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Abstract: Foundations of offshore and nearshore wind energy production systems are subjected to
multidirectional and cyclic loads, due to the combined action of wind and waves and in the particular
case of mutualized anchor foundations for floating wind turbines, to the phase shift between the loads
generated in the adjacent anchored turbines. This article presents a three-dimensional numerical
model developed with FLAC3D to analyse the impact of the change in direction of the horizontal
load during the cycles. The typical case of a 1.7 m diameter and 10 m-long pile founded in a
dense homogeneous sand is considered. A specific procedure has been implemented to apply force-
controlled cycles with a change in lateral load direction. The results are compared to mono-directional
lateral cyclic loads with the same average and cyclic forces. The results of the parametric study
highlight the effect of the average value and amplitude of the cyclic loading on the accumulation
of pile head horizontal displacements during the cycles. When a multidirectional cyclic loading is
applied, it also leads to an accumulation of the deviated horizontal displacements, and the resulting
accumulated horizontal displacements are larger than for a mono-directional cyclic loading of the
same amplitude.

Keywords: numerical modelling; pile; lateral cyclic loading; multidirectional loading; offshore
wind turbine

1. Introduction

Wind power offers an interesting source of energy, leading to the current development
of onshore, nearshore and offshore wind farms. Compared to onshore, nearshore and
offshore wind turbines benefit from a number of advantages such as limited visual impact,
higher and more constant wind speed, and the possibility of using large capacity turbines,
resulting in higher power generation. There are several foundation concepts for offshore
wind turbines, which specifically depend on the loading, water depth and soil conditions:
gravity-base; monopole, tripile, tripod, jacket or anchor for floating structures [1,2]. In
the case of floating wind turbines, the structures are connected to the foundation system
through several anchor lines and the cyclic load then acts in multiple directions, due to
the combined action of wind and waves. In the particular case of mutualized anchor
foundations for floating wind turbines, the foundations are also subjected to the phase shift
between the loads generated in the adjacent anchored turbines. This study thus focuses
on the case of piles as mutualized anchors for floating wind turbines, thus submitted to
multidirectional lateral cyclic loads.

When a pile is subjected to lateral loads, one of the essential features is known to be
the pile bending stiffness compared to the surrounding soil stiffness and strength. Short
rigid piles are mainly submitted to displacement and rotation, whereas for flexible piles,
the soil–pile behaviour is affected by the flexibility of the pile (Figure 1).
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Figure 1. Rigid vs. flexible pile submitted to lateral load. 

Poulos and Hull (1989) [3] defined the rigidity parameter R (Equation (1)), depending 
on the pile Young modulus Ep and quadratic moment Ip, and on the soil “stiffness” Es. 
They suggested that a pile with a length less than 1.48 R behaves rigidly, and if the length 
exceeds 4.44 R, the pile behaves flexibly. However, one should note that the choice of a 
homogeneous soil stiffness Es is still problematic in practice: 𝑅  𝐸 𝐼𝐸 .

 (1)

The piles under lateral load are traditionally designed using the p–y curve concept 
[4,5], which formulates the soil response as uncoupled non-linear springs (Winkler ap-
proach), relating the soil pressure p acting against the pile shaft and the corresponding 
lateral displacement y of the pile. However, the concept has been developed based on 
semi-empirical relations for flexible piles under monotonic loading and has some limita-
tions for large diameter piles, as particularly highlighted by numerical modelling ap-
proaches [6,7]. Indeed, when a pile behaves rigidly, a passive wedge of soil beneath the 
point of zero deflection will develop, an aspect which is not considered in the current 
methodology. 

Furthermore, design methods of these offshore piles and their response to cyclic lat-
eral loading are an important issue in the geotechnical engineering practice and has been 
addressed by several studies around the world, mainly focusing on mono-directional 
loading. 

Among others, experimental testing studies in centrifuges have been reported in [8–
10]. Most of the studies are synthetized in the SOLCYP Project recommendations [11]. All 
these studies have highlighted the lateral displacement accumulation during the cycles. 
Based on field-scale piles, Lin and Liao (1999) [12] proposed a logarithmic law as 

yN/y1 – 1 = α lnN   (N ≥ 1) (2)

where y1 and yN are the pile head lateral displacement at first loading and at Nth cycle, 
respectively, and α is a parameter which thus represents the displacement accumulation 
due to the cycles. This parameter α highly depends on the loading type, cyclic amplitude, 
pile installation, soil properties, pile embedment length and pile–soil relative stiffness. For 
instance, Verdure et al. (2003) [13] presented a linear relationship of α value with the cyclic 
amplitude, based on the centrifuge tests of a flexible pile in a dry dense sand under one-
way cyclic loading. They proposed α = 0.18 ΔH/Hmax where ΔH is the cyclic amplitude and 
Hmax is the maximum loading. They also mentioned that the load cycles have much more 
effect on the pile displacement when the maximum applied load is closer to the ultimate 
lateral static resistance of the pile. Concerning the effect of pile–soil relative stiffness, the 
effect of cycles is more important for flexible piles than for rigid piles [14]. For rigid piles, 
the value of Ep Ip has no more influence [11]. 

