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Abstract: Seamounts are ubiquitous topographic units in the global ocean, and their effects on local
circulation have attracted great research attention in physical oceanography; however, fewer relevant
efforts were made on geological timescales in previous studies. The Caiwei (Pako) Guyot in the
Magellan Seamounts of the western Pacific is a typical seamount and oceanographic characteristics
have been well documented. In this study, we investigate a sediment core by geochronological and
geochemical studies to reveal a topography-induce surface-to-bottom linkage. The principal results
are as follows: (1) Two magnetozones are recognized in core MABC–11, which can be correlated to
the Brunhes and Matuyama chrons; (2) Elements Ca, Si, Cl, K, Mn, Ti, and Fe are seven elements
with high intensities by geochemical scanning; (3) Ca intensity can be tuned to global ice volume to
refine the age model on glacial-interglacial timescales; (4) The averaged sediment accumulation rate
is ~0.73 mm/kyr, agreeing with the estimate of the excess 230Th data in the upper part. Based on
these results, a proxy of element Mn is derived, whose variability can be correlated with changes
in global ice volume and deep-water masses on glacial-interglacial timescales. This record is also
characterized by an evident 23-kyr cycle, highlighting a direct influence of solar insolation on deep-
sea sedimentary processes. Overall, sedimentary archives of the Caiwei Guyot not only record an
intensified abyssal ventilation during interglaciations in the western Pacific, but also provide a unique
window for investigating the topography-induced linkage between the upper and bottom ocean on
orbital timescales.

Keywords: magnetostratigraphy; geochemical properties; Caiwei (Pako) Guyot; middle Pleistocene;
deep-sea ventilation; surface-to-deep linkage; Magellan Seamounts; western Pacific; abyssal sediments

1. Introduction

Seamounts on the ocean floor are the most abundant volcanoes on the Earth and their
origination is geologically and geochemically similar to ocean island basalts [1]. Seamount
evolution is directly associated with mantle dynamics [1,2]. Their existence can significantly
shape abyssal topography and induce development of marine ferromanganese crusts and
nodules [3–5], resulting in changing ocean currents, and likely playing an important role
in global climate changes [6–9]. Hence, documenting details of sedimentary evolution of
seamounts is critical to understand the topography-induced processes and the formation
and mechanism of mineral resources on the ocean floor.
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There are about 50,000 seamounts discovered in the Pacific Ocean, and more than
8000 are higher than 1000 m. As one of key seamounts, Magellan Seamounts, including
the Caiwei (Pako), the Vlinder, and the Loah, are located in the western Pacific (Figure 1).
Their spatial distribution is like a northwestward chain, which migrated from the southern
Pacific (French Polynesia) to the present region [10,11].

Within the Magellan Seamounts, the Caiwei is a deep-sea guyot with the Caiqi in
the southwest (Figure 1), and was formed by large-scale eruption of hot spots during
120–90 Ma [1,2,12]. The top water depth of the Caiwei Guyot is ~1500–1600 m, and the
base is ~5500 m depth, with a slope of ~20◦–30◦. The sediments on the guyot are mainly
cobalt-rich crusts, carbonate rocks, and/or calcareous pelagic deposits [13–15]. The Caiwei
Guyot has been extensively surveyed in terms of mineral resources and megafaunal com-
munity [16,17] and microorganisms [18–20]. For example, cobalt-rich crusts on the guyot
were found in the northeast [13]; furthermore, organic matters were supposed to be the
main controlling factor in bioturbation around the guyot [19]. Moreover, since the Caiwei
Guyot is located at the main path of the Antarctic bottom water (AABW) and the Lower
Circumpolar Deep Water (LCDW) to the north Pacific [21,22], the oceanographic setting
is clockwise, and flows around the seamount and a Taylor column phenomenon above
the seamount produced by an anti-cyclonic eddy in mesoscale to submesoscales [23,24].
Because of these oceanographic settings, similar hydrochemical properties, such as salinity,
pH value, and nitrate, are observed between the top and the base of the seamount [18].
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Figure 1. Schematic map showing the study area and oceanographic setting. The flow passing
through the seamount and a Taylor column was observed based on the data obtained by the con-
ductivity temperature and depth instrument (CTD) and mooring system [23,24]. Three sites were
referenced in the study: site MAMC–07 (154.92◦ E, 16.08◦ N, 5,778 m water depth; 0.50 mm/kyr), and
MABC–18 (154.79◦ E, 16.22◦ N, 5,644 m; 0.55 mm/kyr) [19], and site MABC–05 (155.40◦ E, 16.17◦ N,
5,840 m) [25]. All the flows were modified from previous studies [21,24,26]. The base map data was
generated using the open and free software DIVA–GIS 7.5 (http://www.diva-gis.org/).
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These published results extend our understanding of sedimentology and biology in
this unique deep-sea environment. However, without geochronology, the evolution of
various paleoenvironmental processes and the topography-induced effects are difficult to
be testified on geological timescales. This case is evident not only in the Caiwei Guyot but
also in other seamounts on the Earth. Therefore, palaeoceanographic and paleoclimatic
studies are necessary to be conducted in seamounts to testify various hypotheses. In this
work, integrated by paleomagnetic and geochemical measurements, we studied a sediment
core collected from the base of the Caiwei Guyot. A geochronological framework was
established by magnetostratigraphy and tuning calcium (Ca) intensity to changes in global
ice volume, and a manganese (Mn)-based proxy of deep-sea ventilation in the study area
was derived. Based on these records, the evolution and forcing mechanism of the deep-sea
environment in such a typic seamount during the middle Pleistocene were discussed.

