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Abstract: Traditional techniques for accident investigation have hindsight biases. Specifically, they
isolate the process of the accident event and trace backward from the event to determine the factors
leading to the accident. Nonetheless, the importance of the contributing factors towards a successful
operation is not considered in conventional accident modeling. The Safety-II approach promotes an
examination of successful operations as well as failures. The rationale is that there is an opportunity
to learn from successful operations, in addition to failure, and there is an opportunity to further
differentiate failure processes from successful operations. The functional resonance analysis method
(FRAM) has the capacity to monitor the functionality and performance of a complex socio-technical
system. The method can model many possible ways a system could function, then captures the
specifics of the functionality of individual operational events in functional signatures. However, the
method does not support quantitative analysis of the functional signatures, which may demonstrate
similarities as well as differences among each other. This paper proposes a method to detect anomalies
in operations using functional signatures. The present work proposes how FRAM data models can
be converted to graphs and how such graphs can be used to estimate anomalies in the data. The
proposed approach is applied to human performance data obtained from ice-management tasks
performed by a cohort of cadets and experienced seafarers in a ship simulator. The results show that
functional differences can be captured by the proposed approach even though the differences were
undetected by usual statistical measures.

Keywords: FRAM; similarity-matching; anomaly detection; human performance data; graph edit
distance; pattern matching; socio-technical operations

1. Introduction

Human involvement is crucial to the success of many industrial operations. Many
modern industrial operations can be characterized as (complex) socio-technical systems,
operations where humans work synergistically with technologies to achieve their goals. A
socio-technical system is a label that can be applied to virtually all modern workplaces.
Things are usually further complicated by under-specification of work [1], which leads
to local adjustments that must be made to accommodate changing and unexpected work
conditions. By applying these ideas to industrial workplaces, there is a complexity that makes
an assignment of cause and/or blame for workplace accidents seem simplistic or imprecise.

Traditional techniques for accident investigation have hindsight biases. Specifically,
they isolate the process of the accident event and trace backward from the event to de-
termine actions/events that contributed to the accident. Contributing factors are often
assigned without the study of their significance to successful operations. This is a distinct
difference from how the significance of factors is determined in other scientific domains.
The observer should also look for the presence of the factor in cases that produce a different
effect (success).

This gap in scope for traditional safety management investigations is being addressed
by the Safety-II approach [2]. The Safety-II approach promotes an examination of successful
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operations as well as failures. The rationale is that there is an opportunity to learn from
successful operations in addition to failure, and there is an opportunity to further differen-
tiate failure processes from successful processes. One of the implications of increasing the
scope of the study is that new models were needed to explain both success and failure, and
more information is required to explain the many possible outcomes.

In [3], the authors have developed a framework that uses the functional resonance
analysis method (FRAM) to monitor the functionality and performance of complex oper-
ations. The method uses the FRAM to model the many possible ways the system could
function, then captures the specifics of functionality (tasks, quality/quantity of outputs,
and time taken) of individual operational events in functional signatures. The method also
uses system performance measurement [4] to measure/compare the overall performance
of the operation. By using this framework to monitor complex operations, one can collect
data on the overall performance of the operation and the corresponding processes that led
to each performance measurement (functionality).

The system performance is typically easy to compare—one should use the same metric
for each case and rank them numerically. The functional signatures are more difficult to
compare. They contain a lot of information, with many variables that could be/are changing
simultaneously. This makes it difficult to have a “controlled” analysis of the variables
using conventional statistical methods. There is then a need for other techniques to analyze
these functional signatures. Since the functional signatures all demonstrate similarities and
differences in comparison with each other, the question becomes how much difference is
significant enough to characterize it as “significantly” different from the rest of the group.
Or simply, can we detect anomalies in operations by examining their functionality? This
paper proposes a method to detect anomalies in operations using functional signatures.

Anomaly detection is an important area of investigation. Anomalies or outliers are
observations that fall far from usual or standard behavior. On the one hand, an anomaly
can account for a rare signal such as a human error, a banking fraud, or an instrument
failure. On the other hand, it can be due to a completely novel process or procedure [5],
such that an investigation into this procedure is expected to unleash important aspects for
solving the given problem. As a simple example where an anomaly detection algorithm
would benefit, consider the case when a medical practitioner treats x number of patients
suffering from the same disease. We will assume that a cure for the disease is not known.
Therefore, x distinct treatments are administered, one for each patient. The results are not
only likely to be different, but there is also an expected competition among the treatments
because of the similarity in the overall relief from the symptoms. If many therapies are
administered, finding the one that performs better than the others is likely to find the one
that falls away from many others. Such is a typical question in clinical research [6].

Another example relevant to the current study is the case of a ship that is tasked to
clear ice near a vessel moored in ice. If different people operate the ice management ship,
the path it follows around the moored vessel will be different. If there is one best path that
minimizes the efforts to achieve the goal of clearing the ice for the longest time then that
would correspond to a unique pattern [7] of activities the operator must have performed
in order to get the maximum efficiency. If only a few operators (out of many) are found
to follow such a rare pattern of activities, such a pattern of activities will not fall into the
patterns of activities from usual operators. Anomaly detection is thus a technique to detect
such a novel or unique pattern of activities, if there is any, from the given observations.

Human performance data is a record of activities people perform while solving a
given task over a given time duration. In particular, human performance data is presented
here as graphs obtained from FRAM instantiations. The main contribution of the work is
to convert the FRAM based representations of human performance data to graphs such
that starting from the beginning of an instantiation at time t = 0, each FRAM function is
represented by a corresponding node, and each actual coupling is represented by a separate
edge (link) between the involved nodes. As a result, a FRAM instantiation is converted to
a graph with multiple edges between nodes representing multiple executions of a single
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function. In this way, different instantiations of a FRAM model produce different graphs.
It is likely that a relatively high variation in graph similarity, if any, must be due to some
noticeable difference in the graph structure or the human activities represented originally
as the FRAM instantiation. The conversion of a set of FRAM instantiations to a set of graphs
makes it possible to exploit graph-theoretic analysis of the human performance data such as
comparing different graphs [8], community detection, or estimation of centrality measures
for finding important nodes [9,10], which represent functions in the FRAM instantiations,
and certainly lay a foundation for estimation of certain interesting aspects of networks; such
aspects include the polarization effect, which is useful to see, e.g., how training impacts
different groups of people, grouped by some feature like sex or age [11]. The purpose of
the present work is to exploit similarity-based clustering (hierarchal clustering) to detect
anomalies in human performance data represented in the form of FRAM instantiations.
Here, an anomaly is considered as unusual behavior (or pattern of activities) that leads to
either valuable or poor (or unsafe) performance.

Section 2 presents a literature review. Section 3 discusses some background concepts
related to this study. Section 4 describes the methodology employed for anomaly detection
here. Section 5 describes the empirical data and related experiments. Section 6 discusses
the results, and Section 7 presents the conclusion and future direction.

