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Abstract: To create an autonomously moving vessel, it is necessary to know exactly how to deter-
mine the current coordinates of the vessel in the selected coordinate system, determine the actual 
trajectory of the vessel, estimate the motion trend to predict the current coordinates, and calculate 
the course correction to return to the line of the specified path. The navigational and hydrographic 
conditions of navigation on each section of the route determine the requirements for the accuracy 
of observations and the time spent on locating the vessel. The problem of predicting the trajectory 
of the vessel's motion in automatic mode is especially important for river vessels or river-sea vessels, 
predicting the trajectory of the route sections during the maneuvering of the vessel. At the moment, 
one of the most accurate ways of determining the coordinates of the vessel is by reading the satellite 
signal. However, when a vessel is near hydraulic structures, problems may arise connected with 
obtaining a satellite signal due to interference and, therefore, the error in measuring the coordinates 
of the vessel increases. The likelihood of collisions and various kinds of incidents increases. In such 
cases, it is possible to correct the trajectory of the movement using an autonomous navigation sys-
tem. In this work, opportunities of the possible application of artificial neural networks to create 
such a corrective system using only the coordinates of the ship's position are discussed. It was found 
that this is possible on sections of the route where the ship does not maneuver. 

Keywords: AIS Data; trajectory prediction; waterway transportation; neural networks; autonomous 
navigation 
 

1. Introduction 
Nowadays, to build the trajectory of the vessel and determine its position, it is a com-

mon approach to use data from satellite navigation systems and automatic identification 
systems (AIS), which allow obtaining coordinates with high accuracy and secondly, dis-
creteness. However, despite the advances in the development of satellite navigation tech-
nologies in recent decades, their methods have a significant drawback: non-autonomy, 
which does not allow the use of a satellite system when a number of known circumstances 
occur. The main ones are the loss of communication or, under the conditions of maneu-
vering, too long processing the received data, which prevent it from making a decision in 
time. In this regard, the issues of studying autonomous methods for determining a ship's 
position are of great practical interest. The prediction of the trajectory of the vessel's move-
ment is of practical importance for the development and creation of unmanned autono-
mous vessels. 

Taking into account the inertia of the vessel, in order to react in time to possible ob-
stacles, it is necessary to predict in advance the estimated nearest coordinates of the vessel. 
In this regard, it is necessary to take into account the capabilities of the ship's technical 

Citation: Volkova, T.A.; Balykina, 

Y.E.; Bespalov, A. Predicting ship 

trajectory based on neural networks 

using AIS data. J. Mar. Sci. Eng. 2021, 

9, 254. https://doi.org/10.3390/jmse 

9030254 

Academic Editors: Evgeny Veremey 

and Carlos Guedes Soares 

Received: 19 January 2021 

Accepted: 22 February 2021 

Published: 28 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



J. Mar. Sci. Eng. 2021, 9, 254 2 of 11 
 

 

means, so that the time required for the autopilot to make a decision is sufficient enough 
to implement it. In this sense, predicting the trajectory of a vessel's movement based on 
historical data, that is, using data received from other vessels, can only be used very ap-
proximately, since the trajectory of a vessel's movement depends quite strongly on specific 
external conditions. Therefore, the goal of this work was to analyze the application of neu-
ral network technologies that use knowledge of the previous coordinates of the vessel’s 
trajectory to predict the estimated next coordinates of the vessel during river navigation. 

Related Works 
Various studies have examined different aspects of predicting vessel trajectories us-

ing AIS data, including behavior anomaly detection [1], waypoint detection [2], and the 
actual forecast of the vessel's trajectory [3–5]. Since artificial neural networks gained wide 
popularity, a number of studies have appeared that focused on the use of artificial intelli-
gence in solving problems related to navigation. For example, there is a significant differ-
ence between the different patterns of vessel traffic, namely static navigation, normal nav-
igation, and maneuvering. As the data that are collected during maneuvering are of the 
greatest interest, a separate issue is the task of separating them from the general data. In 
this regard, there are a number of studies that use artificial neural networks to classify AIS 
data types in relation to ship traffic [6]. 

Neural networks are often used to study the trajectories of various types of ships in 
the oceans [7–9]. They allow one to study the possible routes of a ship’s motion, and iden-
tify the most frequently used ones. There are various probabilistic approaches for solving 
this kind of problem as well [10]. There are studies that, while solving this problem, also 
touch upon the problem of using neural technologies to predict possible ship collisions 
[11]. It is believed that the identification and construction of optimal routes will allow the 
use of unmanned vessels, which will follow the given trajectories [12–14]. When using 
neural networks to predict the motion of the vessel and build the trajectory of its motion, 
neural networks are used either as a function for identifying the model of the vessel move-
ment, or for the trajectory prediction, and the correction of their free parameters is per-
formed in real time as the vessel is moving [15–17]. 