2. Materials and Methods
2.1. Core MABC–11

The studied core, MABC–11 (155.53◦ E, 15.22◦ N, 5840 m water depth), was collected
from the eastern base of the Caiwei Seamount during the DY27 cruise of the R/V Haiyang
Liu Hao in July, 2012, by using a box corer, with a core length of 59 cm. Based on changes
in the excess 230Th of the sediments, it is estimated that the sediment accumulation rate
(SAR) for 5–22 cm depth interval is ~0.63 mm/kyr, with an organic carbon content of 0.24%
in core MABC–11 [19].

2.2. Magnetic Measurements

Paleomagnetic samples of core MABC–11 were collected using nonmagnetic plastic
U-channels (2 cm × 2 cm × 150 cm). Since the upper part was collected for biological
study on board [18] and sediment loss in cutting, 47 cm of sediment (11–58 cm in depth)
of the core was sampled for paleomagnetic investigation in this study. All U-channel
samples with a 1-cm measuring interval were subjected to stepwise alternating field (AF)
demagnetization up to a peak field of 90 mT (13 steps). The natural remanent magnetization
(NRM) was measured using a three-axis cryogenic magnetometer (2G Enterprise Model
755, USA) installed in a magnetically shielded room (residual fields < 300 nT) at the Key
Laboratory of Muddy Coastal Geo-Environment of the Tianjin Center. Characteristic
remanent magnetization (ChRM) directions were determined using a principal component
analysis [27] implemented by the PuffinPlot package [28], with at least six consecutive
demagnetization steps and with a maximum angular deviation (MAD) of less than 10◦.

Rock magnetism measurements were conducted on four representative specimens
to characterize magnetic minerals in the core. Hysteresis loop and first-order reversal
curve (FORC) analyses were conducted using a Princeton Measurements Inc. MicroMag
3900 Vibrating Sample Magnetometer (VSM) at the Institute of Geology and Geophysics,
Chinese Academy of Sciences. For hysteresis loops, a peak field of 0.5 T was used, and
saturation magnetization (Ms), saturation remanence (Mrs), coercive force (Bc), and the
coercivity of the remanence (Bcr) were determined from the hysteresis loops [29], after
being corrected using the data between 0.4–0.5 T. Setting a peak field of 1.0 T and an
interval of 3.2 mT, FORC diagrams (125 lines) were produced using FORCme software
with a smoothing factor of 3.

2.3. Chemical Scanning

The X-ray fluorescence (XRF) scanning allows nondestructive and continuous ele-
ment analyses of sediment cores [30], which has been used for high-resolution climatic
reconstructions of various types of sediments and various timescales (e.g., [31–34]). To
achieve paleoenvironmental information, the chemical scanning of core MABC–11 was
carried out for a depth interval of 6.6–51.3 cm at 1 mm resolution using the Itrax XRF core
scanner at the Second Institute of Oceanography, Ministry of Natural Resources of China,
setting count times at 10 s, with 30 kV of X-ray voltage and an X-ray current of 45 mA.
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Elemental intensities are obtained and given in counts per second (cps), which can be used
as estimates of relative concentration (ratio) by dividing the total cps value for each point.