Based on the expression proposed by Rosquoët et al. (2007) [15] obtained from exper-
imental results on flexible piles in sand, the SOLCYP recommendations [11] propose the 
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Poulos and Hull (1989) [3] defined the rigidity parameter R (Equation (1)), depending
on the pile Young modulus Ep and quadratic moment Ip, and on the soil “stiffness” Es.
They suggested that a pile with a length less than 1.48 R behaves rigidly, and if the length
exceeds 4.44 R, the pile behaves flexibly. However, one should note that the choice of a
homogeneous soil stiffness Es is still problematic in practice:

R =

(
Ep Ip

Es

)0.25
(1)

The piles under lateral load are traditionally designed using the p–y curve concept [4,5],
which formulates the soil response as uncoupled non-linear springs (Winkler approach),
relating the soil pressure p acting against the pile shaft and the corresponding lateral
displacement y of the pile. However, the concept has been developed based on semi-
empirical relations for flexible piles under monotonic loading and has some limitations for
large diameter piles, as particularly highlighted by numerical modelling approaches [6,7].
Indeed, when a pile behaves rigidly, a passive wedge of soil beneath the point of zero
deflection will develop, an aspect which is not considered in the current methodology.

Furthermore, design methods of these offshore piles and their response to cyclic
lateral loading are an important issue in the geotechnical engineering practice and has
been addressed by several studies around the world, mainly focusing on mono-directional
loading.

Among others, experimental testing studies in centrifuges have been reported in [8–10].
Most of the studies are synthetized in the SOLCYP Project recommendations [11]. All these
studies have highlighted the lateral displacement accumulation during the cycles. Based
on field-scale piles, Lin and Liao (1999) [12] proposed a logarithmic law as

yN/y1 − 1 = α lnN (N ≥ 1) (2)

where y1 and yN are the pile head lateral displacement at first loading and at Nth cycle,
respectively, and α is a parameter which thus represents the displacement accumulation
due to the cycles. This parameter α highly depends on the loading type, cyclic amplitude,
pile installation, soil properties, pile embedment length and pile–soil relative stiffness.
For instance, Verdure et al. (2003) [13] presented a linear relationship of α value with
the cyclic amplitude, based on the centrifuge tests of a flexible pile in a dry dense sand
under one-way cyclic loading. They proposed α = 0.18 ∆H/Hmax where ∆H is the cyclic
amplitude and Hmax is the maximum loading. They also mentioned that the load cycles
have much more effect on the pile displacement when the maximum applied load is closer
to the ultimate lateral static resistance of the pile. Concerning the effect of pile–soil relative
stiffness, the effect of cycles is more important for flexible piles than for rigid piles [14]. For
rigid piles, the value of Ep Ip has no more influence [11].

Based on the expression proposed by Rosquoët et al. (2007) [15] obtained from
experimental results on flexible piles in sand, the SOLCYP recommendations [11] propose
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the following logarithmic law for the case of intermediate or rigid piles in sand, thus also
accounting for the pile bending stiffness:

yN/y1 − 1 = 0.102/CR × ln(N) × (Hc/Hmax)0.35

N ≥ 1
(3)

where CR is a rigidity coefficient defined as

CR = [Ep Ip /(Ep Ip)fl]1/5 (4)

(Ep Ip)fl corresponds to the limit value of the pile bending stiffness Ep Ip for flexible
piles and should be first assessed by analysing the effect of the pile bending stiffness on the
pile head displacement under monotonic horizontal loading. (Ep Ip)fl corresponds to the
value below which the bending stiffness has a large impact on the pile head displacement.
For flexible piles, CR = 1. Hmax and Hc are, respectively, the maximum lateral load and
half of the amplitude of the cyclic loading (see Equations (5) and (6)).

An alternative or additional approach to experimental and semi-empirical investiga-
tion consists of implementing numerical models. In this approach, special attention should
be paid to the modelling of the soil (and pile–soil interface), by using relevant constitutive
models, even under monotonic loading [16]. A few numerical approaches under lateral
cyclic loading have been proposed. For instance, Achmus et al. (2009) [17] implemented
an approach termed “degradation stiffness model” to account for long-term cyclic lateral
loading of piles. Model parameters were assessed from cyclic triaxial tests results with up
to 104 cycles, and numerical results were compared to test results of pile in sand, showing a
good agreement. The numerical parametric study thus permitted to develop design charts.

Nevertheless, most of these studies under lateral cyclic loading focus on the case of
mono-directional loading. The behaviour of the piles under lateral loading that varies in
direction and amplitude has been little studied to date, and even less under cyclic loading
conditions. Su and Li (2013) [18] investigated the effect of multidirectional lateral loading
using a finite-element modelling approach, by applying an imposed trajectory at pile
head (with no unloading). They obtained that the lateral resistance of the pile is lower
under multidirectional than under mono-directional loading. In this latter, the directions
of the force increment vector and lateral displacement increment vectors are generally
non-coaxial. Lovera et al. (2020) [19] extended the framework of p–y curve method to
multidirectional loading, and they obtained a misalignment between load direction and
total displacement when the loading direction changes.

Concerning the effect of multidirectional lateral loading under cyclic conditions, a few
experimental studies were conducted. Mayoral et al. (2016) [20] focused on the case of a
pile in soft clay under seismic loading using an experimental modelling approach. They
highlighted the influence of the cyclic loading path on the pile response and they noted
that the concept of p–y curve could not simply be applied in two orthogonal directions.
Rudolph et al. (2014) [21] performed centrifuge experiments of a large-diameter pile in sand,
with up to 13,000 cycles and a variation of loading direction of 0◦, 30◦, 60◦ or 90◦. They
highlighted the significant increase in lateral displacement accumulation, even under load
levels representative of serviceability conditions, which makes the current guidelines—as
in the American Petroleum Institute (API) recommendations [4]—non-conservative.

