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Abstract: In this paper, the tracking control problem of underwater robot manipulators is investigated
under the influence of the lumped disturbances, including unknown ocean current disturbances and
parameter uncertainties. The proposed novel continuous nonsingular finite–time (CNFT) control
method is twofold. Firstly, the modified adaptive super–twisting algorithm (ASTA) is proposed with
a nonsingular fast terminal sliding mode (NFTSM) manifold to guarantee the finite–time convergence
both in the sliding mode phase and the reaching phase. Secondly, a higher–order super–twisting
disturbance observer (HOSTDO) is exploited to attenuate the effects of the lumped disturbances.
Considering the time–varying gain matrix of the closed–loop control system, the bounded stability
is strictly proved via the Lyapunov theory. Hence, the superiority of the proposed controller is
singularity–free, fast convergence, chattering–free, high steady–state tracking performance, and
good robustness by resorting to the methods of CNFT control and ASTA in combination with a
disturbance observer. Finally, numerical simulations are conducted on a two degree–of–freedom
(DOF) underwater robot manipulator to demonstrate the effectiveness and high tracking performance
of the designed controller.

Keywords: underwater robot manipulators; continuous finite–time control; adaptive super–twisting
algorithm; disturbance observer; time–varying gain matrix

1. Introduction

The last few decades have seen giant undersea technological improvements on un-
derwater robot manipulators in many scientific fields, such as oceanographic observation,
sub–sea detection, and some military applications [1]. Considering the complex underwa-
ter circumstances, it is quite difficult to complete tasks with high control precision and a
fast dynamic response [2]. Hence, the impact of the hydrodynamic forces, such as drag
torques and buoyancy torques, should be considered [3]. Minglu Zhang et al. performed
the modeling analysis and the simulation of a viscous hydrodynamic model of single–DOF
underwater manipulators [4]. In addition, the hydrodynamic regulation was analyzed
for underwater manipulators [5]. However the tracking problem was not included. Con-
sidering the roughly modeled hydrodynamics, some robust control strategies have been
proposed for underwater manipulators in the last few decades to achieve satisfactory track-
ing performance. A proportional–integral–derivative (PID) control scheme was designed
for the underwater cable–driven hyper–redundant manipulator, which experimentally
achieved underwater grasping and load carrying [6]. A model–reference adaptive control
was proposed for a hydrodynamic underwater manipulator to deal with the nonlinear
dynamics and hydrodynamics [7]. Besides, sliding mode control was designed for the
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underwater manipulator but the hydrodynamic effect was only regarded as the external
disturbances [8]. However, the robustness and the precision can not be ensured at the
same time. In 2020, an adaptive sliding mode control was proposed for the underwater
manipulator to achieve finite time tracking with the asymmetric saturation [9]. Chao Yang
et al. combined the adaptive control, sliding mode and PID control to address the joint
tracking control problem [10]. However, the proposed sliding mode controllers still suffer
from the chattering problem, which decreases tracking performance. Hence, it is still a
great challenge to obtain high precision and strong robustness tracking results.

Sliding mode (SM) control has been wildly considered in many nonlinear systems
with significant uncertainties [11]. In recent years, different kinds of sliding mode control,
including robust sliding mode control [12], multiple sliding mode control [13], and dynamic
sliding mode control [14], have been widely investigated. Specially, the nonsingular fast
terminal sliding mode (NFTSM) control was proposed to achieve fast convergence and
singularity–free at the same time [15–17]. However, the discontinuous nature of the
control law always leads to an undesirable chattering problem [18]. Thus the higher–
order SM (HOSM) method was proposed to reduce the chattering effect [19,20]. The core
idea of HOSM control is to design a continuous sliding variable which is differentiable
up to the higher order, so as to ensure the continuity of control signals [21]. In the SM
control community, the super–twisting algorithm (STA) is one of the most effective HOSM
techniques to achieve a high control accuracy [22,23]. However, these control methods
require the prior information of the lumped disturbances, which is not easily accessible for
the underwater robot manipulator system in a submarine environment. In order to tackle
this problem, the adaptive method for the switching function, which is known as adaptive
STA (ASTA), can be used [24,25].

Although TSM control with STA can be demonstrated stable through strict Lyapunov
theory [23], it is difficult to prove the stability when combining NFTSM control with
STA because of the time–varying gain matrix. Some researches directly utilized STA to
eliminate the chattering without strict proof [26], while others adopted an integral sliding
surface to avoid this issue [27]. Therefore, it is meaningful to take the time–varying gain
matrix into consideration when proving the stability of the control system through strict
Lyapunov theory.

It is worth noting that the STA can also be used for system observation [28]. J. A. Moreno
demonstrated the stability and robustness of a second–order super–twisting observer for
a nonlinear system by using strict Lyapunov functions [29]. Besides, a super–twisting
observer was proposed for a Stewart platform to solve the forward kinematics problem [30].
However, most of these super–twisting observers are used to estimate the state variables,
and a minority of them are considered to approximate the lumped disturbances.