3. Results and Analyses
3.1. Magnetic Properties and Magnetostratigraphy

Rock magnetic analysis shows that hysteresis loops are closed below 150 mT
(Figure 2a–d), with Bc, Bcr, and Mrs/Ms of 14–16 mT, 30–40 mT, and ~0.28, respectively,
reflecting that magnetic grains in the sediments are mainly in a pseudo-single domain
(PSD) range or close to the single domain (SD) range [35]. The specimens may consist of a
mixture of different magnetic minerals with variable grain sizes and contents, and thereby,
the methods of partitioning hysteresis loops can be used to investigate the coercivity dis-
tributions [29]. After mathematical unmixing magnetic components by using the normal
function [36,37], a three-humped distribution was observed, and their coercivities are
6–7 mT, 31–35 mT, and 84–98 mT, respectively (Figure 2e–h). FORC diagrams exhibit little
vertical spread of the contours (Figure 2i–l), which indicates that magnetostatic interactions
are negligible, and the bulk of the coercivity distribution lies in the 10–50 mT range, with
peaks at ~20 mT. Integrating all these evidences, it is inferred that the dominant magnetic
mineral is low-coercivity magnetite, which is consistent with analyses of magnetic minerals
of core MABC–05 [25].

The remanent magnetization (RM) of these samples gradually decreases subject to AF
demagnetization. Relative to the RM that subject to 5 mT demagnetization (RM5mT), at
~25 mT, ~50% of RM5mT was removed, and up to a peak field of 80 mT, 90–95% of RM5mT
was removed. The stepwise AF behaviors of representative samples are displayed in the
form of orthogonal diagrams (Figure 2m–p). The stable ChRM component can be isolated
between 20 and 50–90 mT. All specimens produced reliable ChRM directions with the
criterion of six continuous AF steps and MAD ≤ 10◦ (Figure 3c,d).

Based on these 47 ChRMs, two magnetozones are recognized in core MABC–11
(Figure 3e): one of reversed polarity (R1, 48–58 cm) and one of normal polarity (N1,
11–48 cm). According to the SAR (0.63 ± 0.05 mm/kyr) estimated by the excess 230Th
data [19], which is similar with cores MABC–18 and MAMC–07 (Figure 1), the duration of
the 11–58-cm intervals of core MABC–11 is about 760 kyr. Taking this estimate as a reference,
we correlate the two magnetozones to the geomagnetic polarity timescale (GPTS) [38],
namely magnetozone N1 correlating to the Brunhes chron and magnetozone R1 correlating
to the Matuyama chron (Figure 3). The Matuyama/Brunhes boundary (781 ka) is then set
at 48 cm of core MABC–11, which is close to the extrapolation of the excess 230Th data from
the upper part, confirming the reliability of magnetostratigraphy.
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(SAR) for the upper part [19]; (b) photo of the core; (c,d) ChRM declination and inclination, respectively; (e) the polarity of
core MABC–11 with two identified magnetozones; (f) The geological polarity timescale (GPTS) [38]. B, Brunhes chron; M,
Matuyama chron; J, Jaramillo subchron; M/B, the Matuyama/Brunhes boundary (0.781 ka).

3.2. Geochemical Properties and Refining the Age Model

There are seven elements, namely Ca, Si, Cl, K, Mn, Ti, and Fe, identified by XRF
scanning, whose intensities are high (Figure 4). Correlation coefficients can be applied
to assess inter-element relations. As shown in Table 1, elements K and Si are closely
associated, likely inferring terrigenous contribution; element Cl is correlated with Mn,
Ti, and Fe, probably indicating sea-water properties (e.g., [32,34]), and element Ca is
relatively unrelated with others and may reflect biogenic phases (e.g., [39]). Integrating the
above observations, the relative independence of Ca variability is confirmed, and element
ratios divided by Ca intensity show a similar inter-element relation (Table 1). Considering
previous studies in the western Pacific [34,40,41], it is inferred that aeolian inputs or local
erosions, bottom-water masses, and biogenic contribution are the major factors controlling
geochemical properties of the sediments on the Caiwei Guyot.
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Table 1. Correlation coefficients between chemical elements.