Experimental studies are complex to perform, expensive and time consuming, even
more under complex loading paths, with cycles and loading direction changes, so that
complete parametric studies under such complex and multiple conditions are difficult to
conduct. Numerical studies thus can help understanding the behaviour under complex
conditions and highlight governing features. Moreover, numerical studies allow accessing
information difficult to obtain experimentally, such as the bending moment in the pile.
However, no numerical study of pile subjected to lateral multidirectional cyclic loading
has been reported in the literature to date.
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The objective of this work was to develop a numerical approach to acquire knowledge
concerning the system behaviour and governing parameters, in the case of multi-directional
and cyclic lateral loading as encountered for mutualized anchoring piles. The aim was to
be able to estimate the accumulated pile displacements, in particular at the mudline, and
the accumulated pile rotation and/or bending, in such complex loading situations.

To achieve these objectives, a conceptual 3D numerical model using the commercial
finite difference software Flac3D [22] was developed, simulating the pile, the surrounding
ground mass and their interface. Specific loading procedures are implemented to apply
mono-directional and then multi-directional cyclic loadings. The multi-directional loading
consists of varying the direction of the lateral load during the unloading–reloading process.

2. Materials and Methods for the Numerical Modelling
2.1. Model Specifications

In the case of mutualized anchor piles for floating wind turbines, each pile was
connected to several turbines (Figure 2) and each turbine was connected to several piles. In
the case depicted in Figure 2, the horizontal load applied to a pile head (H) thus results
from the tension applied by both lines (H1 and H2). H1 and H2 both vary in time, more or
less independently from the other, thus resulting in a multidirectional cyclic vertical (not
investigated here) and horizontal loading: H = f(ω, t), whereω is the loading direction (or
azimuth) and t, time.
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Figure 2. Concept of mutualized pile foundations for floating wind turbines (conceptual orientations).

The reference case considered in this study is taken from a relevant case proposed by
France Energies Marines [23], in order to proceed with the development of the numerical
model. Figure 3a depicts this relevant case in terms of the horizontal loading on an
anchored pile (named A1), induced by two anchored lines (M1-L4 and M2-L1) connected
to two floating turbines (M1 and M2). In this case, the resulting horizontal force (H) at pile
head varies between Hmax = 1.77 MN down to Hmin = 1.25 MN, with a change of force
direction of 30◦ in a horizontal plane (azimuth change). Figure 3b depicts the considered
loading path H as a function of the azimuth ω adopted in the numerical study. In this
exploratory study, unloading and reloading follow the same path. The case of the mono-
directional loading of the same loading amplitude (H between 1.25 and 1.77 MN, thus
with ω = constant, equal to 0◦ on Figure 3b) is first considered in order to (i) proceed to
a numerical model validation under a more “conventional” situation; (ii) highlight the
impact of loading azimuth change on the pile response afterwards.
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anchor A1 by 2 anchor lines M2-L1 and M1-L4, adapted from [23]. (b) Reference case of the loading path for the current
numerical study.

As an initial numerical parametric study, the impact of the average horizontal force
and amplitude of mono-directional cycling loading (i.e.,ω = 0◦) is investigated beforehand.

The average lateral load Hm and half-amplitude of cyclic loading Hc are defined as

Hm =
Hmax + Hmin

2
(5)

Hc =
Hmax − Hmin

2
(6)

The reference case corresponds thereby to Hm = 1.51 MN and Hc = 0.26 MN. The
Hc/Hmax ratio (cf. Equation (3)) is equal to 0.147. Additionally, the ultimate lateral loading
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for the case study is numerically determined to equal Hlim = 4.3 MN (see Section 3.1) in
order to compute the average force ratio (Hm/Hlim) and cyclic amplitude ratio (Hc/Hlim).

The numerical parametric study conducted is summarized in Table 1 and Figure 4.
The reference case is “case 1”. Cases with a larger cyclic amplitude than the reference case
were mainly investigated (cases 3–7), whereas case 2 is for a smaller amplitude. The effect
of the average force value for a fixed amplitude can be explored by comparing cases 3, 4
and 5, and cases 6 and 7. Figure 4 also highlights that only “one-way” cycles are applied
(no load reversal).

Table 1. Parametric study under mono-directional cyclic loading.

Case Hmax (MN) Hmin (MN) Hm (MN) Avg. Force Ratio
Hm/Hlim

Hc (MN) Cyclic Amplitude
Ratio Hc/Hlim

Hc/Hmax

1 1.77 1.25 1.51 0.35 0.26 0.06 0.147
2 1.77 1.50 1.64 0.38 0.14 0.03 0.08
3 1.77 1.00 1.39 0.32 0.39 0.09 0.220
4 2.02 1.25 1.64 0.38 0.39 0.09 0.193
5 2.27 1.50 1.89 0.44 0.39 0.09 0.172
6 1.77 0.64 1.21 0.28 0.57 0.13 0.322
7 2.57 1.44 2.01 0.47 0.57 0.13 0.222
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The period of loading cycles is around 10 s. In the numerical model, no dynamic
effect is thus considered—i.e., cyclic loading is applied under quasi-static conditions, and
calculation will be performed under drained conditions, all the more that a sand stratum
is envisaged.