Motivated by the above mentioned studies, our target is to propose a novel CNFT con-
trol for the underwater robot manipulators. The contributions of our paper are concluded
as follows: (1) A novel HOSTDO–based NFTSM control with the modified ASTA scheme is
firstly proposed for the underwater robot manipulators considering the unknown lumped
disturbances. It provides a new theoretical way to resolve the chattering problem, which is
the main obstacle for the application of SM control. (2) The modified ASTA is formulated
to reserve the merits of traditional STA while prior information of the lumped disturbances
is not needed. Additionally, it has a faster convergence rate than the standard STA. (3) The
disturbance attenuation is achieved through the HOSTDO, which can strongly improve
robustness of the control system. (4) Considering the time–varying gain matrix due to the
combination of NFTSM and modified ASTA, the corresponding closed–loop stability of the
control system is strictly verified through the Lyapunov theory.

The rest of our paper is organized as follows. The dynamic model of the underwater
robot manipulators and some fundamental facts are presented in Section 2. The detailed
structural procedure of the control strategy is reported in Section 3. In Section 4, the
proposed control is applied to a two–DOF underwater robot manipulator. The trajectory
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tracking performances are also compared with those of the other three controllers. Finally,
concluding remarks are given in Section 5.

2. Problem Formulation
2.1. Underwater Robot Manipulator Model and Properties

The n–joint underwater robot manipulators can be described by the following Euler–
Lagrange equation [31,32]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τw(q, q̇) = τedis + τ (1)

where q, q̇, q̈ ∈ Rn denote the position, velocity, and acceleration vectors of joints, respec-
tively; M(q) ∈ Rn×n , C(q, q̇) ∈ Rn, G(q) ∈ Rn are the inertia matrix, Coriolis/centrifugal
matrix, and gravitational vector, respectively; τw(q, q̇) ∈ Rn denotes the hydrodynamic
force vector, which contains drag torque τD and buoyancy torque τB and satisfies τw =
τD + τB; τedis ∈ Rn is the unknown external disturbance vector; and τ ∈ Rn denotes the
control input torque vector.

Assumption 1. The model parameters can be partitioned into different parts which can be
given as follows: M(q) = M0(q) + M∆(q), C(q, q̇) = C0(q, q̇) + C∆(q, q̇), G(q) = G0(q) +
G∆(q), τw(q, q̇) = τw0(q, q̇) + τw∆(q, q̇), where M0(q), C0(q, q̇), G0(q), and τw0(q, q̇) are the
nominal parts and M∆(q), C∆(q, q̇), G∆(q) and τw∆(q, q̇) denote the uncertain bounded parts.

Assumption 2. The target trajectory and its derivatives qd, q̇d, q̈d ∈ Rn are known and bounded.

To simplify the design and analysis of the proposed controller, we define x1 = q,
x2 = q̇, and considering Assumption 1, the dynamic model (1) can be rewritten as:

ẋ1 = x2

ẋ2 = M0
−1(x1)u(t) + f (x1, x2) + ∆(x1, x2, t)

y = x1

(2)

where f (x1, x2) = M0
−1[−C0x2 − G0 − τw], u(t) = τ is the time–varying control input, and

∆ ∈ Rn represents the lumped disturbance vector which is defined as
∆(x1, x2, t) = M−1

0 [−M∆x2 − C∆x2 − G∆ − τw∆ + τedis].
The control objective is to design a proper controller so that high tracking precision

and fast convergence can be obtained without chattering and singularity problems.

Remark 1. The fluid in the underwater circumstance should be irrational and unbounded, thus
the rotation of the fluid could be very small compared with that of the rigid body.

Remark 2. The added mass torque and the vortex influence are not considered in this paper.
Considering the fact that the acceleration of the underwater manipulator body is always slow, the
added mass torque and the vortex influence are small enough to be neglected in practical underwater
robotic applications.

2.2. Fundamental Facts

Our control method will be accomplished based on some fundamental facts to achieve
the finite–time convergence and system stability.

Definition 1. For the sake of brevity and clarity, we define that diag{·} ∈ Rn×n stands for the
positive definite diagonal matrix, and the vectors sgn(ς) ∈ Rn and ς[r] ∈ Rn are as follows:
sgn(ς) = [sign(ς1), · · · , sign(ςn)]

T , ς[r] =
[
|ς1|rsign(ς1), · · · , |ςn|rsign(ςn)

]T , where
ς = [ς1, · · · , ςn]

T ∈ Rn is the vector variable, r > 0 stands for a known constant, and when r ≥ 1,
it can be verified that d

dt ς[r] = r|ς|r−1ς̇. Besides, sign(·) is a standard symbolic function.
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Definition 2. The powers of error vectors are defined as:

e[ϕ] =
[
e[ϕ]1 , · · · , e[ϕ]n

]T
∈ Rn

ė[l/p ] =
[
ė[l/p ]

1 , · · · , ė[l/p ]
n

]T
∈ Rn

ė[2−l/p ] =
[
ė[2−l/p ]

1 , · · · , ė[2−l/p ]
n

]T
∈ Rn

|e|ϕ−1 = diag
{
|e1|ϕ−1, · · · , |en|ϕ−1

}
∈ Rn×n

|ė|(l/p )−1 = diag
{
|ė1|(l/p )−1, · · · , |ėn|(l/p )−1

}
∈ Rn×n.