A detailed review of various approaches to predicting the trajectory of vessel move-
ment or location is given in [18]. Both classical models, such as Constant Velocity Model 
(CVM), and modern approaches based on machine learning and statistical analysis are 
analyzed. Models for predicting the trajectory of a specific vessel based on neural net-
works using course of ground (COG) and speed over ground (SOG), attached with a cor-
responding future timestamp as input, are discussed in [19], and based on the obtained 
data the coordinates of the ship are restored. 

2. Materials and Methods 
Unlike the movement of sea vessels, which are faced with maneuvering in confined 

spaces mainly when passing straits and moving in port waters, river vessels are forced to 
constantly maneuver in confined spaces (e.g., the presence of a large number of possible 
obstacles, limited fairway, frequent course changes, a large number of oncoming and pass-
ing vessels). Moreover, the performance of satellite navigation systems is greatly influ-
enced by the presence of possible sources of industrial interference, as well as a large num-
ber of hydraulic structures, located on the riverbanks. Therefore, AIS data are not error-
free. Different sources of error that render a portion of these data noisy and inadequate 
for monitoring are discussed in detail in [20]. 

Since the aim of the research was to determine the possibility of predicting the posi-
tion of the vessel at the next moment in time using only the previous coordinates of the 
vessel's movement for training the neural network, only these data were collected during 
the experiment. The real experiment was carried out specifically for collecting data in the 
conditions of river navigation, as the data in existing open databases often consist of in-
formation collected during sea navigation. 
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It was assumed that the problem of predicting the vessel trajectory could be solved 
on the basis of a focused time lagged feedforward network. For training the neural net-
work model, the data obtained during the experiment were used. The experiment was 
carried out on a ship with characteristics presented in Table 1: 

Table 1. Vessel characteristics. 

Feature Value Units 
Maximum length 35.65 meters 
Maximum width 5.80 meters 

Side height 2.60 meters 
Draft 1.51 meters 

Displacement 157 tons 
Main engine power 2 × 200 kW 

Crew 10 man 
Freeboard 1.096 meters 
Endurance 6 days 

There were two antennas placed on the roof of the ship's cabin at a distance of 90 
centimeters along the center plane of the ship and 66 centimeters between the antennas. 
The data from the second antenna underwent a post-processing and were subsequently 
received as a reference. All vessel position data were recorded using the NMEA-0183 pro-
tocol. 

NMEA is a format for transmitting data between ship instruments. It includes a mes-
sage system for information exchange between GPS navigation receivers and navigation 
information consumers. All commands and messages are transmitted in ASCII text form. 
The last field of the message may contain the checksum of the current message, starting 
with the * separator. This is followed by an 8-bit checksum (exclusive OR) of all characters 
in the message, including spaces between the $ and * separators, not including the last 
one. The hexadecimal result is translated into two ASCII characters (0–9, A–F). 

The GGA-GPS data, which were obtained during the experiment and used to train 
neural networks and verify the results, contained the following values: 
• Greenwich Mean Time at the moment of determining the location. 
• Latitude. 
• North/South (N/S). 
• Longitude. 
• West/East (E/W). 
• GPS signal quality indicator: 

0 = Positioning is not possible or is not correct; 
1 = GPS mode, normal accuracy, location possible; 
2 = Differential GPS mode, normal accuracy, location possible; 
3 = GPS precision mode, location possible. 

• The number of satellites used (0–12, may differ from the number of visible ones). 
• Horizontal Dilution of Precision (HDOP). 
• Receiver antenna height above/below sea level. 
• Unit of antenna’s location height, meters. 
• Geoid difference, i.e., the difference between the WGS-84 ellipsoid and the sea level 

(geoid), “-” = sea level is below the ellipsoid. 
• Units of measurement, meters. 
• GPS Differential Data Age - Time in seconds since the last SC104 type 1 or 9 update, 

filled with zeroes if the differential mode is not used. 
• ID of the station transmitting differential corrections, ID, 0000-1023. 
• Checksum. 
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An example of the received data is presented in Figure 1. 

 
Figure 1. Sample data received from the first antenna. 

To obtain images correlated with geographic maps, the algorithm for transferring 
data from the NMEA protocol to the WGS84 system (World Geodetic System 1984) was 
used [21]: 

flTemp = Value (NMEA 0183) 

nTemp = flTemp/100.0; 

nTemp = nTemp − (nTemp% 1); 

flMin = flTemp − 100.0 * nTemp; 

Lo = nTemp + flMin/60.0; 

where /—division, %—remainder of division, *—multiplication, Lo—value in WGS84. 