The case of 1.7 m-diameter (D = 1.7 m) and 10 m-long pile (L = 10 m) founded in a
dense homogeneous sand mass was examined. The pile is a hollow pile made of steel,
with a wall thickness of 35 mm (internal diameter Dint = 1.63 m). With Ep = 200 GPa and
a pile quadratic moment Ip = π/64 × (D4–Dint

4) = 0.0635 m4, the flexural pile rigidity is
Ep × Ip = 1.27 × 1010 N·m2. The soil “stiffness” Es is taken equal to 50 MPa. The value of
R of Equation (1) is then R = 4.0 and the pile length is L = 10 m = 2.5 R. The pile length
being between 1.48 and 4.44 R, this pile is therefore supposed to have a medium relative
flexibility [3].

Concerning the soil mass, a dense and homogenous layer of sand is considered. The
main geotechnical characteristics that will be considered to calibrate the soil constitutive
model for the numerical analysis are its submerged unit weight γ’ = 10.2 kN/m3; the
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maximum friction angle ϕ = 37◦; the cohesion c = 0 kPa; the dilation angle Ψ = ϕ − 30 = 7;
and a deformation modulus Es = 50 MPa.

2.2. Numerical Model

The issue addressed in this study is a typical soil–structure interaction problem. It
is handled here by implementing a numerical method termed a “direct method”, since
the soil mass and the structure elements are part of the same model, here in a continuum.
The numerical model is developed with the commercial finite difference program FLAC3D
(Fast Lagrangian Analysis of Continua) v. 5.01 [22]. The code uses an explicit numerical
scheme that solves the dynamic equations of motion, even for static problems, in con-
junction with an incremental constitutive law over a small time step, at discrete points
in space (grid-points). This method is particularly well adapted for analysing the non-
linear behaviour of soils and soil–structure interactions. Because no matrices are formed,
large three-dimensional calculations can be made without excessive memory requirements.
Moreover, the internal programming language (FISH) and command-driven mode permit
applying the desired loading path. This is a powerful feature when dealing with a complex
multidirectional loading process, are addressed in this study.

The numerical model in a continuum consists of a soil mass with boundary conditions
in which a pile made of zone elements is embedded (Figure 5). For the case of mono-
directional horizontal loading of the pile, only half of the soil mass needs to be simulated
due to symmetry condition (loading H is only applied in the x direction defined in Figure 5)
and in order to optimize the calculation duration. On the contrary, the multi-directional
loading case requires the implementation of a full model. The boundary conditions consist
of node fixity in the x direction for the vertical planes perpendicular to the x direction, in
the y direction for the vertical planes perpendicular to the y direction (also valid for the
symmetry plane in the case of the half model) and in all directions for the horizontal bottom
plane. The global size of the model and the size of the zones (mesh refinement) were the
subject of a preliminary parametric study performed by Obaei (2020) [24]. The optimized
models are depicted on Figure 5. The mesh is finer near the pile, and the size of the
zones regularly increases when radially moving away from the pile axis. The model width
is equal to 30 D, which was sufficient to prevent any boundary effect under pile lateral
loading. The model for mono-directional loading (half model) contains 11,472 zones (10,464
for the soil and 1008 for the pile) and 12,956 grid-points; the model for multi-directional
loading (full model) contains 22,944 zones (20,928 for the soil and 2016 for the pile) and
24,847 grid-points. The total height of the model could be optimized as only horizontal
loading is applied on the pile head, and it is here equal to 17.85 m, i.e., 7.85 m below the
10 m pile toe.
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The pile is actually a hollow cylinder but in the present study it is simulated as a
solid cylinder with an equivalent bending stiffness (Ep × Ip), for modelling simplification
reasons. The pile is made of cylindrical zone elements. The quadratic moment for a solid
cylinder of diameter D being Ip_eq = π/64 × D4, the equivalent Young modulus for the
solid pile, is equal to Ep_eq = 31 GPa. The 10 m-long pile is made of 20 slices of vertical
zones plus an additional 0.1 m-thick element, above the soil surface, in order to apply the
pile head loading, as depicted on Figure 6. Moreover, in order to facilitate the analysis
in terms of bending moments generated in the pile during the lateral loading, a vertical
beam made of 20 structural elements is generated in the pile axis (Figure 6). This beam has
low Eb and Ib characteristics (compared to Ep and Ip values), in order not to affect the pile
bending stiffness, but has the same deflection as the pile. According to the Bernoulli beam
theory, the pile bending moment Mp is then equal to Mb × (Ep × Ip)/(Eb × Ib), where Mb
is the bending moment directly recorded in the numerical model using the beam element.
Interfaces are generated between the pile and the soil (at the pile shaft and toe).
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2.3. Constitutive Models

When dealing with a soil–structure interaction problem using numerical modelling in
a continuum, the choices of material and interface constitutive models and the calibration
of their parameter are essential.

As already discussed, the pile–soil interaction behaviour is highly influenced by the
rigidity of the pile, characterized by (Ep × Ip) value. The pile is simulated by volume
element with an elastic behaviour and an equivalent Young modulus equal to 31 GPa. The
Poisson’s ratio is taken equal to 0.3.