(3)

Lemma 1 ([33]). Considering a system described in (2), and any real numbers a > 0 and 0 < b < 1
so that the Lyapunov function V(x) is positive definite and V̇(x)+aVb(x) is negative semi–definite,
the control system will be stable and all the signals will be bounded in finite time, and the settling
time can be estimated by T0 ≤ 1

a(1−b)V1−b(x0).

3. The Design of CNFT Control Based on HOSTDO and ASTA

In this section, a novel CNFT control method based on ASTA is proposed for under-
water manipulators. First, a NFTSM manifold is designed to be free from the singularity
problem. Second, the modified STA is derived from the adaptive method to alleviate the
chattering phenomenon and obtain good dynamical performance. Besides, the parameter
adaptation method ensures that there is no need for prior information of the upper bound
of the lumped disturbances. Finally, HOSTDO is utilized to estimate and compensate the
lumped disturbances.

3.1. The Design of HOSTDO

STA is an important method for the control and the observation. The HOSTDO
dynamics is given in the following form:

˙̂x1 = x̂2 + z1

˙̂x2 = x̂3 + M−1
0 u + f + z2

˙̂x3 = x̂4 + z3

˙̂x4 = z4

(4)

where the state vectors are given as x3 = ∆(x1, x2, t), x4 = ∆̇(x1, x2, t); x̂1, x̂2, x̂3, x̂4 are
the estimations of state vectors x1, x2, x3, x4, respectively; and z1, z2, z3, and z4 are the
correction terms. And for simplicity, the initial values of z1, z2, z3, z4 are assumed to be zero.
Then we define the state estimate error variables ε1 = x1 − x̂1, ε2 = x2 − x̂2, ε3 = x3 − x̂3,
and ε4 = x4 − x̂4. The correction terms are defined as z1 = ξ1ε1

[3/4 ], z2 = ξ2ε1
[1/2 ],

z3 = ξ3ε1
[1/4 ], z4=ξ4sgn(ε1), in which ξ1, ξ2, ξ3, and ξ4 are positive constants.

Using (2), we obtain the observer dynamic error model as:

ε̇1 = −ξ1ε1
[3/4 ] + ε2

ε̇2 = −ξ2ε1
[1/2 ] + ε3

ε̇3 = −ξ3ε1
[1/4 ] + ε4

ε̇4 = −ξ4sgn(ε1) + ∆̈.

(5)

By selecting the gains ξ1, ξ2, ξ3, and ξ4 according to [34], we can obtain that the
proposed HOSTDO reaches finite–time stability and εi = 0, i = 1, 2, 3, 4, which implies
ε̇i = 0, i = 1, 2, 3, 4. Then the estimates of disturbances are given as follows
∆̂ = − ξ2ε1

[1/2 ] + v1, v̇1 = −ξ3ε1
[1/4 ] + v2, v̇2 = −ξ4sgn(ε1), where the initial value

of ∆̂, v1, v2 are supposed to be 0 for simplicity.
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Remark 3. The proposed disturbance observer generates a more smooth output to estimate and
compensate the unknown lumped disturbances which can obviously alleviate the chattering issue.
Furthermore, Equation (4) can be used to approximate the system state vectors in other research
[35,36]. The convergence and robustness of the HOSTDO can be verified by Lyapunov theory, and
the detailed proof can be referred to [34].

3.2. HOSTDO Based CNFT Control Design with ASTA Method and Time–Varying Gain Matrix

To ensure the chattering–free ability and eliminate the need for the prior information
of the upper bound, the modified STA scheme is utilized with the parameter adaptation
method to obtain good comprehensive performances. A novel HOSTDO–based CNFT
control scheme with the ASTA method is proposed in this section.

Define the tracking error as e = q− qd with qd being the desired trajectory. To ensure
the finite–time convergence ability and singularity–free performance, a NFTSM manifold
is designed as [26]:

s = e + σ1e[ϕ] + σ2 ė[l/p ] (6)

where s = [s1, · · · , sn]
T ∈ Rn is the sliding vector; σ1, σ2 are the designed positive constants;

l and p are positive odd numbers satisfying 1 < l/p < 2; and ϕ is a designed constant
satisfying ϕ > l/p.

The derivative of (6) is:

ṡ = ė + σ1 ϕ|e|ϕ−1 ė + σ2
l
p
|ė|l/p −1(q̈− q̈d)

= ė + σ1 ϕ|e|ϕ−1 ė + σ2
l
p
|ė|l/p −1(M0

−1(x1)u + f (x1, x2) + ∆(x1, x2, t)− q̈d).
(7)

It can be deduced from (7) that ϕ− 1 > 0 and l/p− 1 > 0 are valid considering
1 < l/p < 2 and ϕ > l/p, so the singularity phenomenon can be avoided successfully.
Meanwhile, the system’s dynamic convergence speed is enhanced by combining the merits
of the NFTSM manifold.

