y2
y3
...

yi+1
...

yl


, Y = f (X) (4)

xi = {s(1)i, · · · , s(j)i, · · · , s(m)i} (5)

For the ith frame, m types of SFC-related information were collected by m sensors
installed on board ships as shown in Equation (5).

For every sensor’s ith frame, the feature extraction algorithm was applied to obtain
the data feature of that frame. The features of m sensors were adopted to represent the ith
frame ship status. Then the influence factors Xi were used to estimate the SFC Yi+1.

As mentioned previously, two feature extraction methods were proposed. For SF. A,
the mean, Var, Dif, Med and Mode of data were extracted for ith frame of every kind of
sensor as shown in Equation (6).

xSF.A
i =



s(1)i =
{

s(1)mean
i , s(1)variance

i , s(1)mean di f f erence
i , s(1)median

i , s(1)mode
i

}
...

s(j)i =
{

s(j)mean
i , s(j)variance

i , s(j)mean di f f erence
i , s(j)median

i , s(j)mode
i

}
...

s(m)i =
{

s(m)mean
i , s(m)variance

i , s(m)
mean di f f erence
i , s(m)median

i , s(m)mode
i

}
(6)
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Considering the effect of outliers in sensor frame, the SF. B was proposed. Min, Q1,
Med, Q3 and Max were extracted as SF. B as shown in Equation (7).

xSF.B
i =



s(1)i =
{

s(1)Max
i , s(1)Q3

i , s(1)median
i , s(1)Q1

i , s(1)Min
i

}
...

s(j)i =
{

s(j)Max
i , s(j)Q3

i , s(j)median
i , s(j)Q1

i , s(j)Min
i

}
...

s(m)i =
{

s(m)Max
i , s(m)Q3

i , s(m)median
i , s(m)Q1

i , s(m)Min
i

}
(7)

To extract the time sequence characteristics of the data in a frame, the TSF feature was
proposed based on a hierarchical clustering algorithm. The cluster center c1, c2, · · · , ck was
adopted as the TSF as shown in Equation (8).

xTSF
i =



s(1)i =
{

s(1)c1
i , s(1)c2

i , · · · , s(1)ck−1
i , s(1)ck

i

}
...

s(j)i =
{

s(j)c1
i , s(j)c2

i , · · · , s(j)ck−1
i , s(j)ck

i

}
...

s(m)i =
{

s(m)c1
i , s(m)c2

i , · · · , s(m)
ck−1
i , s(m)

ck
i

}
(8)

(ii) Feature fusion
The statistics feature only considered the data distribution in the frame. However, the

TSF can also reflect the time sequence characteristics of the data in the frame. Therefore, in
this part, different types of features are fused together. For sensor j = 1 to m, the SF. A and
SF. B were fused as shown in Equations (9) and (10).

{SF.A, SF.B} =
{

xSF.A
i , xSF.B

i

}
, xSF.A

i ∈ SF.A, xSF.B
i ∈ SF.B (9)

s(j)SF.A,SF.B
i =

{
s(j)mean

i , s(j)variance
i , s(j)mean di f f erence

i ,

s(j)median
i , s(j)mode

i , s(j)Max
i ,

s(j)Q3
i , s(j)median

i , s(j)Q1
i , s(j)Min

i

} (10)

The statistics feature was combined with TSF for the purpose of considering both the
distribution and time sequence characteristics of sensor-based data in the frame. For sensor
j = 1 to m, the SF. A and TSF were fused as shown in Equations (11) and (12). The SF. B
and TSF were fused as shown in Equations (13) and (14). Then SF. A, SF. B and TSF were
fused together as shown in Equations (15) and (16).