2. Related Work

The authors of [12] say that if data are represented as graphs, then graph matching is
equivalent to pattern matching. A review of graph-based techniques for pattern matching
is presented in [13]. The author reviews 40 years of research and classifies the whole era
into three periods. In the first period, classification and learning problems are directly
represented in graph space. In the second period, methods from vector spaces, such as a
k-nearest neighbor, are transposed so that these methods can be used on graphs. The third
period is the one in which graphs are transformed into feature vectors so that methods
available as classification and learning methods in vector spaces, such as different kernel
machines, can be used on the vector representations of graphs. Similar views are also
reported in earlier work [14]. A method for learning graph matching is introduced in [15].
The authors developed an algorithm that estimates how near a graph matching algorithm
produces the results when the same graphs are pattern matched by a human being. Based
on graph structural properties, a method of clustering is developed and proposed in [16].
This method represents a graph cluster as a graph that preserves the structural properties
of all the graphs represented by the cluster. This new graph (i.e., the graph cluster) is called
the Weighted Minimum Common Supergraph (WMCS). A clustering algorithm that needs
to cluster only a part of the whole data, and whose performance does not suffer due to
the size and the shape of the cluster, is developed in [17]. The algorithm is particularly
useful when a certain cluster needs to be detected in a sample of graphs, for example, the
need to cluster micro-calcification in a mammographic image [18]. A detailed treatment
of different distance and similarity measures, the criteria for evaluation of a classification
scheme, and different types of clustering, such as graph-based or density-based clustering,
are given in [19]. Please consult [20–23] for a review on techniques related to community
detection in networks (or graph).

The study [24] proposes a parallel algorithm for anomaly detection for sequential
data. The authors focus on contextual anomalies where the algorithm does not require data
labeling. Due to parallelism, the algorithm is fast compared to many previous approaches.
The study [25] provides a comprehensive literature review on fraud detection using graph-
based approaches. In [26], the authors proposed an algorithm named Glance Algorithm
to detect anomalies in attributed graphs based on finding communities within the graph
structure and then selecting relevant features per community to detect anomalous behavior.
The authors of [27] propose five new measures of graph similarity for web graphs.

The study [28] defines functional resonance analysis space, where a FRAM based analy-
sis can be used in such a way that functions can be assigned depending on the complexity of
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the system’s level of abstraction. The authors use Rasmussen’s [29] Abstraction Hierarchy to
define functions at different levels of complexity of the system. In [30], the authors describe
functional variability in FRAM as a quantifiable object by defining rules of variability and
their spreading from downstream to upstream functions. The authors use model checking
to determine if the state transitions satisfy the rules of variability. In a recent study, [31],
the authors analyze over 1700 articles from multiple repositories to see the contribution
and scope of FRAM using a protocol developed using the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) approach [32]. The study [33] proposes
how a multilayer network can be used to represent FRAM by prioritizing potentially critical
functions using network centrality measures such that the transposition is isomorphic to the
actual FRAM instantiation. However, the authors did not show how such an isomorphism
could be proved. Authors in [34] explained the difficulties of automating processes in the
process industries, in particular, due to the nature of coupling and complexity, and devel-
oped a FRAM based framework to integrate a human performance model, an equipment
performance model, and a first-principal based chemical process model. These components
make a hybrid model, the purpose of which is to identify hazards in the process industry.
Nonetheless, the FRAM transposition to a multiplex network is essentially important, as
many of the FRAM features are preserved, and well-established network analysis tools
are at the disposal of the system designer. Detecting anomalies from FRAM data is a new
problem and the present work proposes a methodology to represent FRAM instantiations
in terms of a graph/network, and then, in line with the idea originally proposed in [35],
uses the similarity between graphs to determine if any of the FRAM instantiations (i.e., their
graph representation) constitute an anomaly.

3. Background
3.1. Graph Isomorphism

Two graphs G1 and G2 with vertices p are isomorphic if they can be labeled with the
numbers 1 to p such that whenever vertex i is adjacent to vertex j in G1, then vertex i is
adjacent to vertex j in G2 and conversely [36].

3.2. Graph Similarity and the DeltaCon Algorithm

In [37], the authors propose a rigorous approach to calculate the similarity between
two graphs with the same nodes and different edge sets by exploiting the notion of node
affinities, where a pairwise node affinity sij of a node i and j is the influence of node i on
node j in graph G1. If there are n nodes in G1, a similarity matrix S1 that will hold all
values of pairwise node affinities will be of n × n order. Similarly, the matrix S2 keeps
the pairwise node affinities for the graph G2. The DeltaCon algorithm [37] calculates the
distance between the two graphs G1 and G2, keeping in view the affinity scores of each
graph by using the Matusita distance, d, as shown in Equation (1).

d =

√√√√ n

∑
i=1

n

∑
j=1

(√
s1,ij −

√
s2,ij

)2
(1)

where s1,ij and s2,ij are elements from S1 and S2, respectively.
The similarity matrix S is computed by using the following equation [37]:

S =
[
sij
]
=
[
I + ε2D− εA

]−1
(2)

where, I is the n × n identity matrix, D is the diagonal matrix with the degree of node k as
the dkk element, and A is the adjacency matrix representing the graph.

The similarity between the two graphs G1 and G2 is calculated using the expression in
Equation (3).

αG1G2 = sim(G1, G2) =
1

1 + d
(3)
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4. Methodology

Mathematically rigorous modeling techniques have advantages that come, usually, in
the form of techniques for better representations and associated analysis tools. However,
all that is available at the cost of various modeling assumptions. FRAM is a modeling
technique that gives a modeler the power to represent a process in terms of constituent
functions (a group of activities) without making any assumptions [1]. This is much like
a computer modeling language, such as Unified Modeling Language (UML), in which
a system designer does not bother about what a particular programming environment
supports and what it does not. In short, FRAM is a semantically rich modeling environment.
Nonetheless, it suffers from very few or practically no formal methods that can be used
to analyze different aspects of the modeled process unless a transposition of FRAM is
done in some other formal methodology [33]. This section describes a simple approach to
considering structural aspects of a FRAM model and associated instantiations in order to
develop graphs for different instantiations over a single FRAM model.

The main objective is to develop a methodology whereby a process that is represented
in the form of a FRAM model can be analyzed quantitatively. In particular, the approach
developed here focuses on detecting anomalies in human performance data modeled in
terms of FRAM instantiations. The basic steps are shown in Figure 1. Because this work
involves human performance data represented in terms of a FRAM model, the first step is
to obtain a formal representation of FRAM’s instantiations. We propose to convert FRAM
instantiations in the form of graphs by using a method described in Algorithm 1 and
explained in the following subsections. The graphs obtained from FRAM instantiations
can be compared for (dis)similarities using cluster analysis. To this end, the methodology
developed here attempts to find out graphs that are marginally different from the other
graphs. If there are a total of n graphs (obtained from n FRAM instantiations) to compare
and only m << n are found to be dissimilar to the remaining n − m graphs, then only m
graphs will be subjected to descriptive analysis. The descriptive analysis involves analyzing
the empirical observations, such as considering the performance metrics related to the
FRAM instantiations corresponding to the m graphs to determine specific characteristics
that may contribute to the dissimilarity of the m graphs.