According to the NFTSM manifold and adaptive modified STA scheme, the CNFT
control law based on the HOSTDO is designed as:

u = ueq + ure (8)

where

ueq = M0(x1)

[
− 1

σ2

p
l
(ė[2−l/p ] + σ1 ϕ|e|ϕ−1 · ė[2−l/p ])− f (x1, x2) + q̈d − ∆̂(x1, x2, t)

]
is designed to control the nominal parts, and

ure = −M0(x1)

[
α

s

‖s‖1/2 + k1s + β
∫ t

0

s
‖s‖dt + k2

∫ t

0
sdt

]

is used to compensate the lumped disturbances, where k1 and k2 are the designed positive
constants, α and β are the adaptation parameters, and the adaptive gains are designed as:

α̇ =

{
ω1

√
Φ1
2 sign(|si| − ρ0) i f α > αm

r0 i f α ≤ αm

β̇ = 2κα̇

(9)
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where κ= ω2
2ω1

√
Φ2
Φ1

>0; αm is a small positive constant; ω1, ω2, Φ1, Φ2, ρ0, and r0 are
arbitrary positive constants. For the sake of system stability in the control process, the gain
parameters α, β, k1, and k2 should satisfy the following inequities:

α > 0, β > 4α2 λ4
M

λ3
m

, k1 >
3
5

λM
λm

δ, k2 > 16k2
1

λ4
M

λ3
m

. (10)

At the same time, they should also satisfy:

α > 0, β > 0, k1 > max

2
λM
λm

δ, δ

√
9
14

λ3
M

λ3
m

,

k2 >
3k2

1λ4
Mδ+ 1

2 k1λ4
Mδ2+k3

1λM(2λ3
M − λ3

m)

λ2
m(k1λm − 2λMδ)

,

(11)

thus the robustness and stability of the control system can be ensured.
The block diagram of our newly proposed control method is given in Figure 1.

Figure 1. Block diagram of the proposed control method.

It can be observed that the proposed CNFT control scheme (8) contains no discontin-
uous terms compared with traditional SMC that uses the discontinuous function sgn(s)
thanks to the utilization of ASTA. Hence, the chattering issue can be successfully avoided.
However, prior information of the lumped disturbances is not always accessible in real sys-
tems. To overcome this control limitation, the adaptation method is applied to approximate
the designed parameters of the STA reaching control law, so that the prior information
of the upper bound is not needed. On the other hand, NFTSM surface is designed in the
proposed controller, thus the high control accuracy and fast convergence speed can be
achieved and the singularity problem can be eliminated at the same time. The stability of
the proposed control scheme is presented in Theorem 1.

Theorem 1. For the underwater robot manipulator system (2), if an HOSTDO (4) and (5), NFTSM
manifold (6), and control input (8) are proposed, the designed parameters for the ASTA are selected
to satisfy (10) and (11), then the system position signal q will reach the given desired position signal
qd in finite time, and it can be ensured that there is no occurrence of singularity and chattering
problem during the whole tracking process.

Proof. Several similar control methods have been briefly proven in some other studies [37].
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Substituting the CNFT control law (8) into (7), we have:

ṡ = σ2
l
p
|ė|l/p −1(−α

s

‖s‖1/2 − k1s− β
∫ t

0

s
‖s‖dt− k2

∫ t

0
sdt + ∆̃(x1, x2, t)). (12)

We define the time–varying gain matrix P as follows:

P = σ2
l
p
|ė|l/p −1. (13)

Assumption 3. The time–varying gain matrix is symmetric and positive definite. The largest and
smallest eigenvalues of the time–varying gain matrix P are assumed to be bounded by upper (λM)
and lower (λm) bound values respectively.

Assumption 4. The estimation error of the lumped disturbances also satisfies the following in-
equality such that ‖D‖ ≤ δ‖s‖, where D=∆̃(x1, x2, t), δ > 0 is a positive known constant, and
∆̃(x1, x2, t)=∆(x1, x2, t)− ∆̂(x1, x2, t) is the bounded observer estimate error vector.

Considering (13) and Assumption 4, then (12) can be rewritten as:

ṡ = −αP
s

‖s‖1/2 − k1Ps + Pv + PD

v̇ = −β
s
‖s‖ − k2s

(14)

where v = −β
∫ t

0
s
‖s‖dt− k2

∫ t
0 sdt.

Remark 4. It should be noted that in the NFTSM control method, the time–varying gain matrix P
cannot be eliminated during the design process compared with the nominal STA–based sliding mode
control [38], which makes the demonstration more difficult.

Then, select the Lyapunov function candidate as:

V = V1(s, v) +
1

2µ1
(α− α∗)2 +

1
2µ2

(β− β∗)2 (15)

where α∗, β∗ are the upper bounds of α, β , respectively and µ1, µ2>0 are positive
constants. The function V1(s, v) is given as:

V1(s, v) = (2β +
α2

2
λM)‖s‖+ (k2 +

k2
1

2
λM)sTs

+ vT Pv + αk1λM
sTs

‖s‖1/2 − k1sT Pv− α
vT Ps

‖s‖1/2 .
(16)

It can be demonstrated that V1(s, v) is positive definite since:

V1 ≥ 2β‖s‖+ k2sTs +
1
2

vT Pv +
1
2

χT Pχ (17)

where χ = α s
‖s‖1/2 + k1s− v.