Si Cl K Ti Mn Fe Ca

Si – 0.17 0.74 0.35 −0.05 1 0.31 0.14
Cl 0.80 – 0.32 0.44 0.28 0.37 −0.01 1

K 0.93 0.89 – 0.50 −0.01 1 0.40 0.03 1

Ti 0.86 0.91 0.93 – 0.40 0.88 −0.23
Mn 0.48 0.63 0.54 0.67 – 0.49 −0.10
Fe 0.84 0.89 0.90 0.98 0.70 – −0.16

1 all coefficients are significant at p < 0.01 level, except for these four values. The upper triangle is based on
original data, while the lower is based on the record normalized by Ca intensity.

Carbonate/calcium content in deep-sea sediments is a traditional proxy reflecting
biogenic activity and can be employed to refine geochronological models [42–46]. Tuning
carbonate/calcium content in the sediments to the global ice volume inferred by the deep-
sea benthic δ18O record is based on a clear and consistent relationship between them, which
could be locality-specific [47] or somehow inconsistent [48]. For example, many deep-sea
carbonate records in the Pacific show that carbonate preservation in the sediments is higher
during glacial intervals (‘Pacific style’), while in the Atlantic (‘Atlantic style’), carbonate
abundance tends to be higher during interglacial intervals ([47,49] and references therein).

For core MABC–11, the cyclic variability of Ca intensity is evident (Figure 4), and
constrained by the paleomagnetic results (Figure 3), these cyclic changes can be gener-
ally correlated to the glacial-interglacial variability of the stacked benthic δ18O record of
deep-sea sediments (LR04, Figure 5a). This correlation reflects an increase of carbonate
preservation during interglacial intervals, which shows a opposite trend to the ‘Pacific
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style’ but agrees well with the ‘Atlantic style.’ For example, at the Matuyama/Brunhes
boundary (0.781 ka), the Ca intensity of core MABC–11 was high, when an interglacial
period was identified in the LR04 record. The ‘Pacific style’ of carbonate preservation in
deep-sea sediments likely originated from ~1.1 Ma [49], and was possibly resulted from
changes in sea-water chemistry but not marine productivity [48]. However, different from
other Pacific sites on continental shelves or in oceanic basins usually above the carbonate
compensation depth (CCD), typically >3500–4000 m water depth, a seamount system from
a modern perspective can be characterized by a close link between ocean surface and
bottom [18,24]. The unique locality of the Caiwei Guyot may have enough nutrient and
induce productivity during interglaciations. In this case, the influence of marine productiv-
ity could not be ignored, and it is reasonable that carbonate preservation became higher
during interglacial intervals.
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Hence, Ca intensity in core MABC–11 is employed to refine the age model for palaeo-
ceanographic inferences, taking the Matuyama/Brunhes boundary (781 ka) at 48 cm depth
as the tie point (Figure 5c). As a result, low-frequency changes in Ca intensity are well
correlated to the LR04 record (r = −0.66, p < 0.01), inferring a consistent glacial-interglacial
pattern in the middle Pleistocene. This correlation further provides several age points and
yields SARs of 0.4–2.0 mm/kyr during the depositional interval. The average SAR of core
MABC–11 is then estimated as ~0.73 mm/kyr in the middle Pleistocene, which is close to
the estimate based on the excess 230Th data in the upper part of the core.

4. Discussion

The deep ocean beyond 4000 m water depth, usually below the CCD, is a key point in
global circulation in terms of heat, water, and nutrients [22,51]; however, due to technical
limitations of monitoring and studying, their roles in regulating Earth’s climate have not
been well documented yet. The redox (reduction–oxidation) condition is one of the most
important processes, reflecting changes in the deep-ocean environment in oceanology and
sedimentology. Element Mn is an effective indicator of marine environment and oceanic
water masses [52–54], which migrates from reducing to oxidizing environments.

To reduce the influence of element mobility and terrigenous detrital [33], the element
ratio of Mn, which divides Mn content by elements such as Si, Cl, K, Ca, Fe, or Ti, are usually
used for palaeoceanographic inferences [34]. As shown, all these element ratios covary in a
similar manner during the middle Pleistocene (Figure 6), suggesting an inter-elemental
agreement. A principal component analysis (PCA) was subsequently performed on these
six element ratios to extract the common variance to reflect the redox condition recorded in
core MABC–11 (Table 2). As a result, the first principal component (Mn–f1) accounts for
83.76% of the total variance, confirming the consistency between the six elemental ratios.
The derived Mn-f1 record exhibits glacial-interglacial variabilities and is also characterized
by higher-frequency changes (Figure 6). Thus, this redox record was employed to discuss
paleoenvironmental changes in the Caiwei Guyot during the middle Pleistocene.
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Table 2. Results of the principal component analysis of the element ratios of core MABC–11.