Algorithm 1 A method to convert a FRAM-instantiation to structurally equivalent
graph/network

A1: Let F be a FRAM model, and let R represent its instantiation
A2: Let there be V= {v1, v2, . . . , vm} vertices in F, where m is a finite positive integer.
A3: Let G be a graph object such that G = G (V, E), where E is defined as follows:

E= L ∪ Q = {e1, e2, . . . , en} is the set of edges in G such that
(i) L= {l1, l2, . . . , lk} is the set of edges in F, and
(ii) Q = {q1, q2, . . . , qp} is the set of edges obtained through R, with k and p positive integers,

and, n = k + p.
Perform the following steps:
S1: Create or add vertices in G corresponding to each functional node in F.
S2: Join vertices in G as per the edges in F, i.e., create the edges L among the vertices V in G.
S3: do
{
S4: add edges in G as obtained from the walk-through of R.
S5: Ignore directions of edges in G.
S6:} while (the end of R)
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4.1. Modelling a Process Using the FRAM

The FRAM is a technique that allows investigation into socio-technical systems to
determine how they function. The first part is to build a FRAM model. A FRAM model
should be collection functions or activities that can be done to achieve the end goal of
the system. The idea is to list all or as many possibilities in this stage. There are many
ways to do this: from thinking about the system’s functionality and building the modal as
an individual or group of people or interviewing the workers that perform the functions
to capture how the work is actually done. Part of describing the system functions is
(at least) describing what is produced by the function—the output. There should be
some understanding of nature or possibilities of the output(s) at this stage. This work
constitutes the building of the model, which is representative of all (or most) of the ways
the system can function; however, not all these possibilities are typically used each time the
system achieves its goal. Each time the system achieves its goal (or attempts to), which is
considered an instantiation, only a portion of the functions may be used, and each function
will have a specific output(s). The general understanding of the output of each function
(from building the model) will allow for the determination of ways to record each output.
Is the output information? Is it a change in speed? Is it a decision? Knowing the answers
to these questions will help understand the way to record the outputs. Once you have
decided how to record the outputs of the functions, you can record measurements of the
active functions and also timestamp the execution of the functions, as the time of functional
activity may play an important role in explaining why a certain outcome of the system was
achieved rather than another outcome. Figure 2 illustrates this process.
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4.2. Representing FRAM Instantiations as a Graph

A FRAM model, or its instantiation, is not a graph/network or flow [1] due to many
reasons besides the multiple types of information that each function is able to generate. The
main idea here is to convert a FRAM instantiation to a simple weighted graph, or a graph
that supports multiple edges (also called a multigraph) by including the number of nodes
for functions that were mostly foreground (active) during a typical instantiation process.
For a single function, the resonance can only be quantified when the function is executed
many times with noticeable variations in performance [38]. Thus, the idea is to make a
graph that supports multiple edges from the same nodes for each actual coupling of the
FRAM functions represented by the graph nodes. Algorithm 1 describes a methodology to
convert a FRAM into a network with (possibly) multiple edges.

In Algorithm 1, only output and input aspects of the FRAM are considered in the
conversion to a graph. The other FRAM aspects, time (T), control (C), preconditions (P), and
resources (R), are not considered here to obtain an approach that can be used in practical
situations. Using a multigraph with six edges per node, it is possible to include the other
aspects. However, it is technically difficult to process the information (edge attributes)
carried by the edges corresponding to the aspects T, C, P, or R, because the information type
is different and the dependency of the function embodied in a node is not explicit in a graph
so that the edge attributes could be considered as the function attributes. Additionally,
most of the graph algorithms are developed based on a single type of data per graph.
An important way to deal with graphs carrying multiple types of information is in social
network analysis, where for each type of information, a separate graph is made [10].

For a particular FRAM instantiation, Algorithm 1 creates a graph with nodes or
vertices corresponding to key FRAM functions. These are the functions that play active and
dynamic roles in achieving the task. If there are two FRAM functions fa and fb, which are
used n times during the entire instantiation, then the nodes na, and nb, corresponding to fa
and fb, should be connected by either n edges or an edge with n as the weight. For example,
Figure 3 shows a typical instantiation of a FRAM model containing the functions f1, f2, f3, f4,
f5, f6, and f7. There are three cycles shown in the entire instantiation where a repetition of a
previously used function is activated. In other words, in the FRAM instantiation, functions
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are performed iteratively. Figure 4 shows a graph obtained after applying Algorithm 1 on
the FRAM instantiation presented in Figure 3. Here, nodes corresponding to functions f4,
f5, f6, and f7 are included, because these are the nodes that play key roles, and it is here
where a change can be seen if the model is instantiated by different people. There may be
some functions (such as the functions f1–f3) in the instantiations that contain many cycles
(as shown in Figure 4), where only a few cycles make use of these functions (f1–f3). In all
such cases, ignoring the inclusion of such functions in the corresponding graph will have
little impact on pairwise similarity compared to the case when such functions (f1–f3) are
included in the graphs. Examples of such functions may include the background functions,
i.e., functions that only have output aspect. For this reason, these functions, which are used
only a few times, may be ignored in the creation of graphs from the FRAM instantiations.
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required by the function. 
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4.3. Anomalies

We illustrate the process of converting FRAM instantiations to graphs using data from
experiments in which human participants executed an operation that involved driving
a ship in a simulator. 71 people participated in the experiments, and each was tasked
with executing the same operation, individually. Figure 5 proposes a methodology that
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has the potential to detect anomalies if observations collected from each participant are
presented in a graph format, where the graphs are obtained as described in the preceding
section and as illustrated in Figure 4. Let us consider that G1, G2, . . . , Gm show the graphs
obtained from the FRAM instantiations from m participants’ observations. The proposed
methodology employs the DeltaCon [37] algorithm (or equivalently Equations (1)–(3)) for
the estimation of pairwise similarities between all distinct pairs of graphs. The next step is
to make clusters of similar graphs. We use hierarchical clustering for a simple approach
using the distance between graphs, and because the sample size for the empirical studies
was suitable for hierarchical clustering. The aim is to create clusters based on similarity,
αGiGj , ∀i, j, i 6= j, or the distance between the graphs, as shown in Eq. 1. If clusters, say
C1, C2, . . . , Cp, are found containing only a very few graphs, whereas most of the others
are found jumbled up in one big cluster, then it is advisable to analyze the graphs within
each cluster C1, C2, . . . , Cp for how the respective participants performed. The analysis
may be based on an estimation of each graph’s properties, such as which FRAM function
(node) is performed the most, what is the value of the performance metric associated with
the function (if there is any), and whether the function was required to be performed at the
given time by the participant or not. At the very least, to determine if a certain anomaly
is due to a novelty or inexperience, the overall performance may be used. In the present
work, overall performance is suggested as an easy criterion for distinguishing expert from
poor behavior (both are unusual).
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5. Collecting the Human Performance Data for Ice Management Scenarios
5.1. The Ice Simulator