The time derivative of Lyapunov function (16) can be expressed as:

V̇1 = (2β +
α2

2
λM)

sT ṡ
‖s‖ + (2k2 + k2

1λM)sT ṡ + 2vT Pv̇ +
3
2

αk1λM
sT ṡ

‖s‖1/2

− k1(vT Pṡ + sT Pv̇)− α
vT Pṡ

‖s‖1/2 +
α

2
(vT Ps)(sT ṡ)

‖s‖5/2 − α
sT Pv̇

‖s‖1/2 .
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Lemma 2 ([37]). As we have the diagonal matrix P = PT ≥ 0, the following inequality holds:

(vT Ps)(vT Ps)

‖s‖5/2 ≤ vT P2v

‖s‖1/2 . (18)

Substituting (14) and considering the inequality in Lemma 2, the equation becomes:

V̇1 ≤ −
α

‖s‖1/2 λm(β + λM
α2

2
)‖s‖ − λm(k1β + 2λMα2k1)‖s‖+

2α2

‖s‖1/2 λ2
M‖v‖‖s‖

1/2

− λm

‖s‖1/2 (
5
2

αk2
1λM + αk2)‖s‖2 − λm(k1k2 + k3

1λM)‖s‖2 + 2k2
1λ2

M‖s‖‖v‖

+
4αk1λ2

M

‖s‖1/2 ‖s‖‖v‖ − k1λ2
m‖v‖

2 − α

2
λ2

m
‖v‖2

‖s‖1/2 + λM(2β +
α2

2
λM)δ‖s‖

+ λM(k2
1λM + 2k2)δ‖s‖2 +

3
2

αk1λ2
M

δ‖s‖2

‖s‖1/2 + k1λ2
Mδ‖v‖‖s‖+ 3

2
αλ2

Mδ‖v‖‖s‖1/2.

Define a new vector ζ =
[
‖s‖1/2 ‖s‖ ‖v‖

]T
, thus it can be obtained that when ζ

converges to zero, s and v will also converge to zero at the same time.
Re–express the last inequality as:

V̇1 ≤ −
1

‖s‖1/2 ζTΩζ − ζTΨζ (19)

where Ω =

Ω11 0 Ω13
0 Ω22 Ω23

Ω13 Ω23 Ω33

, Ψ =

ψ11 0 ψ13
0 ψ22 ψ23

ψ13 ψ23 ψ33

, with elements:

Ω11 = λm(αβ + α3

2 λM), Ω13 = −α2λ2
M, Ω22 = λm(αk2 +

5
2 αk2

1λM)− 3
2 αk1λ2

Mδ,
Ω23 = −2αk1λ2

M, Ω33 = α
2 λ2

m,
and

ψ11 = λm(k1β + 2α2k1λM)− λM(2β+ α2

2 λM)δ, ψ13=− 3
4 αλ2

Mδ,
ψ22 = λm(k1k2 + k2

1λM)− λM(k2
1 λM + 2k2)δ, ψ23 = −k2

1λ2
M −

k1
2 λ2

Mδ, ψ33 = k1λ2
m.

The function V̇1 will be negative definite if the matrices Ω = ΩT > 0, Ψ = ΨT > 0. By
selecting the parameters, it can be ensured that the diagonal elements and the determinants
are positive. Therefore, the parameters should satisfy the following inequalities to ensure
Ω = ΩT > 0 if:

α > 0, β > 4α2 λ4
M

λ3
m

, k1 >
3
5

λM
λm

δ, k2 > 16k2
1

λ4
M

λ3
m

, (20)

and Ψ = ΨT > 0 if:

α > 0, β > 0, k1 > max

2
λM
λm

δ, δ

√
9

14
λ3

M
λ3

m

,

k2 >
3k2

1λ4
Mδ+ 1

2 k1λ4
Mδ2+k3

1λM(2λ3
M − λ3

m)

λ2
m(k1λm − 2λMδ)

.

(21)

Hence, the obtained matrices Ω, Ψ are symmetric positive definite when the given
conditions (20) and (21) hold. Then we have:

V̇1 ≤ −
λmin(Ω)

‖s‖1/2 ‖ζ‖
2 − λmin(Ψ)‖ζ‖2 (22)
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where λmin(Ω) and λmin(Ψ) are the smallest eigenvalues of the matrices Ω and Ψ, respec-
tively. Thus, the candidate Lyapunov function in (16) can be rewritten as V1(s, v) = ζ̄TQζ̄,

where ζ̄ =
[

sT

‖s‖1/2 sT vT
]T

, and Q = QT > 0, given as:

Q =

2β + α2

2 λM
α
2 k1λM − αP

2
α
2 k1λM k2 +

k2
1

2 λM − k1P
2

− αP
2 − k1P

2 P


then the following inequality holds:

λmin(Q)
∥∥ζ̄
∥∥2 ≤ V1 ≤ λmax(Q)

∥∥ζ̄
∥∥2 (23)

where
∥∥ζ̄
∥∥ = ‖ζ‖, and λmin(Q), λmax(Q) > 0 are the lowest and highest eigenvalues of

the matrix Q, respectively.
Besides, consider the following fact:

‖s‖1/2 ≤ ‖ζ‖ ≤ V1
1/2√

λmin(Q)
. (24)

Then we have:
V̇1 ≤ −ρ1V1

1/2 − ρ2V1 ≤ −ρ1V1
1/2 (25)

where ρ1 =

√
λmin(Q)λmin(Ω)

λmax(Q)
, ρ2 = λmin(Ψ)

λmax(Q)
.