Concerning the modelling of the soil behaviour, to overcome the limitations of the
classical elastic–perfectly plastic model with Mohr–Coulomb failure criteria, a friction hard-
ening elastoplastic model, with shear-induced volumetric changes and stress-dependent
stiffness, was implemented is this study. The Flac3D built-in “CHsoil” model was used [25].
This model permits to account for a higher soil stiffness during unloading–reloading pro-
cess and for a soil stiffness dependent on the initial stress state. Indeed, the initial stress
state significantly increases from the head of the pile, at the mudline, to the toe at 10 m
depth, actually leading to variation in soil stiffness along the pile. To calibrate the soil
model elastic stiffness parameters, an average value of a deformation modulus equal to
50 MPa and Poisson’s ratio equal to 0.2 (i.e., a bulk modulus Kref = 27.8 MPa and shear
modulus Gref = 20.8 MPa) are targeted at a mid-depth of 5 m, where the initial mean
effective pressure is equal to p’m = 30 kPa, also set as the reference pressure pref. In CHsoil
model, the elastic bulk and shear modulus are then computed using Equations (7) and (8)
according to the initial mean effective pressure p’m, which increases with depth due to soil
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weight. With m = n = 0.5, at a depth 10 m, the elastic deformation modulus is equal to
70 MPa:

Ke = Kre f . pre f

(
p′m
pre f

)m

(7)

Ge = Gre f . pre f

(
p′m
pre f

)n

(8)

The CHsoil model parameters used in this study are given in Table 2 and the corre-
sponding behaviour obtained on triaxial compression tests at 30 and 50 kPa of confinement
are depicted on Figure 7, with an unloading–reloading loop.

However, this model is not able to account for specific features of sand behaviour
under a high number of load cycles (strain accumulation due to fatigue, etc.), as there is
only an isotropic shear hardening mechanism. Indeed, as this numerical study first aims
at developing a complex loading procedure (multi-directional cyclic lateral loading), the
efforts were not concentrated on implementing a constitutive model with a high degree of
complexity, and this aspect is part of the numerical work perspectives.
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Table 2. Parameters of the CHsoil model.

Parameter Significance Value

pref Reference pressure 30 kPa
Eref Deformation modulus number 1680 1

υ Poisson’s ratio 0.2
m Bulk modulus exponent 0.5
n Shear modulus exponent 0.5
ϕf Maximum friction angle 37◦

Rf Failure ratio 0.9
ϕcv Constant volume friction angle 30◦

c Cohesion 0 kPa
Ψf Maximum dilation angle 7◦

1 The deformation modulus for the reference pressure is then equal to Eref · pref = 50.4 MPa.

Interfaces are placed between the soil and the pile by using the standard interface
feature from the software. The interfaces are characterized by normal and shear stiffness
and sliding properties. The interface normal stiffness kn and shear stiffness ks are computed
equal to 1.2 GPa/m, according to the adjacent zone size and stiffness, in order to optimize
the computational time [22], so they have no real physical meaning. The interfaces have
no cohesion and a friction angle equal to 2/3 of the soil ultimate friction angle, i.e., equal
to 2/3 × 37◦ = 24.7◦, which is a conventional friction angle for a relatively rough soil–
steel interface.

2.4. General Modelling Procedure

A lateral pile loading simulation follows the subsequent steps:
(1) Mesh generation for the ground mass, the pile and the interfaces. The pile is first

generated separately above the soil mass, and is then moved down into its final position,
in order to correctly create the contact with the interfaces [22]. The pile is thus numerically
wished-in-place and the possible pile installation effects are therefore not represented.
Moreover, this procedure would correspond to the case of a close-ended rather than an
open-ended pile.

(2) Stepping until reaching static equilibrium under gravity and soil self-weight. The
zones occupied by the future pile are first considered as soil. The calculation is performed
under drained conditions, so the submerged unit weight γ’ = 10.2 kN/m3 is assigned to
the zones and an earth coefficient K0 = 0.5 is used to initialize the horizontal effective stress.
Static equilibrium is considered reached when the unbalanced force ratio is below 10−6.
This ratio is defined as the largest ratio between the maximum grid-point unbalanced force
to the average applied force amongst all of the model grid-points.

(3) The pile zones are assigned pile properties and a new static equilibrium is reached.
(4) The displacements are initialized (at this stage, they are very small and have no

physical meaning).
(5) Lateral loading is applied using the procedure described below.
(6) All the calculations are performed in small strain conditions.

2.5. Loading Procedure

Due to the formulation of the program Flac3D, a loading can be defined by applying
a velocity to model grid-points. This procedure is especially appropriate as the loading
(and loading direction) varies during the process. The applied velocity then corresponds
to an increment in displacement (in the same direction) at each time-step (of duration
∆t) of the stepping process. In the case of a quasi-static study, the velocity has only a
numerical signification, and should be sufficiently small in order to keep the model in a
quasi-static equilibrium (i.e., with a negligible unbalanced force ratio). The choice of the
applied velocity is discussed later. Moreover, numerical damping is introduced in the
computational process to reach a quasi-static equilibrium state (combined damping is used
in this study).
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To apply a horizontal force at the head of the pile, a horizontal velocity is therefore
applied to all pile head grid-points (on the 0.1 m thick pile slice above the mudline).
Nevertheless, the process is governed in terms of force value, by implementing adequate
servo files that compute the current resulting force at pile head during the process and then
adapts the required velocity accordingly (in particular, its direction). The current force at
the pile head is computed as the sum of the unbalanced forces of all the grid-points of the
pile head where the velocity is applied (in the x direction to obtain the force in x direction
Hx and in the y direction to compute Hy, where applicable, i.e., for the multi-directional
loading case).