3. Results and Discussion 
The experiment was conducted on a segment of inland waterways of the Neva-La-

doga region. The resulting vessel path is shown in Figure 2. It should be noted that the 
results of all antennas are very close to each other. 

  
(a) (b) 

Figure 2. Total path of the ship (a), the part of the path near and under the bridge (b). 

During the experiment, the case of a ship passing under a bridge was considered 
separately. Since the passage of the vessel under the bridge is quite difficult due to the 
small distance between the bridge supports, the flow of the river, etc., in order to reduce 
the risk of a dangerous situation, it is necessary to have alternative methods of determin-
ing the exact location of the vessel. 

One can see (Figures 3–5) how the received signals behave while passing the bridge. 
It is clear that the signal is either interrupted, or does not reflect in any way the real tra-
jectory of the vessel. This fact is most evident for the processed signal when the system is 
trying to restore the trajectory. 
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(a) (b) 

Figure 3. Vessel trajectory, obtained from the first antenna (a), vessel trajectory under the bridge, obtained from the first 
antenna (b). 

  
(a) (b) 

Figure 4. Vessel trajectory, obtained from the second antenna (a), vessel trajectory under the bridge, obtained from the 
second antenna (b). 

  
(a) (b) 

Figure 5. Vessel trajectory (a); trajectory under the bridge, the result of post-processing the signal (b). 

In this regard, the task was set to assess the possibilities of using neural networks to 
solve such problems, in particular, to determine whether it is possible to build a neural 
network that will restore the trajectory of a ship using the previous AIS data. Neural net-
works with various activation functions were studied. 

To train the neural network, an array of 1000 lines containing latitude and longitude 
was taken (see Table 2 for data sample). 

Table 2. Input data sample. 

Latitude Longitude 
59.9466765683333 31.0296530033333 
59.9466765750000 31.0296530366667 
59.9466765833333 31.0296530600000 
59.9466765916667 31.0296530766667 
59.9466765900000 31.0296531200000 
59.9466765883333 31.0296531333333 
59.9466765733333 31.0296531333333 
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There was 10% of the initial set left for the validation process. Of the remaining 90%, 
70% was taken as a training set, and 20% was left for testing. 

The constructed neural network consisted of two layers, the first one contained neu-
rons with sigmoidal activation functions, and the other one had one neuron with identical 
activation functions. The network, taking the vector of the delayed values of the ship's 
coordinates in the geographic system as an input, predicts its value one step ahead. The 
network is trained in real time based on a sample containing a certain number of previous 
trajectory points. 

The Levenberg-Marquardt algorithm, which implements the idea of gradient de-
scent, was used as a training algorithm. The mean square of the course error was chosen 
as a measure of the training accuracy. This algorithm most adequately reproduces the 
dynamics of the vessel's movement. Its advantages, in comparison with other methods of 
conjugate gradients, are high speed calculations and ensuring convergence. 

The first of the constructed networks included 200 input neurons. The hyperbolic 
tangent was used as a neuron activation function (1). 

( )( )
2 1

1 exp 2
a

n
= −

+ − ⋅
 (1) 

The network with 200 neurons in the hidden layer was trained in 50 iterations, and 
the validation showed the difference in latitude by 610− , which is an insignificant discrep-
ancy from the true data, since the numbers after 6 decimal places are not significant (Table 
3). Resulting average error on the straight sections of the vessel path was 0.02° An in-
crease in the number of neurons did not lead to a decrease in errors, but increased the 
calculation time. 

Table 3. Results of the first neural network. 

 Input Data Output Data Reference Data 
Latitude 59.8665262166667 59.866514809161487 59.8665157383333 

Longitude 30.970706225 30.969370218195859 30.9706893433333 

The results of the first neural network performance are presented in Figures 6 and 7. 

 
Figure 6. Comparison of the trajectory predicted by the neural network with the reference trajectory on the straight section 
of the path. 
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Figure 7. Comparison of the trajectory predicted by the neural network with the reference trajectory along the path with 
data loss and distortion. 

The second of the options for building and training a neural network was a network 
with the following structure: the first layer was the input data for the neural network and 
it did not participate in the calculation; the second layer was a hidden layer; and the third 
one processed the data received from the second layer and returned the desired value. For 
the convenience of working with the neural network, the input data were transformed as 
follows: the GPS coordinate values were divided by 100 to bring them to the interval (0; 
1). Subsequently, the data were returned to their original state. To train the neural net-
work, 24,000 datasets were used with 10,000 iterations for each dataset. 