{SF.A, TSF} =
{

xSF.A
i , xTSF

i

}
, xSF.A

i ∈ SF.A, xTSF
i ∈ TSF (11)

s(j)SF.A,TSF
i =

{
s(j)mean

i , s(j)variance
i , s(j)meandi f f erence

i ,

s(j)median
i , s(j)mode

i ,
s(j)c1

i , s(j)c2
i , · · · , s(j)ck−1

i , s(j)ck
i

} (12)

{SF.B, TSF} =
{

xSF.B
i , xTSF

i

}
, xSF.B

i ∈ SF.B, xTSF
i ∈ TSF (13)

s(j)SF.B,TSF
i = {s(j)Max

i , s(j)Q3
i , s(j)median

i , s(j)Q1
i , s(j)Min

i ,
s(j)c1

i , s(j)c2
i , · · · , s(j)ck−1

i , s(j)ck
i }

(14)

{SF.A, SF.B, TSF} =
{

xSF.A
i , xSF.B

i , xTSF
i

}
, xSF.A

i ∈ SF.A, xSF.B
i ∈ SF.B, xTSF

i ∈ TSF (15)
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s(j)SF.A,SF.B,TSF
i =

{
s(j)mean

i , s(j)variance
i , s(j)meandi f f erence

i , s(j)median
i

s(j)mode
i , s(j)Max

i , s(j)Q3
i , s(j)median

i , s(j)Q1
i

s(j)Min
i , s(j)c1

i , s(j)c2
i , · · · , s(j)ck−1

i , s(j)ck
i

} (16)

3.4. Fuel Consumption Estimation Module

The fuel consumption estimation was used to interpret the relationships between
the influencing factors x {s(1), · · · , s(j), · · · , s(m)}, and the SFC as y. In this module,
three machine learning methods were applied to SFC estimation based on the influencing
factors x.

3.4.1. LR-Based SFC Estimation

LR provided that the relations between the influencing factors x and SFC y was linear.
The hypothesis and cost function of LR could be written as Equations (17) and (18).

f (x, θ) = θ0+θ1s(1) + . . . + θjs(j) + . . . + θms(m) (17)

J(θ0, θ1, θ2, . . . , θ10) =
1

2m

m−1

∑
i=1

(yi+1 − f (xi, θ))2 (18)

The optimization objective was to find out the parameters θ0, θ1, θ2, . . . , θm, which
could minimize the error between the predicted SFC and real SFC.

3.4.2. SVR-Based SFC Estimation

SVR was extended by a support vector machine (SVM). In SVR, the influencing factors
x {s(1), . . . , s(j), . . . , s(m)} were mapped into a higher dimensional feature space by a
kernel function, ϕ, as shown in Equation (19). The widely adopted kernel functions were
linear kernel, polynomial kernel and radial basis function (RBF) kernel.

f (x, W) = Wϕ(x) + b (19){
min 1

2 ‖W ‖2

s.t. |yi+1 − f (xi, W)| ≤ ε, ∀i i = 1, . . . , m− 1
(20)

In the higher dimensional feature space, a hyper plane was estimated that minimized
the largest distance between the mapped points and the hyper plane, subject to the distance
from all mapped points to the hyper plane being less than ε. The optimization objective of
SVR is shown in Equation (20).

3.4.3. ANN-Based SFC Estimation

In this paper, a deep neural network was applied on SFC estimation. The deep neural
network consisted of three layers, namely input layer, hidden layer and output layer.
For the input layer, the influencing factor x was transferred into hidden layer as shown in
Equation (21).

O1 = b1 + W1x (21)

In the hidden layer, the hidden layer activation function σ was adopted to increase
the nonlinear characteristics of network as shown in Equation (22).

O2 = σ(W2O1 + b2)
O3 = σ(W3O2 + b3)

. . .
Oi = σ(WiOi−1 + bi)

. . .
On = σ(WnOn−1 + bn)

(22)
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Finally, in the output layer, the output layer activation function δ was applied resulting
in the network output as shown in Equation (23).

f (x, W) = δ(Wn+1On + bn+1) (23)

argmin
(W,b)

m−1

∑
i=1

(yi+1 − f (xi, W))2 (24)

The optimization objective is shown in Equation (24), which was to find weights W
and bias b that minimized the error between the predicted and real SFC.

4. Experiments
4.1. Data Description

The data used in this article was provided by the Danish University of Technology and
comes from a passenger roll-on roll-off (ro-ro) ship operating from the port of Thorshavn,
capital of the Faroe Islands to Suduroy [5]. A single voyage takes approximately two hours,
with two to three round trips per day. Its main routes are shown via the Elane route data in
Figure 6. Route 1 (R1) is the main route, and Route 2 (R2) is the backup route when R1 is
experiencing heavy weather and sea conditions. The experimental data contained fifty-two
voyages, including 40 voyages using the R1 route and 12 voyages using the R2 route. The
main particulars of the case ship are listed in Table 1.