Since α∗, β∗ are the upper bounds of α, β, it can be obtained that α̃=α−α∗<0, β̃=β−β∗<0.
Then the time derivative of the Lyapunov function candidate (15) can be given as:

V̇ = V̇1 +
1

µ1
α̃α̇+

1
µ2

β̃β̇

≤ −ρ1V1
1/2 − ω1√

2µ1
|α̃| − ω2√

2µ2

∣∣β̃∣∣+ 1
µ1

α̃α̇+
1

µ2
β̃β̇ +

ω1√
2µ1
|α̃|+ ω2√

2µ2

∣∣β̃∣∣. (26)

It should be noted that the following inequality holds:

(x2 + y2 + z2)
1/2 ≤ |x|+ |y|+ |z|. (27)

Thus this leads to:

V̇ ≤ −ρ3V1/2 +
1

µ1
α̃α̇+

1
µ2

β̃β̇ +
ω1√
2µ1
|α̃|+ ω2√

2µ2

∣∣β̃∣∣, (28)

where ρ3 = min{ρ1, ω1, ω2}. Then it can be written as:

V̇ ≤ −ρ3V1/2 + Θ, (29)

where Θ = −|α̃|
(

α̇
µ1
− ω1√

2µ1

)
−
∣∣β̃∣∣( β̇

µ2
− ω2√

2µ2

)
.

Supposing that α > αm and |si| ≥ ρ0, and we choose Φ1 = µ1, Φ2 = µ2, then we have:

α̇ = ω1

√
Φ1

2
, β̇ = 2kα̇ = ω2

√
Φ2

2
,

Θ = −|α̃|
(

α̇

µ1
− ω1√

2µ1

)
−
∣∣β̃∣∣( β̇

µ2
− ω2√

2µ2

)
.
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If we define κ= ω2
2ω1

√
Φ2
Φ1

> 0, we can obtain Θ = 0,

V̇ ≤ −ρ3V1/2. (30)

It should also be noted that the finite–time convergence can be ensured when the
adaptive gains satisfy the inequalities (20) and (21). Thus the positive definiteness of the
matrices Ω, Ψ and the convergence of whole processing system can be guaranteed.

Supposing α > αm and |si| < ρ0, the adaptive gains can be given as:

α̇ = −ω1

√
Φ1

2
, β̇ = −ω2

√
Φ2

2
,

and we have:
Θ = 2|α− α∗| ω1√

2µ1
+ 2|β− β∗| ω2√

2µ2
.

Since α, β are bounded by α∗, β∗, and ω1, ω2, µ1, µ2 are chosen to be positive constants,
then we have Θ > 0. According to [39], V is bounded which means all the signals have
bounds. Therefore, the tracking errors can converge to a small neighborhood of the origin.

When α ≤ αm, the adaptive gains are:

α̇ = r0, β̇ = 2κr0, α = α0 + r0t, β = β0 + 2κr0t,

where α0, β0 are the initial value of α and β, which are assumed to be 0 for simplicity.
Then we have the parameter Θ given as:

Θ = −|α̃|( r0

µ1
− ω1√

2µ1
)−

∣∣∣β̃∣∣∣(2κr0

µ2
− ω2√

2µ2
)

= −|r0t− α∗|( r0

µ1
− ω1√

2µ1
)− |2κr0t− β∗|(2κr0

µ2
− ω2√

2µ2
).

It can be observed that when α ≤ αm, Θ in (29) is negative. Hence, V̇ would be sign
indefinite [40]. However, α will increase with time in this case. As soon as α increases over
the small constant αm, then (29) is valid and V starts decreasing. In order to accelerate the
deceleration process, one can choose a larger r0.

In conclusion, when |si| > ρ0 which means the sliding parameter si is far away from
the sliding mode surface, it can reach the domain |si| ≤ ρ0 within limited time. During the
adaptation process, si may leave the domain in finite time due to the increase of α. However,
it can always remain in a larger domain |si| ≤ ρ̄0, ρ̄0 > ρ0. Thus, the whole control system
can remain stable and bounded in finite time according to Lemma 1. Therefore, the proof
of Theorem 1 is completed.

4. Simulation Results

To demonstrate the effectiveness and advantage of our newly proposed control
method, the simulations on a 2–DOF underwater robot manipulator, which is shown
in Figure 2, are performed in this section. The rigid body dynamics of the manipulator
system are taken from [31], and the underwater force τw(q, q̇) is taken from [32], thus the
dynamics of the 2–DOF underwater robot manipulator in the form of (1) is given as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τw(q, q̇) = τedis + τ (31)
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with matrices:

M(q) =
[
(m1+m2)L2

1+m2L2
2+2m2L1L2c2 m2L2

2+m2L1L2c2
m2L2

2+m2L1L2c2 m2L2
2

]
,

C(q, q̇) =
[
−m2L1L2s2q̇2 −m2L1L2s2(q̇1 + q̇2)
m2L1L2s2q̇1 0

]
,

G(q) =
[
(m1 + m2)L1gc2 + m2L2gc12

m2L2gc12

]
,

τB =

[
τB1
τB2

]
, τD =

[
τD1
τD2

]
in which s2 = sin(q2), c2 = cos(q2), c12 = cos(q1 + q2); m1, m2 are the masses; L1, L2 are
the lengths; and g is the gravity acceleration. The hydrodynamic forces τB and τD are given
in Appendix A. In order to easily compare the performances of the proposed controller,
traditional SM, NSM, and NFTSM control, which are referred to as controller 1, controller 2,
and controller 3 respectively, are given in Appendix B. The parameters for the manipulator
system and the model simulation are shown in Table 1.