Function (2) was used as an activation function. 

( ) ( )( )
1

1 exp
x

tx
σ =

+ −
 (2) 

In this case, t is the weight of the neuron, which is automatically selected during training 
of the neural network. The peculiarity of neurons with such a transfer characteristic is that 
they amplify strong signals much less than weak ones, since the areas of strong signals 
correspond to the flat areas of the activation function. 

It should be noted that functions (1) and (2) differ only in the range of values, how-
ever, this difference significantly changes the possible input and output values of the neu-
ron, which subsequently affects the learning rate and accuracy of the neural network. 

For the input data, 10 pairs of latitude and longitude values were used, from which 
the values of the next coordinate were obtained. Data in Table 4 show that the accuracy of 
the data produced by the neural network differs for the worse, since in this case the dif-
ference in latitude from the true data is 510− . 

Table 4. Results of the second neural network. 

Input Data Output Data 
59.8902644083333 30.9812980466667 

59.8903520000000 30.9813470000000 
59.8902644083333 30.9812980466667 
59.8902644083333 30.9812980466667 
59.8903000583333 30.9812980466667 



J. Mar. Sci. Eng. 2021, 9, 254 8 of 11 
 

 

59.8903000583333 30.9813171183333 
59.8903000583333 30.9813171183333 
59.8903000583333 30.9813171183333 
59.8903000583333 30.9813171183333 
59.8903360133333 30.9813171183333 
59.8903060000000 30.9813420000000 

The results of the second neural network are presented in Figures 8 and 9. 

 
Figure 8. Comparison of the trajectory predicted by the neural network with the reference trajec-
tory on the straight section of the path. 

 
Figure 9. Comparison of the trajectory predicted by the neural network with the reference trajec-
tory along the path with data loss and distortion. 

While assessing the performance of the second neural network, the following pecu-
liarities appear: 
• the considered neural network can predict the trajectory of a vessel's motion on 

straight sections; however, due to the accuracy of such a prediction, it is impossible 
to guarantee the safety of the vessel's motion (Figure 8); 

• in areas with GPS data loss or distortion, the first few iterations of the neural network 
show a good result, which can be seen in Figure 9; 
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• the developed neural network is not suitable for long-term use due to the lack of 
stable prediction quality. 
Figures 10 and 11 show the comparison of the results of the neural networks’ perfor-

mance with respect to each other and the trajectory obtained from the reference coordi-
nates. 

 
Figure 10. Comparison of the trajectories predicted by the considered neural networks with the reference trajectory on the 
straight section of the path. 

 
Figure 11. Comparison of the trajectories predicted by considered neural networks with the reference trajectory along the 
path with data loss and distortion. 

Despite the fact that the second network obviously gives a better result than the first 
one, it is still far from the true trajectory of the ship. In the case when the ship begins to 
make any maneuvers (e.g., turn), or enters the interference zone, the available AIS data 
are insufficient to train neural networks that predict the position or trajectory of the vessel. 
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Therefore, additional research is needed to adapt neural network technologies in relation 
to the physical characteristics of each specific vessel, as well as swimming conditions, 
characterized by a change in the density of water and air, the influence of shallow water, 
and other similar effects. 

4. Conclusions 
The problem of determining the position of the vessel in real time is very important 

for various kinds of applications, in particular, for the autopilot system development. The 
use of existing algorithms based on AIS data does not allow assessing the position of the 
vessel in the presence of interference that affects the receipt of AIS signal. One of the ways 
to solve this issue is the development of an autonomous system that predicts the trajectory 
of the vessel's movement, which will be a source of additional information for timely de-
cision-making in case of AIS signal distortion. In this paper, the possibility of using neural 
network technologies is being considered as one of the options for predicting the trajec-
tory of a ship. Neural networks with different activation functions and different structures 
were built and trained, using experimental data of the real movement of the vessel in the 
fairway of the Neva River. The goal was to assess whether it was possible to obtain reliable 
results using only the coordinates of the ship's movement obtained from AIS for neural 
network training. 

Simulation modeling has shown that when the vessel moves along a straight trajec-
tory, the use of neural networks gives quite satisfactory results. The main problems ap-
pear when the ship starts to maneuver. With this type of movement, the results shown by 
trained neural networks are not satisfactory, since the discrepancy between the results of 
their work and real data is very large. In fact, it is possible to predict the trajectory only 
one coordinate ahead, which in the conditions of ship maneuvering does not permit using 
this technology to create autopilots. 

Thus, additional research is required to identify which parameters should be added 
to train neural networks to predict the trajectory during ship maneuvering more accu-
rately. Further research will be devoted to these issues. 
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