Figure 6. Main route of the case ship.

Table 1. Principal particulars of the case ship.

Parameters Value

LOA (Length Overall) 135 m
Molded Width 22.7 m
Molded Depth 8.1 m
Designed Draft 5.6 m
Designed Speed 21 knots

Main Engine Power 3360 kW (Four)
Auxiliary Engine Power 515 kW (Four)

IMO Number 9275218

4.2. Multisource Data Analysis

The experimental data were collected by the nine sensors installed aboard ship, namely
speed (V) by the Doppler log stern, headwind (H) and crosswind (C) by a wind sensor
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on the mast, port and starboard rudder angle (Rpor, Rsta) by a rudder angle indicator
astern, port and starboard propeller pitch (Ppor, Psta) by a propeller sensor astern, fuel
consumption (Fuel) by a fuel flow meter astern, port and starboard draught (Dpor, Dsta) by
a radar level meter amidships, trim (T) by pitching adjustors stem and stern. The sampling
periods are shown in Table 2. Statistical analysis was carried out for these sensor-based
data, as shown in Figure 7. The notation µ and σ in Figure 7 are the mean value and
variance of the normal distribution.

Table 2. Sampling period of diverse sensors.

Sensor Sampling Period (s)

Speed through water 3.00
Trim 0.50

Draught 0.45
Wind speed and direction 2.00

Rudder angle 1.00
Fuel consumption 1.00

Propeller pitch 1.00

The headwind satisfied the normal distribution almost exactly. In total, 83.8% of
the data were distributed between 0 to 25 m/s. For crosswind, the distribution was not
normally distributed and had two peaks, at −10 m/s and 0 m/s. A total of 77.73% of
the data were between −10 and 10 m/s, showing that the crosswind from the port and
starboard sides was nearly equal (see Figure 7a).

The draught also satisfied the normal distribution. The draught had little change,
from 5 to 6 m. This reflected that the ship was a passenger ship and did not need to load
cargo, so loading conditions did not change significantly. The draught of the port and
starboard were nearly equal, indicating that the ship did not list (see Figure 7b).

4.3. Heterogeneous Data Feature Fusion
4.3.1. Optimization of Frame Size and Overlap Size

As previously mentioned, the moving-overlapped frame can better maintain the
continuity of the data in comparison with the nonoverlapped frame. To verify this, an
indicator termed the mean interval error (MIE) was defined as the mean value of the data
interval error.

The formula for calculating MIE was shown as follows:

MIE =
1

m− 1

m−1

∑
i=1

(xi+1 − xi) (25)

In this section, the influence of frame size and overlap size on MIE is discussed.
This paper compares two different framing methods, namely nonoverlapped frames and
moving overlapped frames. The data processing’s pseudo code is shown in Algorithm 2.
The frame size was set to 30, 50, 70, 90 and 110 s and the overlap size was set as 20, 40
and 60% of the frame size, respectively. The results of the MIE are shown in Table 3 and
Figure 8.
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Figure 7. Statistical analysis of variables: (a) headwind and crosswind; (b) port and starboard draught; (c) fuel flowrate;
(d) ship speed.
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Algorithm 2 Data processing algorithm of framing

Input: d (frame size), l (overlap size), D (original sensor data), C (framing methods)
1: N, number of windows
Output: SF. A, SF. B, TSF
2: Initialize: SF. A←Ø, SF. B←Ø, TSF←Ø
3: Framing, find the start point Ts and end point Te of original sensor data sequence D
4: if C=Nonoverlapped frame then
5: N=(Te−Ts)/d
6: for i=1 to N do
7: Si =D(Ts +(i−1)*d, Ts +(i*d))
8: end for
9: end if
10: if C=Moving-overlapped frame then
11: N= (Te -d-Ts)/((1-l) *d)
12: for i= 1 to N do
13: Si = D(Ts +(i−1)*(1-l)*d, Ts +(i−1)*(1-l)*d+d)
14: end for
15: end if
16: for each Si do
17: SF. A. append ([mean(Si), variance(Si), mean difference(Si), median(Si), mode(Si)])
18: SF. B. append ([Max(Si), Q3(Si), median(Si), Q2(Si), Min(Si)])
19: TSF. append (extract_TSF(Si))
20: end for

Table 3. Mean interval error (MIE) for different framing methods.