Two types of loading procedures are implemented: for mono-directional lateral load-
ing (only in the x direction) and multi-directional lateral loading (in x and y directions).

2.5.1. Loading Procedure for Mono-Directional Monotonic Loading and Cyclic Loading

A velocity is applied on the pile head only in x- direction, and due to geometrical
and material symmetry of the model, it induces a pile head horizontal force in the x
direction. The impact of the numerical value of the velocity on the model response was
the subject of a parametric study [24] and a value equal to 5 · 10−8 (m/step) permitted to
maintain an acceptable quasi-static equilibrium during the loading process (i.e., negligible
maximum unbalanced force), with a reasonable computational time. Horizontal loading is
accomplished with a positive velocity in the x direction (pile head displacement in positive
x direction, see axes in Figures 5 and 6), until the desired Hmax value; then, unloading is
performed by applying a velocity in the opposite direction (-x) until the desired Hmin value.
The velocity was set to 1 · 10−8 (m/step). Reloading and unloading loops are applied in the
same manner. Twenty cycles were applied for each calculation (under mono-directional
loading, system behaviour was considered unaffected after around 20 cycles, see Section 3).

Under lateral monotonic loading, with a PC (CPU 1.9 GHz–RAM 16 Go), the computa-
tion duration was approximately 2 h to reach H = 1.77 MN and 9 more hours were needed
to reach a pile head displacement equal to 0.15 D (H = 3.46 MN), on the half model. The
computation time is directly proportional to the applied velocity value. Concerning the
cyclic loading, achieving 20 loops of unloading–reloading took about 20 h for case 1 and
48 h for case 7 (as the computation time is directly correlated to the pile head displacement,
for a given applied velocity).

2.5.2. Loading Procedure for Multi-Directional Cyclic Loading

Concerning a multi-directional horizontal loading process as described in Section 2.1,
a specific procedure has been developed in the frame of this work, in order to apply a given
loading path, but controlled in terms of displacements. Indeed, the complexity lies in the
fact that force vectors and displacement vectors increments are not co-linear.

The first loading is applied using the mono-directional procedure (but on the full
model), until Hmax value is reached at pile head.

Concerning the unloading, the resulting horizontal value H is considered varying
linearly according to the azimuth ω (Figure 3) from Hmax down to Hmin, for ω = 0 to
ωmax = 30◦. The horizontal force H has two components: Hx = H cosω and Hy = H sinω,
as shown on Figures 8 and 9a) depicts the imposed velocity for unloading (xvel negative
to decrease Hx and yvel positive to increase Hy). The absolute value of the norm of the
velocity vector is kept constant (vel = 5 × 10−8 m/steps as a cruise value, after a ramp
of increase) but the orientation (angle β) of the velocity vector is adjusted during the
calculation, in order to follow the imposed path in terms of force H = f(ω). The initial value
for β is arbitrarily picked at 45◦ and the x and y component of the velocity (xvel and yvel)
are re-calculated based on current β value at each step (xvel = vel × cos β, yvel = vel ×
sin β). On Figure 10, the angle δ is defined as the azimuth of the resulting horizontal force
at the current step (step n), whereas the targeted azimuth is ω (computed according to
the current H value and given function H = f(ω)). The difference is ∆ω =ω − δ. For the
next step (n + 1), the orientation of velocity is then adjusted to correct the orientation of the



J. Mar. Sci. Eng. 2021, 9, 235 12 of 22

force. The new value of β is computed with βn+1 = βn + ∆β, with ∆β = ∆ω. During the
whole process, the adjusting angle ∆β = ∆ω actually oscillates around zero. The unloading
process stops when the horizontal force H reaches Hmin.

The same concept is implemented for reloading, by inverting the sign of xvel and yvel
(Figure 9b) and with ∆β = −∆ω. The norm of velocity vector is also equal to 5 × 10−8

m/steps as a cruise value, after a ramp of increase. The reloading process stops when
the horizontal force H reaches Hmax; then a new unloading–reloading loop is achieved.
This cyclic process is applied for 40 loops (compared to the mono-directional loading, 20
additional cycles had to be applied to confirm the trend observed after approximately the
ten first cycles (see Results Section).

The computation of the first 20 cycles took about 6.5 days with the same PC.
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3. Results
3.1. Monotonic Lateral Loading

The preliminary calculation consists in the mono-directional and monotonic lateral
loading of the pile, to assess the conventional lateral limit load (Hlim). Indeed, the effect
of the cyclic loading is supposed to be more important when the maximum applied force
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Hmax becomes closer to the limit load Hlim. The ratio Hmax/Hlim should then necessarily
intervene in the cyclic degradation of the behaviour. Several procedures exist to determine
Hlim value: the convention chosen here is the horizontal force that corresponds to a
horizontal head displacement equal to 25 % of the pile diameter D (with D = 1.7 m).
Figure 11 shows Hlim = 4.3 MN (by extrapolating the numerical results that were stopped
for a displacement equal to 0.15 D = 0.255 m.
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3.2. Mono-Directional Lateral Cyclic Loading

