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Abstract: Path planning is a key issue in the field of coastal ships, and it is also the core foundation
of ship intelligent development. In order to better realize the ship path planning in the process of
navigation, this paper proposes a coastal ship path planning model based on the optimized deep Q
network (DQN) algorithm. The model is mainly composed of environment status information and the
DQN algorithm. The environment status information provides training space for the DQN algorithm
and is quantified according to the actual navigation environment and international rules for collision
avoidance at sea. The DQN algorithm mainly includes four components which are ship state space,
action space, action exploration strategy and reward function. The traditional reward function of DQN
may lead to the low learning efficiency and convergence speed of the model. This paper optimizes the
traditional reward function from three aspects: (a) the potential energy reward of the target point to
the ship is set; (b) the reward area is added near the target point; and (c) the danger area is added near
the obstacle. Through the above optimized method, the ship can avoid obstacles to reach the target
point faster, and the convergence speed of the model is accelerated. The traditional DQN algorithm, A*
algorithm, BUG2 algorithm and artificial potential field (APF) algorithm are selected for experimental
comparison, and the experimental data are analyzed from the path length, planning time, number of
path corners. The experimental results show that the optimized DQN algorithm has better stability
and convergence, and greatly reduces the calculation time. It can plan the optimal path in line with
the actual navigation rules, and improve the safety, economy and autonomous decision-making ability
of ship navigation.

Keywords: path planning; deep reinforcement learning; decision-making; obstacle avoidance

1. Introduction

In recent years, marine transportation has developed rapidly, and trade exchanges
between countries have become more frequent. The marine transportation industry has
greatly promoted the development of world economy, and ship intelligence plays an im-
portant role in marine transportation [1]. With the increasing demand for maritime traffic,
the marine environment has become more complex, which greatly increases the risk of mar-
itime traffic accidents. According to the statistics of the European Maritime Safety Agency
(EMSA), there were more than 3000 marine accidents and casualties in 2017 [2]. Among
these accidents, the incidence of ship collision accidents was the highest, among which
accidents caused by human factors increased, causing serious casualties, property losses and
marine environmental pollution. The important purpose of intelligent decision-making for
coastal ships is to reduce the incidence of maritime traffic accidents and ensure navigation
safety. Therefore, the ability to accurately avoid obstacles and plan a reasonable and safe
shipping path, and at the same time quickly provide emergency decision-making plan is an
important guarantee to solve the problem of ship safe driving, and it is also the key research
field of many maritime experts and scholars [3].
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The coastal ship path planning is aimed to obtain a collision free and constrained path
in a specific environment, considering various factors. The ship path planning is divided
into static and dynamic global path planning and local path planning. The paper of global
path planning mainly provides a general macro path solution for ship navigation, and
more geographic location information and meteorological information will be considered
in the course of path formulation [4]. Local path planning is mainly to avoid dynamic
obstacles in specific scenarios, and conduct real-time collision avoidance through a series
of decisions [5].

This paper aims to solve the problem of global path planning of ships under coastal
environmental conditions, which is an important part of the autonomous development of
intelligent ships. In the development of ship decision-making system, this paper proposes a
coastal ship path planning model based on deep Q network (DQN) algorithm, and verifies
the robustness and efficiency of the model in the actual environment of electronic charts.

In this study, we divide the ship path planning problem into three sub problems:

1. Processing of environmental information

Environmental processing is to divide the marine environment under study into
navigable areas and non-navigable areas, and to identify the environmental characteristics
of each location to complete the final modeling of the marine environment. Environmental
status information mainly includes marking navigable areas, marking non-navigable areas,
and establishing obstacle information. The grid method [6] is a commonly used environment
modeling method. Its basic idea is to use a grid with a certain resolution to represent the
environment, and to identify the meaning of these grids to complete the system modeling
of the environment.

2. Path search

Searching for a path means to predict a feasible path from the starting point to the
target point without collision through a specific algorithm model based on the established
environmental model. In all the predicted paths, through the optimization function itera-
tively constrained the normativity of the path, and finally selected an optimal path that
satisfies the constraint conditions from all feasible paths as the actual ship path.