The ice management simulator consists of a bridge console that is a 2 × 2 m platform
mounted on a Moog motion bed and is installed in the center of a 360◦ panoramic projection
screen (Figure 6). A 75 m vessel of Anchor Handling Tug Supply type is used in the
simulator. It uses two controllable pitch propellers and rudders for propulsion, and
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forward and aft tunnel thrusters. The design of the bridge console was kept simple to
minimize cognitive load and facilitate skill acquisition [39,40]. The bridge console consisted
of a fore and an aft console. The four control sticks located on the bridge console (Figure 7)
are used to control the power of the two engines and the fore and aft tunnel thrusters.
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5.2. The Experiments

The data used here were collected during two separate, but related experiments done
in the ship simulator. Experiment 1 [41,42], which was conducted during Fall 2017, inves-
tigated the effects of experience on ice management performance. Experiment 2 [43,44],
which was conducted from November 2018 to April 2019, investigated the impact of
training on ice management performance. All participants performed three habituation
scenarios at the beginning of the respective experiments. The purpose of habituation
scenarios was to give the participants familiarity with the controls, simulator, and the
virtual environment.

In Experiment 1, a group of 36 (novice) cadets and (experienced) seafarers participated.
They conducted two thirty-minute ice management operations in the bridge simulator.
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Two independent variables—ice concentration and experience level—were used in that
study. The low level of ice concentration was set to 4 tenths, and 7 tenths, where 4 tenths is
a low concentration, and 7 tenths is a high concentration level. The low-level experience
category consisted of 18 cadets enrolled in a nautical studies program with 0–3 years at
sea. The high-level experience group consisted of 18 seafarers (masters and mates) who
had 20 ± 10 years of experience at sea. The performance of participants suggests that, on
average, experienced seafarers perform better than inexperienced cadets. However, high
variations in the results were also found, as reported in [41,42].

Experiment 2 introduced a training curriculum based on Experiment 1’s findings
and the training guidelines proposed in the IMO Polar Code [45]. The learning objectives
included (i) the effect of the three ice management techniques, which were learned from
Experiment 1, called pushing, prop wash, and leeway; (ii) the effect of recommendations
of the Polar Operational Limit Assessment Risk Indexing System (POLARIS) for speed in
ice [46]; and (iii) how to keep the lifeboat launch zone clear of ice for emergency evacuation.
The total sample size for Experiment 2 was 35. All participants were (novice) cadets
from the same nautical studies program as the cadets who participated in Experiment
1. Participants were divided into two groups—G1 and G2—based on training exposure.
G1 contained 17 participants who received one training session of 1.5 h length and three
practice scenarios. These scenarios dealt with low ice concentration equivalent to 4-tenths
of ice concentration. G2 received two training sessions of three hours length and practiced
six scenarios under severe ice conditions equivalent to 7-tenths of ice concentration. In
both experiments, the maximum time interval for which the lifeboat launch zone was clear
of ice during the full 30-min scenario was measured per participant and is considered as
the performance metric. This time duration is called Lifeboat Total Time Clear (LTTC).

5.3. Ice Management Scenarios

In both Experiments 1 and 2, participants completed two different 30-min ice man-
agement scenarios to show their skills at the given tasks. The first scenario was related
to keeping the area around a moored vessel unit clear of ice, and in the second scenario,
the participants were asked to clear the ice away from an area around one of the moored
vessel’s lifeboat launch zones so that evacuation can be deemed possible. The first sce-
nario is called the precautionary ice management scenario, and the second is called the
emergency ice management scenario. As there were two ice concentration levels (4-tenths,
and 7-tenths) and two different ice management scenarios (precautionary and emergency),
there were a total of four different testing scenarios in the experiments. The present study
uses the data collected from only the emergency ice management scenario for validating
the proposed methodology of detecting anomalies in ice management activities.

5.4. A FRAM Model for Representing an Emergency Scenario

To build the FRAM model (Figure 8) and instantiation for the dataset (Experiments 1
and 2) used in this paper, the work from [47] was used. The FRAM model was originally
created by interviewing ship captains that were published in [48]. The model was originally
created for a full-scale shipping operation, so the model was larger. The model size
was reduced to only include functions that could be measured in the ship simulator for
simplicity of presentation. Performance from each participant in the experiment was
recorded as an instantiation and the log file from the ship simulator was used to track the
outputs of the functions.

The area beneath a vessel where lifeboats are launched needs to be clear so that there
is no obstruction for launching a lifeboat in case of an emergency evacuation. Participants
in the emergency ice management scenario were asked to clear the area of ice so that
emergency evacuation can be performed.

It is observed from Experiments 1 and 2 that participants’ activities can mainly be
divided into two categories: observing the situation and then acting accordingly. These
activities are shown as function 1 (f1), function 2 (f2), function 3 (f3), function 4 (f4), and
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function 5 (f5) in Figure 8. The f1 means to observe ice conditions. Here, participants watch
how much ice is cleared from the target area, and where in the region the ice floes are
present. The input is the visual that the participant watches in the simulator; the output is
the volume of floes in the target area. The f2 means to assess location and surroundings.
This function calculates the location of the vessel (the icebreaker) in geographical units.
Again, this information is provided to the participant in the form of latitude and longitude
on the simulator console. The function f3 is the activity that employs monitoring the vessel
parameters. Two vessel parameters are used here, the speed and the heading. Both, as
explained in Section 5.1, are controlled parameters. The values are shown on the simulator
console. These three activities, f1, f2, and f3, focus on observing the situation. The f4
involves understanding the situation so that better decisions can be made. Inputs to f4 are
the outputs from the functions f1–f3. The function f4 is a cognitive function and, therefore,
during the experiment, we relied on watching what was done after the execution of f1–f3
to get an idea of what might have been done in f4 in terms of an understanding of the
situation given the values of f1, f2, and f3. For example, consider the activities performed
by a participant during the 89th second of the scenario reported in Figure 9. The output of
f1 here was 4.99 tenths. The output of f2 was latitude = −146.38, longitude = 60.49. The f3
outputs the speed as 2.697 knots, which is under the threshold of 3 knots—the safe speed.
Based on these values, the participant understands that the currently employed strategy
is good enough. Based on this result from f4, the participant decided (the function f5) not
to change the speed now (the speed remained the same from the 89th second to the 333rd

second), and the vessel kept clearing the ice along the current path.
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Finally, f5 represents activities corresponding to the understanding of the situation in
f4. Function f5 is not connected to any other functions in the FRAM model (Figure 8), but
it makes connections with f1, f2, or f3 during individual instantiations (see Figure 9). For
instance, if it is decided in f5 that only the ship speed needs to be changed, then f5 carries
that information as a value over the link and connects the relevant function for observing
the speed again, which is f3. Similarly, if a participant decides in f5 to get information
about current ice conditions and update the heading, then this information will show as
values over the links connecting f5 with f1 and f3, respectively. The functions f6–f9 represent
activities that are not dynamic, but they act as either preconditions or control for the
connecting (or downstream) functions in the FRAM. The f6 represents the act of “judgment
about the ice type”, for example, whether the ice where the ice clearing operation is to
be performed is multi-year ice or first-year ice. In the present study, medium first-year
ice is used. The function f7 models “computing the ice risk”. Because the study involves
only medium first-year ice, the risk index value (RIV) is −1 according to Polar Operational
Limit Assessment Risk Indexing System (POLARIS) calculations [46]. The function f8
shows “assignment of the ship classification”. The present study uses a Polar Class 7 (PC7)
ship [43] (p. 242).