Table 1. Parameters of the manipulator system and the model simulation. Sliding mode (SM); adap-
tive super twisting algorithm (ASTA); higher–order super–twisting disturbance observer (HOSTDO).

Parameter Value Parameter Value Parameter Value

Parameters of the manipulator system

m1 3.39 kg D1 0.04 m L1 1 m
m2 3.39 kg D2 0.04 m L2 1 m
ρ f 1000 kg/m3 CD 0.6 g 9.8 m/s2

ρm 2700 kg/m3

Parameters of the model simulation comparison

Parameters of SM surfaces

σ0 1 σ′0 1
σ1 1 σ2 1
l 7 l′ 7
p 9 p′ 9
ϕ 1.3

Gains of SM reaching laws

k0 20 k′1 20
k′′1 20 η0 0.1
η′0 0.1 η′′0 0.1
γ0 2 γ′0 2
γ′′0 2 η0 0.1

Parameters of the ASTA

k1 15 k2 0.1
ω1 5 Φ1 2
αm 0.5 r0 0.5
ρ0 0.05 κ 0.5

Parameters of the HOSTDO ξ1 8 ξ2 22
ξ3 8 ξ4 2

The referred trajectory for both links is given as qd = [qd1 qd2]
T , qd1 = qd2 =

sin(0.5t) + cos(0.15t)− 1. The time–varying lumped disturbances for the 2–DOF under-
water robot manipulator are designed as τedis = [τedis1 τedis2]

T with τedis1 = τedis2 =
0.5 + 1.5 sin(t). Simulations are performed to compare the differences of the controllers
in terms of the position precision, response speed, and the chattering phenomenon. The
obtained simulation results are given in Figures 3–7.
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q1
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Computer 
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1 2q , q

Figure 2. Two–link underwater robot manipulator control system.

Figure 3 shows the trajectory tracking performances of four controllers for the 2–DOF
underwater robot manipulator under the lumped disturbances. It can be seen that good
tracking performance can be ensured by all four controllers, while the proposed control
method approaches the desired trajectories with the highest reaching speed. Thanks to the
utilization of ASTA, no noticeable chattering problem occurs in our proposed controller
as shown in Figure 4. The performances in three comparing controllers encounter with
the instantaneous jump in the control torques. However, the joint servo–motors can not
reverse their rotation direction immediately which may cause failure or severe damage. In
comparison, the proposed controller generates a smooth control input, thus the strongest
robustness of our proposed controller is demonstrated.

Furthermore, in Figure 5, the fastest convergence and highest precision are obtained
by our proposed controller. It can be seen that controller 1 shows the worst tracking
precision when reaching the steady state. The steady tracking errors of controller 2 and 3
oscillate near the origin with a relatively higher amplitude than the proposed control. The
estimations of the lumped disturbances are given in Figure 6, which nearly overlap the
given disturbance signal. The compensation capability of the HOSTDO should be valued
in the real applications since the actual currents and waves are impossible to calculate
and proper estimations can significantly improve the disturbance–attenuation ability. The
adaptation gains of the ASTA are shown in Figure 7, which release the limitation of the
need for upper bound prior information of the lumped disturbances.
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Figure 3. Position tracking performance with disturbances: (a) Link 1. (b) Link 2.
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Figure 4. Control inputs with disturbances: (a) Link 1. (b) Link 2.
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Figure 5. Tracking errors with disturbances: (a) Link 1. (b) Link 2.
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Figure 6. Disturbance estimations: (a) Link 1. (b) Link 2.
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Figure 7. Adaptation gains with disturbances: (a) α. (b) β.

To further analyze the position tracking errors and energy consumption of the four
controllers, the following integrated absolute error (IAE) [41], root mean square error
(RMSE) [27], and energy of control input (ECI) [42] are taken into consideration, which are
defined as:

IAEi =
N

∑
k=1
|ei(k)|; RMSEi =

√√√√ 1
N

N

∑
k=1

e2
i (k); ECIi =

N

∑
k=1

∣∣∣τ2
i (k)

∣∣∣ (32)

where i is the link number; N is the number of samples; and ei(k), τi(k) are the trajectory
tracking error and control input of link i at the kth sampling instant, respectively.

IAE and RMSE are used to evaluate the tracking performance while ECI is adopted
to evaluate the control input energy consumption. Thus, the control target is to have a
lower IAE, RMSE, and ECI so that better performances can be obtained with less energy
consumption. The comparison results of the four controllers are shown in Table 2.

Table 2. Tracking performance comparisons.