Component 1
Extraction Sums of Squared Loadings

Total % of Variance Cumulative %

Mn–f1 5.03 83.76 83.76

Not included

0.61 10.19 93.95
0.18 2.97 96.92
0.12 2.02 98.94
0.05 0.79 99.92
0.02 0.28 100

1 six element ratios, i.e., Mn/Fe, Mn/Ti, Mn/K, Mn/Cl, Mn/Si, and Mn/Ca, were analyzed and shown in
Figure 6.

In general, the Mn–f1 record of core MABC–11 can be well correlated with changes in
global ice volume, as reflected by the LR04 record [50], as well as the Ca intensity of core
MABC–11 (Figure 7). The correlation between elements Mn and Ca of core MABC–11 can
reduce uncertainties in the tuned age model, and confirms that the oxidation of bottom-
water in the Caiwei Guyot enhanced during interglaciations and weakened during glacial
intervals. The good deep-sea ventilation during interglacial intervals is comparable in the
western Pacific. For example, in the Mariana Trench, sedimentary Mn intensity of core
A25 is higher in a warm state during the mid-Pleistocene climate transition [34], and in the
center of the Philippian Sea, sedimentary dynamics of core XT06 are generally strengthened
during interglaciations [41].

Moreover, the inter-basinal gradient of benthic δ13C between the North Atlantic, South
Atlantic, and Equatorial Pacific can be employed to largely reflect changes in deep-sea
ventilation related to Circumpolar Deep Water (CDW) and North Atlantic Deep Water
(NADW) [55,56]. For these benthic δ13C gradients, a similar relationship between deep-sea
ventilation and glacial-interglacial alternations can be observed during the Plio-Pleistocene
Epochs [55,56]. Therefore, it is inferred that there is a common pattern of deep-to-bottom
water evolution between the Atlantic and the western Pacific in the Quaternary, namely,
intensified abyssal ventilation during interglaciations and poor ventilation during glacial
periods. The anti-phase relationship between deep-ocean ventilation and global ice volume
may be linked to a glacial decrease in the deep/bottom-water export [57], which may be
the result of the weakened deep-water production and/or enhanced oceanic stratification
during glacial periods [55,58–60].

In addition, the influence of changes in marine productivity on deep-sea oxidation
should be assessed, and due to the very low SAR of core MABC–11 and carbonate disso-
lution below the CCD level, it is impossible to obtain planktonic δ13C records as usual.
Hence, we further compared changes in records of Ca intensity and Mn–f1 and found that
the correlation coefficient between them is low (r = −0.18, p < 0.01), confirming that it is
appropriate to infer redox conditions at the base of the Caiwei Guyot using the Mn–f1
record of core MABC–11, which could be correlated to the influences of AABW/LCDW in
the study area.

Besides the glacial-interglacial variability, the Mn–f1 record of core MABC–11 is also
characterized by precessional cycles (Figure 8), while there is no evident 23-kyr cycle
in AABW/LCDW proxies, as previously reported during the middle Pleistocene. For
example, the inter-basinal gradients of benthic δ13C indicaes changes in NADW/CDW are
all dominated by 100-kyr cycles [55,56], with little influence of 40-kyr and 23-kyr cycles
(Figure 8d), which is similar in the modeled Antarctic ice volume (Figure 8b). Records of
cores XT06 and A25 reflecting changes in AABW/LCDW in the western Pacific [34,41]
were dominated by the 100-kyr cycles (Figure 8f). Aeolian inputs are the other factor may
influence the sedimentary processes in the western Pacific [61,62], but the dominant cycle
is 100-kyr in the Chinese Loess Plateau (Figure 8c), which is the main source of aeolian
deposits. Another possible source of precessional variabilities in the Mn–f1 record of core
MABC–11 is marine productivity. The planktonic δ13C record of ODP Site 806B in the
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Equatorial Pacific can be employed to indicate regional marine productivity in general [63],
and the 100-kyr cycle is the dominant one (Figure 8c). Moreover, there is little similarity
between the Ca intensity and the Mn–f1 record of core MABC–11 in precessional bands
(r = 0.14, p < 0.01). Thus, changes in AABW/LCDW, global/Antarctic ice volume, aeolian
inputs, and marine productivity are not the source of such an evident 23-kyr cycle in the
Mn–f1 record of core MABC–11.
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However, changes in Asian monsoon intensity and solar insolation exhibit a similar
23-kyr cycle in dominance (Figure 8e). The SARs of core MABC–11 are too low to compare
their variabilities on orbital timescales, because a 1–2 cm hiatus means that a precessional
cycle was missed. Even so, the highlighted 23-kyr cycle with an evident half-precessional
cycle (~11 kyr; Figure 8b), which is a unique cycle in tropical records [64,65], demonstrates
that there should be a close linkage between the upper oceanic changes and the deep-sea
ventilation in the Caiwei Guyot.
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According to studies of physical oceanography, seamounts can significantly change
mixing processes between the upper and lower oceanic layers, by inducing mesoscale
vortices and their propagation to the deep ocean [6,66–69], and thus, they have a great
impact on the path and intensity of ocean currents. When ocean currents flow across a
seamount, a series of complex responses are generated to modulate local and large-scale
circulation [70,71], and the anticyclonic cap is one of the most significant ones [72]. After
three years of monitoring, a deep anticyclonic cap over the Caiwei Guyot was found from
its bottom up close to the ocean surface [24]. This deep anticyclonic cap may generate a
close linkage and yield similar hydrochemical properties between the top and the base of
the Caiwei Guyot [18,23].