The function f9 stands for “be aware of vessel capabilities”. With this, the intention
was to keep in mind the vessel capabilities, that is, the speed should remain less than 3
knots. This function bears a cognitive load to participants during operation. However, due
to simplicity, the function f9 was only assessed at the beginning of the scenario.

Table 1 shows a sample of activities up to 119th second of the participant with code
name S51. The series of different activities performed by the participants are identified as
functions in the FRAM model. These functions are shown in Figure 8 and are described
in Table 1. The process of instantiation involves how each participant performed these
functions, what output is produced, which function follows the active function, at what
time a function is performed, and how the connections are made, i.e., which aspects
are involved in an activity. It is observed that during the 30-min long experiment, each
participant uses aspects other than input and output only 2–3 times (out of, on average, 450
activities performed in 30 min); therefore, the present work only takes into account input
and output aspects of the functions presented in the model in Figure 8.
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Table 1. Mapping of participants’ activities during emergency ice management scenario to the respective function. The data
below shows activities performed by the participant S51 during the emergency ice management scenario. Each distinct
activity is considered as a function, called active function. The downstream function is the one that will follow the active
function stops its execution. The aspect of downstream function that will carry the result or data from the active function is
represented below as the last column. Note: Only a few initial aspects involve anything but the aspect I.

Time (s) Activity Active
Function

Downstream
Function

Aspect of
Function

0 Getting vessel class, Class 1C f8 f7 P
0 Getting ice type information f6 f7 I
0 Checking speed limit, speed < 3 knot f9 f3 P
2 Get heading and speed f3 f4 I
2 Get ice concentration in zone f1 f4 I
2 Get vessel location f2 f4 I
4 Complete or partial assessment of situation f4 f5 I
6 Update ice condition, vessel location, speed update f5 f1 I
6 Update ice condition, vessel location, speed update f5 f2 I
29 Get ice concentration in zone f1 f4 I
29 Get vessel location f2 f4 I
31 Complete or partial assessment of situation f4 f5 I
33 Update ice condition, vessel location, speed update f5 f1 I
33 Update ice condition, vessel location, speed update f5 f2 I
59 Get ice concentration in zone f1 f4 I
59 Get vessel location f2 f4 I
61 Complete or partial assessment of situation f4 f5 I
63 Update ice condition, vessel location, speed update f5 f1 I
63 Update ice condition, vessel location, speed update f5 f2 I
63 Update ice condition, vessel location, speed update f5 f3 I
89 Get ice concentration in zone f1 f4 I
89 Get vessel location f2 f4 I
89 Get heading and speed f3 f4 I
91 Complete or partial assessment of situation f4 f5 I
93 Update ice condition, vessel location, speed update f5 f1 I
93 Update ice condition, vessel location, speed update f5 f2 I

119 Get ice concentration in zone f1 f4 I

5.5. Scenario 1: Emergency Scenario with Mild Ice Conditions

As the emergency ice management scenarios were the same in both experiments
(Experiments 1 and 2), we have included results obtained from both experiments, yielding
27 instantiations for the present analysis. In this scenario, the FPSO is in mild ice condition
(4 tenths concentration) with an average ice drift of about 0.6 knots (see Figure 10). The
participant was asked to clear away the ice from an area below the stern port lifeboat
launch zone.

Using the FRAM model as shown in Figure 8, the data collected here is represented in
the form of FRAM instantiations (see Figure 9).

5.6. Scenario 2: Emergency Scenario with Severe Ice Conditions

In this scenario, the participants were asked to clear the ice from the lifeboat launch
zone just as they were asked in Scenario 1. The only difference between this scenario and
scenario 1 is in the ice conditions, which were set to 7 tenths concentration level (severe ice
condition). The ice floe drift was 0.5 knots.

The data collected here is represented in the form of FRAM instantiations (Figure 11)
based on the model shown in Figure 8. A total of 34 instantiations are used in this scenario.
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Figure 11. A portion of FRAM instantiation (first 63 s of 30 min) obtained after applying the FRAM model of Figure 8 on a
participant with code name Y42 performing the emergency ice management scenario with severe ice conditions. The dashed
lines only show the repetition of previous activities. In other words, the dashed lines are used to show the cyclic nature of
the ice-management activity.

5.7. Graph Representations of FRAM Data

Algorithm 1 has been applied to the data sets obtained as FRAM instantiations in
scenarios 1 and 2 as described in the preceding sections. A graph for each of the 61 FRAM
instantiations—one for each participant—was generated. For brevity, only portions of the
graphs of four participants are shown in Figure 12.
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Figure 12. Sections of the graphs obtained after applying Algorithm 1 on the FRAM instantiations of four participants. The
circles show the nodes of the graphs. Parallel edges are evident that show each function being activated repeatedly in the
respective scenarios. (a) A graph obtained from the participant with code name C79 performing Scenario 2, (b) graph for
the participant with code name C07 performing Scenario 2, (c) graph for the participant with code name S51 performing
Scenario 1, and (d) graph for the participant with code name V55 performing Scenario 1.

6. Results and Discussion

Structural similarity values among the graphs have been calculated per scenario. Be-
cause the graphs obtained in Section 5.7 have parallel edges between nodes, where each
edge shows the activation of a function, the similarity between two graphs estimates the
similarity in terms of the number of times respective functions, especially f1–f5, are per-
formed. Figure 13 shows this functional similarity, i.e., the similarity among the graphs ob-
tained by exploiting the number of times functions are repeated in FRAM data for Scenario
1, where mild ice conditions were observed. The similarity values for Scenario 2, which
deals with clearing ice away from the lifeboat launch zone under severe ice conditions, are
shown in Figure 14. Values outside the µ± 2σ interval, where µ is the mean similarity of
all participants and σ is the standard deviation, are quite evident (Figures 12 and 13) and
are considered as anomalies concerning the standard or majority behavior observed from
the participants in both scenarios considered here. These values are obtained from four
participants, two from each scenario. The participants’ code names for Scenario 1 (mild ice
conditions) are Z00 and S28, and for Scenario 2 (severe ice conditions) are C79 and C07. The
results obtained after similarity-based hierarchical clustering (Figures 14 and 15) are also
consistent with the direct similarity-based results (Figures 12 and 13). That is, based on the
values of the distance d (see Equation (3)), hierarchical clustering also suggested Z00, S28,
C79, and C07 as showing anomalous behavior for the others performing the same tasks.
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Figure 13. Comparison of participants (code names on the x-axis) based on similarity values. Each value represents
how similar a participant’s performance has been concerning the average performance of all the participants in mild ice
conditions, i.e., Scenario 1. The similarity values corresponding to the participants with code names Z00 and S28 are well
outside the µ± 2σ interval (shown as dotted horizontal lines), where µ is the mean similarity of all participants and σ is the
standard deviation.
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Figure 14. Comparison of participants based on similarity values. Each value represents how similar a participant’s
performance has been for the overall performance of all the participants in severe ice conditions, i.e., Scenario 2. The
similarity values corresponding to the participants with code names C79 and C07 are well outside the µ± 2σ interval
(shown as dotted horizontal lines), where µ is the mean similarity of all participants and σ is the standard deviation.
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Figure 15. Similarity-based hierarchical clustering (a dendrogram) of graphs obtained from mild ice emergency scenario.
Participants Z00 and S28 are similar to each other in performance (the cluster with the dashed lines) and are different from
the cluster CL1, as is visible through the difference in heights of both clusters.