Frame Size (s)

MIE

Nonoverlapped Frame
Moving Overlapped Frame

Overlap Size (20%) Overlap Size (40%) Overlap Size (60%)

30 0.19 0.17 0.13 0.10
50 0.21 0.18 0.15 0.11
70 0.23 0.20 0.16 0.11
90 0.25 0.21 0.17 0.12
110 0.26 0.23 0.18 0.13

Figure 8. MIE of different framing methods.

As can be seen from Figure 8, when the frame size changed from 30 to 110, the MIE
of the moving overlapped frame was always lower than that of the nonoverlapped frame.
With the increments of frame size, the MIE of both the moving-overlapped frame and
nonoverlapped frame increased. For the overlap size, the larger the overlap size, the smaller
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the MIE. It can be seen that the moving overlapped framing method better maintained the
continuity characteristics of the original sensor data.

4.3.2. Optimization of TSF Clusters

In this section, the cluster number of the TSF is discussed. An indicator called area
error (AE) is given in Equation (26). The AE is the deviation between the area under
the original data curve and the extracted TSF feature. The smaller the AE, the better the
extracted TSF feature preserves the original data information.

AE =
∣∣∣S f eature − Soriginal

∣∣∣ (26)

Experimentally, the cluster number was set to 2, 3, 4 and 5. The results are shown in
Table 4. The experimental results showed that with the increase in cluster number, the AE
decreased, which means that the larger the cluster number, the better the TSF maintained
the information of the original data.

Table 4. Area error (AE) of different cluster numbers.

Cluster Numbers k = 2 k = 3 k = 4 k = 5

AE 246.02 199.56 148.20 123.04

4.3.3. Setting of Feature Fusion

In this section, the AE of features after fusion is discussed. From Section 4.3.2, it is
concluded that the AE can indicate the ability of features to preserve original data infor-
mation. The ability of the fused features such as (SF. A, TSF), (SF. B, TSF) and (SF. A, SF. B,
TSF) were evaluated, and the results are shown in Table 5.

Table 5. AE of fused features.

Features TSF (SF. A, TSF) (SF. B, TSF) (SF. A, SF. B, TSF)

AE 123.04 108.36 72.09 79.22

The results show that the AE was decreased when statistics features were fused with
TSF. The (SF. A, TSF) fusion decreased the AE by 11.9%, while the (SF. A, SF. B, TSF) fusion
decreased the AE by 35.6%. The best performance was obtained by (SF. B, TSF) with a
decrease of 41.4% in the AE. In general, with fused features, the AE is decreased and data
information was better preserved.

4.4. SFC Model Establishment and Estimation
4.4.1. Evaluation Indicator

The root mean squared error (RMSE) is the square root of the mean square deviation
of the estimated SFC from the real SFC for a number of observations m. A smaller value of
RMSE means that the estimation results obtained by the integrated SFC estimation model
better approximated the real value. The calculation formula of the RMSE is shown in
Equation (27), where ŷi+1 = f (x) is the estimated value and yi+1. is the real value.

RMSE =

√√√√ 1
m− 1

m−1

∑
i=1

(ŷi+1 − yi+1)
2 (27)

4.4.2. Comparison of SFC Models

In order to investigate the application of different feature extraction methods on
various machine learning methods, three machine learning methods were adopted to
train SFC models, namely LR, SVR and ANN. Different feature extraction methods were
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compared, namely SF. A, SF. B and TSF. Moreover, statistical features were combined with
TSF, giving combinations (SF. A, TSF), (SF. B, TSF) and (SF. A, SF. B, TSF). The SF. A and SF. B
were also combined. The parameters of the machine learning methods are discussed below.

The penalty factor in SVR had little effect on the estimation accuracy and was set as
1.0 in the experiments. Three kernel functions were adopted, namely radial basis function
(RBF), linear and polynomial. For the polynomial kernel function, the polynomial degree
varied between 3 and 11. The results are illustrated in Figure 9a, which shows that the
polynomial kernel function of degree 9 obtained the best estimation accuracy. In the ANN,
two types of activation functions were adopted, namely Tanh and Sigmoid. The best
estimation results were obtained by the Tanh activation function with two hidden layers,
the first of 50 neurons, and the second of 30 neurons, as shown in Figure 9b. With the
optimized parameters, the proposed feature extraction methods were compared with the
method adopted in [5]. The results are shown in Table 6 and Figure 10.