Figure 12 presents the horizontal force developed at the pile head (H = Hx) according
to the pile head displacement, for the reference case (case 1) of mono-directional cyclic
loading. Twenty cycles of unload and reload were applied. This figure shows that the
irreversible horizontal displacement increases after each cycle, with a decreasing rate all
along the cycles. The pile deflection is depicted in Figure 13a. The pile is mainly subjected
to rotation around a fixed point located at a depth of 8 m (with an angle of rotation of
around 0.3◦ when the horizontal force is equal to 1.77 MN), but also to bending, leading
to a bending moment in the pile (Figure 13b). The bending moment is maximum (Mfmax)
at a depth around 4–4.5 m and only increases by around 1% from the first loading at
Hmax = 1.77 MN (Mfmax_0 = 4.40 MN·m) to the 20th cycle (Mfmax_20 = 4.44 MN·m). The
pile deflection curve also shows that pile displacement accumulation mainly occurs at the
pile head, and the pile toe has a negligible backward displacement accumulation along
the cycles.
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Figure 13. Pile horizontal displacement and bending moment (CH1 case).

The increase in horizontal pile head deflection (∆y = yN − y1) normalized by the first
loading displacement at Hmax (y1) is drawn according to the cycle number N in the natural
logarithm (lnN) in Figure 14. From the law proposed by Lin and Liao (1999) (Equation (1)):
yN/y1 − 1 = α lnN; the parameter α can be obtained. The numerical results approximately
verify the logarithmic law and an α value equal to 0.008 was obtained for the reference
case. Figure 14 also shows the head displacement results obtained for case 7 (case with
the largest average force and cyclic amplitude), leading to α = 0.017. The values of the
parameter α obtained for all the investigated cases are summarized in Figure 15. This
figure highlights that the higher the cyclic amplitude, the larger the α value; however, for a
given cyclic amplitude, the average force has no impact on α.
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For all the cases investigated, the pile is subjected to a rotation around a fixed point,
all along the cycles located at a depth of 8 m, as depicted in Figure 16 for cases 1 and 7.
Figure 17 depicts the relative increase in the maximum bending moment obtained in the
pile for Hmax during the 20 cycles. The increase is limited for all the cases (0.2–2.4%), but it
is higher for a larger cyclic amplitude, whereas the average force has no impact.
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3.3. Multi-Directional Lateral Cyclic Loading

The curve shown on Figure 18 (horizontal force in y direction Hy vs. horizontal force
in x direction Hx) is a numerical result taken from the simulation under multi-directional
cycling loading. It demonstrates that the implemented procedure, described in Section 2.5.2,
successfully permits applying the targeted loading path. This figure also reminds that the
same unloading and reloading path is trailed along the cycles.
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Figure 19 depicts the evolution of the pile head displacement in the x direction during
the lateral multidirectional cyclic loading between H = 1.25 and 1.77 MN, whereas Figure 20
is a plan view of the pile head displacement. The latter highlights that the pile head is
subjected to a horizontal displacement accumulation in both the x and y directions during
the loading cycles. Thereby, residual pile displacements occur in the deviated direction (y
direction), whereas the horizontal force only goes back to an x component at each cycle
(azimuth ω = 0◦). The deviation angle is defined in Figure 20 as Ω. The final deviation
angle Ω, for H = Hx after 20 cycles (final position of the pile compared to the x axis) is
equal to 4.3◦ (ΩL20). The value of this angle is ΩL = 2.3◦ after the first cycle (Figure 21),
it increases during the first ten cycles to reach a nearly constant value at the end of each
cycle. Figure 20 also shows this angle at the end of each unloading stages (ΩU), i.e., for
a loading azimuth ω equal to 30◦. This angle is equal to 7.9◦ for the first unloading and
also rapidly (after 5–6 cycles) tends to a constant angle of around 9◦. The angle difference
between unloading and reloading ∆Ω = ΩU–ΩL is constant after about 10 cycles.
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Figure 22 presents the horizontal pile head displacement accumulation (∆y/y1 =
yN/y1 − 1) during the loading cycles (with cycle number N in natural logarithmic scale), for
the multi-directional loading and also for the mono-directional loading of same amplitude
(lateral force H between 1.25 and 1.77 MN). In the case of the multi-directional loading,
the pile head displacement (termed yN) has both x and y horizontal components, whereas
only a horizontal displacement in x direction occurs for the mono-directional loading.
However, the initial displacement (termed y1) under the first monotonic loading equal to
1.77 MN is the same in both calculations (y1 = 52 mm). This figure reveals that the pile
head displacement accumulation is much larger when cycles are applied with a change



J. Mar. Sci. Eng. 2021, 9, 235 18 of 22

in loading direction. After 20 cycles, a displacement increase of 11% was reached for the
multi-directional loading, against an increase of only 2% for the mono-directional loading.
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This figure also highlights that the accumulation of pile head displacement does not
follow the logarithmic law (Equation (2)) anymore when a multi-directional cyclic loading
is applied, contrarily to the observation made for the mono-directional loading. However,
a linear trend was observed again for a larger amount of cycles (a total of 40 cycles were
applied to confirm the trend, as well for the mono-directional loading), with a slope similar
to the one obtained under mono-directional loading (α = 0.008).
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4. Discussion

The numerical results obtained on the mono-directional lateral cyclic loading are in
qualitative good agreement with the predictive logarithmic law for the additional pile head
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displacement (Equations (2) and (3)). The parameter α from the Lin and Lao (1999) [12]
law: yN/y1 − 1 = α lnN could be obtained and varied between 0.004 and 0.018 mainly
according to the cyclic amplitude Hc for the investigated cases, but, in all likelihood, not
according to Hm.