As shown in Figure 15, participants E41 and S51 are fused with the big cluster CL1
with rather higher distances almost equivalent to the height of the cluster CL2 that contains
the participants Z00 and S28. This fusing is the result of the similarity (or low distance)
between this group containing E41 and S51 and the cluster CL2, compared to the distance
between the cluster CL2 and CL3 containing all the participants of CL1 excluding E41
and S51. This means that the performance of the cluster containing E41 and S51 should
be considered as somewhat in the middle of the two clusters CL2 and CL3. This is also
consistent with the empirical results (as shown in Table 2), where the clusters of Z00 and
S28 are found to lie in the lower performance area in terms of “the total time lifeboat
launch zone area is clear of ice” (LLTC). Participant S28 from the cluster CL2 had the lowest
performance, as can be seen from Table 2, which shows the performance values based on
the LLTC performance metric. However, the other member of the cluster CL2, i.e., Z00,
does not lie immediately after S28 in Table 2, rather it is placed in the fourth place, having
an LLTC value of 390. Even this value is on the lower side of the LLTC values, where the
average is around 630. Similar findings can be observed in Figure 16a,b, which shows the
area of the lifeboat launch zone rectangular region containing ice floes.
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Table 2. The total time lifeboat launch zone is clear of ice, which is the performance metric that
measures the maximum total consecutive time during the 30-min ice management scenario that the
lifeboat launch zone is clear of ice and is considered ready for lifeboat launch in case of an emergency.

Participant Scenario LTTC (s) Participant Scenario LTTC (s)

S28 1 20 J42 2 0
W63 1 80 S41 2 20
E73 1 320 C07 2 50
Z00 1 390 R94 2 130
Z46 1 390 T00 2 150
G40 1 400 W28 2 270
Z53 1 400 S49 2 280
Z43 1 460 T69 2 340
R60 1 470 G54 2 340
T23 1 480 M47 2 390
S51 1 530 R13 2 430
V53 1 530 Z11 2 430
L87 1 610 L96 2 490
E38 1 610 E43 2 500
B19 1 680 U85 2 520
B97 1 680 O07 2 540
D67 1 700 H27 2 550
D76 1 700 Y42 2 570
E96 1 720 M90 2 590
V55 1 730 F69 2 650
E41 1 830 A96 2 730
O54 1 840 Q76 2 760
X38 1 900 L90 2 780
O35 1 960 X86 2 820
K82 1 980 L88 2 880
L44 1 1230 Q55 2 910
N25 1 1350 Z70 2 940

M85 2 960
Y93 2 1010
A90 2 1020
C79 2 1090
G69 2 1120
N08 2 1140
R73 2 1150
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Figure 16. The snapshots taken at the 20th minute of the 30-min replay videos during emergency
evacuation scenarios in mild (a,b) and severe ice conditions (c,d). The rectangular regions in all four
snaps show an approximate location of the lifeboat launch zone. The lower the amount of ice floes in
the rectangular region near the portside of the vessel’s stern in (a–d), the higher the performance. (a)
Performance of participant Z00 in Scenario 1, (b) performance of participant S28 in Scenario 1, (c)
performance of participant C79 in Scenario 2, and (d) performance of participant C07 in Scenario 2.

The case of Figure 17 that shows clustering for scenario 2 dealing with emergency ice
management under severe ice conditions is clearer than that of the case presented in Figure
15. Here, the difference in the heights of the cluster CL4 containing the participants having
code names C79 and C07 and the cluster CL5 containing all the other participants is large.
This enables us to infer that C79 and C07 exploit a different pattern of activities embodied
in the respective graphs, as shown in Figure 12. Again, this inference is supported by the
empirical observations obtained in the respective experiment. That is, as shown in Table
2, the participant C79 is a high performing expert seafarer with extensive experience at
sea. Based on the track chosen to approach the FPSO, participant C79 was amongst the
top-performing participants in Scenario 2 [42] (p. 55). This is well supported in Figure 16c,
where the area within the rectangular perimeters of the lifeboat launch zone water is clear
of ice for almost 18 min out of the 30-min total duration of the scenario. The participant
C07 was also a seafarer, but their performance remained on the lowest side. The replay
video of C07 shows that the participant was unable to clear ice from the lifeboat launch
zone as was required in the task (see Figure 16d).
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Figure 17. Similarity-based hierarchical clustering of graphs obtained from severe ice emergency scenario. Participants with
code names C79 and C07 are similar to each other in performance (the cluster with dotted lines) and are markedly different
from the big cluster (solid lines), as is visible through the difference in heights of both clusters.

7. Conclusions

The methodology developed here shows the potential to detect anomalies in human
performance data presented in the form of FRAM instantiations. The question of whether
the anomaly is caused by an expert behavior or is due to an error, which may indicate a
lack of experience or training of personnel, can be answered by exploiting the approach
developed here. This means that the proposed approach has the potential to discover
unusual behavior from the given datasets of human performance data presented in the form
of FRAM instantiations, which is difficult to find out by exploiting conventional statistical
techniques. For example, the detection of the pattern of activities by the participants C79
and C07 as described in the preceding section is an important result that came up by
examining the difference in the clusters shown in Figure 16. To this point, the quantification
of the unusual behavior is possible from the proposed technique, but hereafter, the proposed
approach relies on reading the experimental results to find out the cause of the detected
unusual or anomalous behavior. The authors think that a more detailed quantification is
possible if functional accuracies are available in the FRAM data, that is, if it is known which
function was performed correctly and to what extent. In practice, there are limitations to
practically estimating minute differences in functional outputs, especially in complex socio-
technical systems such as the case studies presented here. For example, instead of using a
Boolean value that a function has been performed or not performed, a value, say x percent,
of the tasks associated by the complete execution of the function f has been performed is
more important than the absolute value of the functional output, such as the speed in knots,
because FRAM based modeling involves functional aspects and performance variability
rather than physical aspects [49]. The present approach may be supplemented with an
approach to accommodate the functional accuracies to suggest at what point in time the
activity of a participant turns to an anomaly.