With reference to this mechanism on daily to monthly timescales, we speculated that
on orbital timescales, when solar insolation was high in precessional bands, the upper
ocean and air-sea interaction in tropical oceans may be more active, not only strengthening
the Asian monsoon intensity [73], but also intensifying tropical cyclone genesis [74]. An
active upper ocean could induce anti-cyclonic eddies in mesoscale to submesoscale over
the Caiwei Guyot and carry more dissolute oxygen from the upper to the bottom, thus
introducing precessional variabilities into sedimentary records. Therefore, we proposed
that although mesoscale to submesoscale eddies are phenomena on daily to monthly
timescales, by linking the upper and bottom oceanic layers, sedimentary processes in the
deep ocean can be significantly influenced on geological timescales. The resultant oxygen-
rich deep ocean may change CO2 storage and redistribution of materials and nutrients,
which is worthy of further investigation in the future.
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N [77]; (f) Grain size of core XT06 in the center of the Philippian Sea [41], indicating bottom-water circulation intensity
(Figure 1), versus the Mn record of core A25 in the Mariana Trench [34], indicating changes in Antarctic bottom water
(AABW, 640–1240 ka). Three rhythms of orbital forcing were labeled on top. All spectrums were conducted using the
ARAND software [78] with a lag of 100, and their values were standardized into an interval of [0,1].
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5. Conclusions

By integrating magnetostratigraphy and geochemical scanning of the sediments on the
Caiwei Guyot, Magellan Seamounts of the Western Pacific, we have established a reliable
chronology for a sedimentary sequence and produced a record of deep-sea ventilation
during the middle Pleistocene. This sedimentary record reveals a close linkage between
the upper and bottom ocean, which we evaluate with reference to several global climate
signals. Our main findings are summarized as follows: (1) By stepwise demagnetization,
two magnetozones are recognized in core MABC–11, which can be correlated to the Brunhes
and Matuyama chrons in the geomagnetic polarity timescale; (2) There are seven elements
with high intensities identified by XRF scanning, and aeolian inputs or local erosions,
bottom-water masses, and biogenic contribution are the three major factors; (3) By taking
the paleomagnetic constraint and tuning the Ca intensity to the global ice volume, the age-
depth model of core MABC–11 can be refined, and the averaged sediment accumulation
rate is about 0.73 mm/kyr, which agrees well with the estimate of the excess 230Th data
in the upper part of the core. Based on these results, a proxy of element Mn is derived,
which indicates changes in bottom-water ventilation in the Caiwei Guyot. This record is
consistent with changes in global ice volume, the Lower Circumpolar Deep Water, and the
North Atlantic Deep Water on glacial-interglacial timescales. It is also characterized by
an evident 23-kyr cycle, highlighting a direct and topography-induced influence of solar
insolation. Therefore, we conclude that sedimentary archives of the Caiwei Guyot not only
record a common pattern of deep-to-bottom water evolution between the Atlantic and
the western Pacific during the middle Pleistocene, namely intensified abyssal ventilation
during interglacial periods, but also provide a unique window to observe the surface-to-
deep linkage and the effects of eddies on daily to monthly timescales accumulative into
sedimentary processes on geological timescales.
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