Figure 9. Parameter tuning results: (a) support vector regression (SVR); (b) artificial neural net-
work (ANN).

As can be seen from Table 6 and Figure 10, the accuracy of ANN was the best, followed
by LR and SVR (polynomial). For LR, the SF. A could improve the RMSE with 0.9%, while
SF. B improved the RMSE by 1.9%. When time sequence characteristics were considered,
the RMSE improved by 2.8% and 5.7% with (SF. A, TSF), and (SF. B, TSF), respectively. The
best result was shown for (SF. A, SF. B, TSF), with an improvement of 8.5%. The overall
accuracy of the SVR model was not very good. Only the SF. A improved the RMSE by
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0.35%. In general, ANN had a better performance with higher accuracy. With SF. A, SF. B
and TSF, the RMSE was improved by 22.8, 47.5 and 37.6%, respectively. Combining TSF
with statistical features, (SF. A, TSF) and (SF. B, TSF) improved the RMSE by 38.6 and 51.5%.
The (SF. A, SF. B) and (SF. A, SF. B, TSF) showed little improvement compared with SF.B.
The accuracy of (SF. A, SF. B) was even lower than SF.B.

Table 6. Comparison of feature extraction methods based on various machine learning methods.

Feature Extraction Methods LR SVR (Polynomial) ANN (Two Hidden Layers (50,30))

MVD 0.0105 0.0574 0.0101
SF. A 0.0104 0.0572 0.0078
SF. B 0.0103 0.0575 0.0053
TSF 0.0119 0.0576 0.0063

(SF. A, TSF) 0.0102 0.0577 0.0062
(SF. B, TSF) 0.0099 0.0577 0.0049

(SF. A, SF. B) 0.0098 0.0580 0.0054
(SF. A, SF. B, TSF) 0.0096 0.0580 0.0054

Figure 10. Comparison of SFC models.

In summary, with the proposed model, the estimation accuracy could be improved
for some frequently adopted machine learning methods. The best estimation result was
obtained using (SF. B, TSF) with ANN. For LR, better performance was achieved by (SF. A,
SF. B, TSF). The SF. A was more useful for SVR (polynomial).

4.5. Fuel Consumption Estimation of Real Voyages

After finishing the model establishment procedure, the SFC of a real ship on voyages
could be estimated. As mentioned in Section 4.1, there were two routes for the case ship,
forty voyages for R1 and 12 voyages for R2. From the machine learning method and feature
comparison of Section 4.4, the ANN combined with (SF. B, TSF) features were adopted.

For both R1 and R2, a boxplot of the estimation error was given, and the results
are shown in Figure 11. The RMSE of R1 and R2 were extremely close to each other,
varying from 0.002 to 0.009. For both R1 and R2, the model performed well in providing an
estimation result. This proved that the model can perform a favorably for different routes.

The estimation accuracy of different MIE was also discussed and the R-squared of
different with different MIE for both routes is shown in Figure 12. For the R2, the fuel
consumption mainly distributed between 0.60 to 0.70. The R1 also mainly distributed
between 0.60 to 0.70, but still had a big part within 0.50 to 0.60. The experimental results
showed that with the increasement of MIE, the R-squared of both routes decreased. The
larger MIE made it difficult to estimate the fuel consumption rate exactly.
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Figure 11. Estimation results of two routes for the case ship.

Figure 12. Estimation accuracy of different MIE: (a) R1; (b) R2.

5. Conclusions

This study proposed an integrated SFC model consisting of three parts: a multisource
data collection module, a heterogeneous data feature fusion module and a fuel consumption
estimation module. In the multisource data collection module, data types and collection
methods were introduced. In heterogeneous data feature fusion module, to fuse the
heterogeneous data, feature extraction and fusion were adopted. In the fuel consumption
estimation module, three machine learning methods were used to train the integrated
SFC model.
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The academic contributions of this paper can be summarized as follows. (a) For
unifying the time domain of multisource data, the framing method was adopted. Two
framing methods were compared, and it was found that the moving overlapped frame
was more effective. (b) The TSF feature was proposed to consider the time sequence
characteristics of data. Statistical features and TSF were fused for considering both data
distribution and time sequence. (c) The fused (SF. B, TSF) feature had a better estimation
accuracy with ANN, especially for the R1.