The logarithmic law proposed in the SolCyP recommendation [11] would lead to the
expression of the parameter α (from Equations (2) and (3)):

α = 0.102/ CR × (Hc/Hmax)0.35 (9)

Thereby, Figure 23 depicts the evolution of α obtained from the numerical results,
according to (Hc/Hmax)0.35, that should lead to a linear relation with a slope 0.102/CR if
Equation (9) is satisfied, with the assumption that the rigidity coefficient CR (defined in
Equation (4)) is independent on the loading. The trend of α increasing with (Hc/Hmax)0.35

is observed, but the linear relation does not accurately apply. A value of 0.102/CR = 0.02
(that satisfies the numerical cases 3, 4 and 5), would lead to CR = 5.1. However, the rule
given by [3] (Equation (1)) with a soil stiffness Es = 50 MPa, leads to a flexible pile for Ep Ip
below 1290 MN·m2 (=(EpIp)fl), then to CR = 1.6. According to Equation (9), the parameter
αwould vary between 0.026 for case 2 and 0.043 for case 6. These values are thus 2–6 times
higher than the values obtained with the current numerical modelling.
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The trends given by the proposed numerical model are thus qualitatively acceptable,
but it seems that it underestimates the pile head displacement accumulation under lateral
mono-directional cyclic loading. This is probably due to the implemented constitutive
model for the soil that is not able to take accurately into account the strain accumulation
in the soil under repeated loading, and this is a major numerical work perspective to
this current study. In fact, the elastoplastic model implemented in this study has only
an isotropic hardening shear mechanism, with an elastic response on an unload–reload
loop on a triaxial test path (Figure 7), thereby initially not able to take ratcheting effect
into account [26]. However, in this soil–structure interaction system, the stress path is
more complex than on a pure axisymmetric triaxial test path, leading to stress redistribu-
tion in the surrounding soil, to additional plastic zones at following cycles and thus to
additional deformations.

As this numerical model accurately represents the qualitative pile–soil interaction
behaviour under mono-directional lateral cyclic load, it is implemented to explore the
behaviour under multi-directional lateral cyclic loading. This latter requires the imple-
mentation of a specific loading procedure. This was successfully done and the numerical
model conducted to highlight interesting and encouraging aspects of the specific behaviour
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under a lateral load that varies in its direction during the cyclic process. The main observa-
tions are:

— As expected, the pile head displacement suffers a displacement accumulation in both
horizontal directions during the cycles, leading to a misalignment of the loading and
pile displacement directions;

— The pile head displacements are greatly increased compared to the mono-directional
cyclic loading with the same average and cyclic amplitude values. New plastic
zones can develop throughout the cyclic loading process as additional deviated
displacements go along;

— The pile head displacement does not follow a logarithmic law anymore. The rate
of displacement accumulation decreases after about ten cycles, to reach a rate of
accumulation similar to the one obtained on the mono-directional loading;

Nonetheless, the effect of the constitutive model on these numerical findings still
needs to be highlighted.

In this study, a limited number of cycles of load were applied, as they were all
simulated one after the other (cycle-by-cycle simulation). To investigate the behaviour
under higher cycle numbers (hundreds, thousands or more), particularly an appropriate
constitutive model should be used, but for cycle-by-cycle simulation, as this would lead to
a numerical drift of the result along a high number of cycles (accumulation of numerical
inaccuracies), as well as a high computational time demand. An alternative approach could
be by using a Miner type law [27] or a strain accumulation model [28], that accounts for
the accumulation of strains as a function of the number of cycles, relative density and load
characteristics. Nevertheless, the applicability to multi-directional cyclic loading still needs
to be demonstrated and calibrated for this type of model. The “cycle-by-cycle” numerical
approach thus still has a useful future in order to highlight the mechanisms taking place in
the system under such a complex loading path.

Moreover, this numerical approach could be extended to a parametric study on the
pile bending stiffness (stiffer or more flexible piles compared to surrounding soil), to other
loading conditions in terms of average and cyclic amplitude, but also by varying the load
history, as it seems to be of high impact on the pile behaviour [26].

5. Conclusions

A numerical procedure has been implemented in Flac3D using the program built-in
“FISH” language, to apply a multi-directional cyclic lateral loading at pile head. The
specific feature lays in the fact that a displacement is applied on the pile head (through a
velocity due to the program formulation), that is thus controlled and adjusted based on pile
forces conditions to meet the loading direction requirement. The effect of multi-directional
loading compared to mono-directional loading has been highlighted, leading to larger pile
displacements.

The main numerical work perspective is to perform the simulations with a more
complex constitutive model, for instance with kinematic hardening shear mechanism or
multi-surface, to account for ratcheting and soil stiffness evolution.

Furthermore, the azimuth amplitude and the loading path followed during the cycles
of the multi-directional loading certainly influence the results. The proposed numerical
model and developed procedures could be easily implemented to perform simulations
under additional and more complex multi-directional loading scenarios. Simulations
combining the effects of lateral and vertical cyclic loading could also be performed, to get
even closer to the reality of the loading conditions of mutualized anchor foundations for
floating wind turbines.
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