Author Contributions: Onceptualization, S.N.D., D.S., and B.V.; methodology, S.N.D.; software,
S.N.D.; validation, S.N.D., and D.S.; formal analysis, S.N.D.; investigation, S.N.D.; resources, D.S.
and B.V.; data curation, S.N.D., D.S., and B.V.; writing—original draft preparation, S.N.D.; writing—
review and editing, S.N.D. and D.S.; visualization, S.N.D.; supervision, S.N.D.; project administration,



J. Mar. Sci. Eng. 2021, 9, 212 23 of 24

B.V.; funding acquisition, B.V. All authors have read and agreed to the published version of the
manuscript.

Funding: NSERC/Husky Energy Industrial Research Funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Memorial University of Newfoundland, and approved by the ICEHR–Application for
Ethics Review (Secondary Use of Data) of Memorial University of Newfoundland, NL, Canada (File
Number 20201600 and approved on 11 February 2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy of human subjects used in
this study.

Acknowledgments: The authors acknowledge with gratitude the support of the NSERC/Husky
Energy Industrial Research Chair in Safety at Sea.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hollnagel, E. FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems, 1st ed.; CRC Press:

Surrey, UK, 2012.
2. Hollnagel, E. Safety-I and Safety-II: The Past and Future of Safety Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014.
3. Smith, D.; Veitch, B.; Khan, F.; Taylor, R. Integration of Resilience and FRAM for Safety Management. ASCE-ASME J. Risk

Uncertain. Eng. Syst. Part A Civ. Eng. 2020, 6, 04020008. [CrossRef]
4. Ayyub, B.M. Practical Resilience Metrics for Planning, Design, and Decision Making. ASCE-ASME J. Risk Uncertain. Eng. Syst.

Part A Civ. Eng. 2015, 1, 04015008. [CrossRef]
5. Hodge, V.; Austin, J. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
6. Krousel-Wood, M.A.; Chambers, R.B.; Muntner, P. Clinicians’ Guide to Statistics for Medical Practice and Research: Part I. Ochsner

J. 2006, 6, 68–83. [PubMed]
7. Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic Press: San Diego, CA, USA, 1999.
8. Wills, P.; Meyer, F.G. Metrics for Graph Comparison: A Practitioner’s Guide. PLoS ONE 2020, 15, e0228728. [CrossRef]
9. Lewis, T.G. Network Science: Theory and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009.
10. Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks; SAGE Publications Ltd.: Los Angeles, CA, USA, 2013.
11. Neal, Z.P. A Sign of the Times? Weak and Strong Polarization in the U.S. Congress, 1973–2016. Soc. Netw. 2020, 60, 103–112.

[CrossRef]
12. Bunke, H.; Allermann, G. Inexact Graph Matching for Structural Pattern Recognition. Pattern Recognit. Lett. 1983, 1, 245–253.

[CrossRef]
13. Vento, M. A Long Trip in the Charming World of Graphs for Pattern Recognition. Pattern Recognit. 2015, 48, 291–301. [CrossRef]
14. Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty Years of Graph Matching in Pattern Recognition. Int. J. Pattern Recognit. Artif.

Intell. 2004, 18, 265–298. [CrossRef]
15. Caetano, T.S.; McAuley, J.J.; Li, C.; Le, Q.V.; Smola, A.J. Learning Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31,

1048–1058. [CrossRef]
16. Bunke, H.; Foggia, P.; Guidobaldi, C.; Vento, M. Graph clustering using the weighted minimum common supergraph. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin, German, 2003; Volume 2726, pp. 235–246.

17. Foggia, P.; Percannella, G.; Sansone, C.; Vento, M. A Graph-Based Clustering Method and Its Applications. Lect. Notes Comput.
Sci. (Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2007, 4729 LNCS, 277–287. [CrossRef]

18. Cheng, H.D.; Cai, X.; Chen, X.; Hu, L.; Lou, X. Computer-Aided Detection and Classification of Microcalcifications in Mammo-
grams: A Survey. Pattern Recognit. 2003, 36, 2967–2991. [CrossRef]

19. Rokach, L.; Maimon, O. Clustering Methods. In Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA,
2006; pp. 321–352.

20. Schaeffer, S.E. Graph Clustering. Comput. Sci. Rev. 2007, 1, 27–64. [CrossRef]
21. Malliaros, F.D.; Vazirgiannis, M. Clustering and Community Detection in Directed Networks: A Survey. Phys. Rep. 2013, 533,

95–142. [CrossRef]
22. Loe, C.W.; Jensen, H.J. Comparison of Communities Detection Algorithms for Multiplex. Phys. A Stat. Mech. Appl. 2015, 431,

29–45. [CrossRef]
23. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A Review of Clustering

Techniques and Developments. Neurocomputing 2017, 267, 664–681. [CrossRef]

http://doi.org/10.1061/AJRUA6.0001044
http://doi.org/10.1061/AJRUA6.0000826
http://doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://www.ncbi.nlm.nih.gov/pubmed/21765796
http://doi.org/10.1371/journal.pone.0228728
http://doi.org/10.1016/j.socnet.2018.07.007
http://doi.org/10.1016/0167-8655(83)90033-8
http://doi.org/10.1016/j.patcog.2014.01.002
http://doi.org/10.1142/S0218001404003228
http://doi.org/10.1109/TPAMI.2009.28
http://doi.org/10.1007/978-3-540-75555-5_26
http://doi.org/10.1016/S0031-3203(03)00192-4
http://doi.org/10.1016/j.cosrev.2007.05.001
http://doi.org/10.1016/j.physrep.2013.08.002
http://doi.org/10.1016/j.physa.2015.02.089
http://doi.org/10.1016/j.neucom.2017.06.053


J. Mar. Sci. Eng. 2021, 9, 212 24 of 24

24. Farag, A.; Abdelkader, H.; Salem, R. Parallel Graph-Based Anomaly Detection Technique for Sequential Data. J. King Saud Univ.
Comput. Inf. Sci. 2019. [CrossRef]

25. Pourhabibi, T.; Ong, K.-L.; Kam, B.H.; Boo, Y.L. Fraud Detection: A Systematic Literature Review of Graph-Based Anomaly
Detection Approaches. Decis. Support Syst. 2020, 133, 113303. [CrossRef]

26. Prado-Romero, M.A.; Gago-Alonso, A. Community feature selection for anomaly detection in attributed graphs. In Lecture Notes
in Computer Science (Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.); Lecture Notes in Computer Science; Beltrán-Castañón,
C., Nyström, I., Famili, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10125 LNCS, pp. 109–116.
ISBN 9783319522760.