For further studies, we will continue to improve the framing methods and feature
fusion methods to obtain a smaller MIE and better prediction accuracy of fuel consumption
estimation. We will also examine the application of the proposed model on other real-world
cases of SFC analysis and prediction.

Author Contributions: The writing-review, editing, methodology, and format analysis were devel-
oped by Y.Z. (Yi Zuo) The data analysis and original draft were performed by Y.Z. (Yongjie Zhu) T.L.
performed supervision and validation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (under
Grant Nos. 61751202, U1813203, 51939001, 61976033), the Science and Technology Innovation Funds
of Dalian (under Grant No. 2018J11CY022), the LiaoNing Revitalization Talents Program (under
Grant Nos. XLYC1807046, XLYC1908018 XLYC1807046, ), the Natural Science Foundation of Liaoning
Province (under Grant Nos. 2019-ZD-0151, 2020-HYLH-26) and the Fundamental Research Funds for
the Central Universities (under Grant No. 3132019345) and the APC was funded by the LiaoNing
Revitalization Talents Program (under Grant No. XLYC1807046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The fuel consumption related data can be found at the link of http:
//cogsys.imm.dtu.dk/propulsionmodelling/data.html (accessed on 5 February 2021).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

Abbreviations

No. Full name in English Abbreviation
1 Ship fuel consumption SFC
2 Linear regression LR
3 Support vector regression SVR
4 Artificial neural network ANN
5 International maritime organization IMO
6 Long short-term memory LSTM
7 Elman neural network ENN
8 Random forest regression RFR
9 Extra tree regression ETR
10 Gradient boosting regression GBR
11 Genetic algorithm GA
12 Automatic identification system AIS
13 Dynamic programing DP
14 Gaussian mixture model GMM
15 Principal component analysis PCA
16 Mean, variance, and mean difference MVD
17 Statistical feature A SF. A
18 Statistical feature B SF. B
19 Time sequence feature TSF
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No. Full name in English Abbreviation
20 Lower margin Min
21 Lower quartiles Q1
22 Upper quartiles Q3
23 Upper margin Max
24 Mean interval error MIE
25 Area error AE
26 Root mean squared error RMSE
27 Support vector machine SVM
28 Radial basis function RBF
29 Route 1 R1
30 Route 2 R2
31 Speed V
32 Head wind H
33 Cross wind C
34 Port rudder angle Rpor
35 Starboard rudder angle Rsta
36 Port propeller pitch Ppor
37 Starboard propeller pitch Psta
38 Fuel consumption Fuel
39 Port draught Dpor
40 Starboard draught Dsta
41 Trim T
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19. Vujović, I.; Šoda, J.; Kuzmanić, I.; Petković, M. Predicting External Influences to Ship’s Average Fuel Consumption Based on

Non-Uniform Time Set. J. Mar. Sci. Eng. 2020, 8, 625. [CrossRef]

http://doi.org/10.1016/j.cor.2015.04.004
http://doi.org/10.1016/j.jclepro.2019.01.032
http://doi.org/10.1179/str.2012.59.1.007
http://doi.org/10.3390/jmse9020119
http://doi.org/10.1016/j.simpat.2008.03.006
http://doi.org/10.3390/electronics9050776
http://doi.org/10.1016/j.tre.2020.101930
http://doi.org/10.1016/j.oceaneng.2019.106282
http://doi.org/10.1016/j.jclepro.2020.121564
http://doi.org/10.1016/j.trb.2015.11.007
http://doi.org/10.3390/jmse8090625


J. Mar. Sci. Eng. 2021, 9, 273 22 of 22

20. Wang, S.; Ji, B.; Zhao, J.; Liu, W.; Xu, T. Predicting ship fuel consumption based on LASSO regression. Transp. Res. Part D Transp.
Environ. 2018, 65, 817–824. [CrossRef]
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