Type of Controller Link IAE RMSE ECI

Controller 1 1 18.120 0.022718 4.1162 × 106

2 15.813 0.021560 7.4115 × 105

Controller 2 1 7.7463 0.016877 4.5057 × 106

2 7.7831 0.016592 8.1977 × 105

Controller 3 1 5.7875 0.014082 4.2817 × 106

2 5.5934 0.013763 7.5878 × 105

Proposed 1 3.4521 0.011636 2.0673 × 106

2 5.2355 0.012449 3.9025 × 105

It should be noted that the ECI varies significantly due to the existence of the lumped
disturbances. The ECI values of our proposed control method are only 50.2% and 52.7%
for Controller 1, 45.9% and 47.6% for Controller 2, and 48.3% and 51.4% for Controller 3,
respectively, which indicate that our proposed control consumes less input energy in the
presence of the lumped disturbances. Furthermore, our proposed control still guarantees
the best tracking precision in this case when considering the values of IAE and RMSE.
Thus, considering the unknown lumped disturbances, our proposed control method can
obtain the best tracking precision with the least control input energy consumption among
the four controllers.
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5. Conclusions

In this paper, a novel HOSTDO–based CNFT control with the ASTA method was
proposed for underwater robot manipulators under time–varying lumped disturbances.
The proposed controller utilized the NFTSM manifold and the ASTA method in the CNFT
control scheme to ensure high control precision, singularity–free, chattering–free, and fast
convergence. Meanwhile, the HOSTDO was used in this paper to estimate and compensate
the lumped disturbances, which strengthen the robustness of our newly proposed controller.
It should also be noted that the adaptation method was presented in the ASTA scheme so
that prior information of the upper bound of the lumped disturbances was not needed. The
stability of closed–loop system was demonstrated by the Lyapunov theory considering the
ASTA dynamics and NFTSM surface. Finally, the effectiveness and robustness of our newly
proposed control method were verified by comparing with the other three controllers on a
2–DOF underwater manipulator system. Although the proposed control is based on the
underwater manipulators, it can also be utilized in some other robot system such as the
manipulators on land, autonomous underwater vehicles, and so on.

In the proposed control method, the uncertain system modeling and the unknown
external disturbances in the underwater manipulator system have been considered. How-
ever, it is still not clear how the robot interacts within underwater circumstances. In the
future, we will intend to conduct underwater experiments to investigate the specific values
of hydrodynamic coefficients, which will help us to build a more accurate mathematical
dynamic model. To improve the application ability, the effects of time delays and actuator
faults will be studied.
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Appendix A

It can be noted that the direction of the buoyancy torque τB stays opposite with that of
the gravity G(q). The buoyancy torque can be expressed as τB=− (ρ f /ρm )G(q), where ρ f
is the fluid density; ρm is the manipulator arm density.

By neglecting the tangential direction drag torque for slender cylinder rod which is
assumed to be very small, the normal direction drag torque τD is considered in this paper.
And the ith element of τD is given as [32]:

τDi =
i Ni

Tizi
i Ni =

i
i+1Ri+1Ni+1 +

i pi+1 × i
i+1Ri+1 fi+1

+
1
2

ρ f CDDi

∫ Li

0

[
x 0 0

]T

× ivn(x)i

∥∥∥ivn(x)i

∥∥∥dx

(A1)
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where i =1, 2; izi is the normal direction unit vector on ith link; i Ni, i+1Ni+1 are the total
drag torques on ith and i + 1th links, respectively; i

i+1R is the transformation matrix toward
ith link from i + 1th link; i pi+1 is the directional vector toward ith link from i + 1th link;
i+1 fi+1 is the drag force on i + 1th link; D1, D2 describe the diameters of link 1 and link 2,
respectively; CD denotes the drag coefficient; and ivn(x)i is the normal directional velocity
vector of ith link.

Appendix B

Three controllers are simulated in this section for comparison. The first one is our
newly proposed one (Proposed) and the second one is the conventional SM controller
(Controller 1) which is given as [43]:

u1 = M0(x1)[− f (x1, x2)− σ0 ė + q̈d]−M0(x1)
[
k′0s + (γ′0+η′0)sgn(s)

]
(A2)

with the SM surface as s = ė + σ0e, where σ0 > 0, k′0, γ′0, η′0 > 0 are the designed
parameters. And the third one is the NSM controller (Controller 2) as [44]:

u2 = M0(x1)

[
− f (x1, x2)−

p′

σ′0
l′ ė[2−l′/p′ ] + q̈d

]
−M0(x1)

[
k′′0 s + (γ′′0+η′′0 )sgn(s)

]
(A3)

with the NSM manifold s = e + σ′0 ė[l
′/p′ ], where σ′0 > 0, k′′0 , γ′′0 , η′′0 > 0 and 1 < l′/p′ < 2

are the known constants. It should be noted that the FTSM type reaching law was designed
in [44], which was replaced by the normal exponential reaching law in this paper for a
fair comparison. The last one (Controller 3) uses the NFTSM surface (15) for comparison,
which is given as follows:

u0 = ueq0 + ure0 (A4)

where

ueq0 = M0(x1)

− 1
σ2

p
l
(ė[2−l/p ] + σ1 ϕ|e|ϕ−1 · ė[2−l/p ])

− f (x1, x2) + q̈d

 (A5)

is used to control the nominal parts, and

ure0 = −M0(x1)[k0s + (γ0+η0)sgn(s)] (A6)

is used to compensate for the lumped disturbances, where γ0 is the upper bound of the
lumped disturbances, k0 > 0, and η0 is a small positive constant.
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