27. Papadimitriou, P.; Dasdan, A.; Garcia-Molina, H. Web Graph Similarity for Anomaly Detection. J. Internet Serv. Appl. 2010, 1,
19–30. [CrossRef]

28. Patriarca, R.; Bergström, J.; Di Gravio, G. Defining the Functional Resonance Analysis Space: Combining Abstraction Hierarchy
and FRAM. Reliab. Eng. Syst. Saf. 2017, 165, 34–46. [CrossRef]

29. Rasmussen, J. The Role of Hierarchical Knowledge Representation in Decisionmaking and System Management. IEEE Trans. Syst.
Man. Cybern. 1985, SMC-15, 234–243. [CrossRef]

30. Duan, G.; Tian, J.; Wu, J. Extended FRAM by Integrating with Model Checking to Effectively Explore Hazard Evolution. Math.
Probl. Eng. 2015, 2015, 1–11. [CrossRef]

31. Patriarca, R.; Di Gravio, G.; Woltjer, R.; Costantino, F.; Praetorius, G.; Ferreira, P.; Hollnagel, E. Framing the FRAM: A Literature
Review on the Functional Resonance Analysis Method. Saf. Sci. 2020, 129, 104827. [CrossRef]

32. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The
PRISMA Statement. PLoS Med. 2009, 6, e1000097. [CrossRef]

33. Falegnami, A.; Costantino, F.; Di Gravio, G.; Patriarca, R. Unveil Key Functions in Socio-Technical Systems: Mapping FRAM into
a Multilayer Network. Cogn. Technol. Work 2020, 22, 877–899. [CrossRef]

34. Yu, M.; Quddus, N.; Kravaris, C.; Mannan, M.S. Development of a FRAM-Based Framework to Identify Hazards in a Complex
System. J. Loss Prev. Process Ind. 2020, 63. [CrossRef]

35. Bicego, M.; Murino, V.; Pelillo, M.; Torsello, A. Similarity-Based Pattern Recognition. Pattern Recognit. 2006, 39, 1813–1814.
[CrossRef]

36. Hartsfield, N.; Ringel, G. Pearls in Graph Theory: A Comprehnsive Introduction; Academic Press, Inc.: Boston, MA, USA, 1990.
37. Koutra, D.; Shah, N.; Vogelstein, J.T.; Gallagher, B.; Faloutsos, C. DELTACON: Principled Massive-Graph Similarity Function

with Attribution. ACM Trans. Knowl. Discov. Data 2016, 10, 1–43. [CrossRef]
38. Hollnagel, E. FRAM: The Functional Resonance Analysis Method. 2018. Available online: https://functionalresonance.com/

onewebmedia/Manualds1.docx.pdf (accessed on 16 February 2021).
39. Haji, F.A.; Cheung, J.J.H.; Woods, N.; Regehr, G.; de Ribaupierre, S.; Dubrowski, A. Thrive or Overload? The Effect of Task

Complexity on Novices’ Simulation-Based Learning. Med. Educ. 2016, 50, 955–968. [CrossRef] [PubMed]
40. Tichon, J.G.; Wallis, G.M. Stress Training and Simulator Complexity: Why Sometimes More Is Less. Behav. Inf. Technol. 2010, 29,

459–466. [CrossRef]
41. Veitch, E.; Molyneux, D.; Smith, J.; Veitch, B. Investigating the Influence of Bridge Officer Experience on Ice Management

Effectiveness Using a Marine Simulator Experiment. J. Offshore Mech. Arct. Eng. 2019, 141. [CrossRef]
42. Veitch, E. Influence of Bridge Officer Experience on Ice Management Effectiveness. Master’s Thesis, Memorial University of

Newfoundland, St. John’s, NL, Canada, 2018.
43. Thistle, R. Evaluation of the Effects of Simulator Training on Ice Management Performance. Ph.D. Thesis, Memorial University of

Newfoundland, St. John’s, NL, Canada, 2019.
44. Thistle, R.; Veitch, B. An Evidence-Based Method of Training to Targeted Levels of Performance. In Proceedings of the 2019

SNAME Maritime Convention, Tacoma, WA, USA, 30 October–1 November Tacoma; The Society of Naval Architects and Marine
Engineers: Tacoma, WA, USA, 2019.

45. IMO. International Code for Ships Operating in Polar Waters (Polar Code); International Maritime Organization: London, UK, 2017;
Volume MEPC.

46. IMO. Guidance on Methodologies for Assessing Operational Capabilities and Limitations in Ice; MSC.1/Circ. 1519; International Maritime
Organization: London, UK, 2016.

47. Smith, D.; Veitch, E.; Veitch, B.; Khan, F.; Taylor, R. Visualizing and Understanding the Operational Dynamics of a Shipping
Operation. In Proceedings of the SNAME Maritime Convention, Providence, RI, USA, 24 October 2018; The Society of Naval
Architects and Marine Engineers (SNAME): Providence, RI, USA, 2018.

48. Smith, D.; Veitch, B.; Khan, F.; Taylor, R. Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes
During the Exxon Valdez Grounding. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 447–457. [CrossRef]

49. Salehi, V.; Smith, D.; Veitch, B. Modeling Complex Socio-technical Systems Using the FRAM: A Literature Review. Hum. Factors
Ergon. Manuf. Serv. Ind. 2021, 31, 118–142. [CrossRef]

http://doi.org/10.1016/j.jksuci.2019.09.009
http://doi.org/10.1016/j.dss.2020.113303
http://doi.org/10.1007/s13174-010-0003-x
http://doi.org/10.1016/j.ress.2017.03.032
http://doi.org/10.1109/TSMC.1985.6313353
http://doi.org/10.1155/2015/196107
http://doi.org/10.1016/j.ssci.2020.104827
http://doi.org/10.1371/journal.pmed.1000097
http://doi.org/10.1007/s10111-019-00612-0
http://doi.org/10.1016/j.jlp.2019.103994
http://doi.org/10.1016/j.patcog.2006.04.004
http://doi.org/10.1145/2824443
https://functionalresonance.com/onewebmedia/Manualds1.docx.pdf
https://functionalresonance.com/onewebmedia/Manualds1.docx.pdf
http://doi.org/10.1111/medu.13086
http://www.ncbi.nlm.nih.gov/pubmed/27562895
http://doi.org/10.1080/01449290903420184
http://doi.org/10.1115/1.4041761
http://doi.org/10.12716/1001.12.03.03
http://doi.org/10.1002/hfm.20874

	Introduction 
	Related Work 
	Background 
	Graph Isomorphism 
	Graph Similarity and the DeltaCon Algorithm 

	Methodology 
	Modelling a Process Using the FRAM 
	Representing FRAM Instantiations as a Graph 
	Anomalies 

	Collecting the Human Performance Data for Ice Management Scenarios 
	The Ice Simulator 
	The Experiments 
	Ice Management Scenarios 
	A FRAM Model for Representing an Emergency Scenario 
	Scenario 1: Emergency Scenario with Mild Ice Conditions 
	Scenario 2: Emergency Scenario with Severe Ice Conditions 
	Graph Representations of FRAM Data 

	Results and Discussion 
	Conclusions 
	References