3. Path smoothing

In the actual navigation of a ship, not only the economy of the path must be considered,
but the safety of the ship’s navigation must be ensured at the same time. For example, the
ship cannot pass through complicated obstacles and the turning angle of the ship should
not be too large. Therefore, it is necessary to evaluate and optimize the optimal path. If the
planned path passes through the middle of the obstacles, or the turning angle of the ship
is too large at some place, these phenomena are not in line with the safe navigation rules
of the ship, and the path needs to be smoothed. Through smooth processing, the obtained
path will be more in line with the actual navigation specifications of the ship, and the safety
of the ship’s navigation will be improved.

According to the above analysis, the paper on the independent path planning of
coastal ships can be divided into the following aspects. Firstly, it is necessary to process the
environmental state information, distinguish navigable area and non-navigable area, and
expand the complex obstacle area. Then, according to the established marine environment
model, an appropriate intelligent algorithm is selected to search the optimal path. Finally,
the safety and economy of the path are evaluated, and the relevant path smoothing method
is adopted to make the planned path more in line with the actual navigation specifications.

The remaining sections of the paper are organized as follows. Related works are
presented in Section 2. The optimization of DQN algorithm and the path planning model
of coastal ships is presented in Section 3. Experimental verification and result analysis are
presented in Section 4. The paper is concluded in Section 5.
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2. Related Research

With the development of shipping industry, more and more researchers pay attention
to the path planning of coastal ships. At present, the path planning algorithms of coastal
ships mainly include traditional non-intelligent algorithms, bionic intelligent algorithms
and machine learning algorithms.

Traditional non-intelligent algorithms mainly include the velocity obstacles (VO) al-
gorithm, A* algorithm and the artificial potential field (APF) algorithm. Kuwata et al. [7]
used the VO algorithm and combined with Convention on the International Regulations for
Preventing Collisions at Sea (COLREGS) [8] to present an autonomous planning algorithm
for unmanned surface vehicles (USV) to navigate safely in dynamic. The experimental re-
sults show that USV can better avoid obstacles and path planning, but there will be multiple
minimum values, which leads to the situation that the optimal solution cannot be obtained.
Petres et al. [9] uses the APF method to construct a virtual gravitational field to guide the
ship to the target waypoint. By transforming the navigation restricted area into a virtual
obstacle area and constructing a virtual repulsion field, this method realizes the obstacle
avoidance and autonomous path planning in complex navigation environment. This APF
has the advantages of simple algorithm structure and high computational efficiency, but
it is easy to fall into local minimum and target point oscillation. Campbell et al. [10] pro-
posed a real-time path planning method for USV based on an improved A* algorithm. The
algorithm is integrated in the decision-making framework and combined with COLREGS.
The results show that the method achieves real-time path planning for USV in complex
navigation environments. However, this method relies on the design of the grid map, and
the spacing and number of grids will directly affect the calculation speed and accuracy of
the algorithm. Xue et al. [11] combined with the COLREGS international maritime collision
avoidance rules, and proposed a path planning method based on the APF method. The
experimental results show that this method can effectively achieve ship path search and
collision avoidance. However, this method is difficult to deal with the problems of path
planning and collision avoidance in an unknown and restricted navigation environment.
The traditional non-intelligent algorithms usually have the advantages of simple structure
and less computation, but in some cases, there are multiple minima, which cannot guarantee
the optimal solution.

Bionic intelligent algorithms mainly include the ant colony optimization (ACO) algo-
rithm and genetic algorithm (GA). Xin et al. [12] improved the traditional particle swarm
optimization (PSO) algorithm through three methods: random group inversion, adap-
tive control acceleration coefficient and linear descent inertia weight method, and used
the improved algorithm for path planning. Experiments show that the improved algo-
rithm solves the premature problem of particle swarm optimization. Xin et al. [13] also
introduced a strategy of increasing the number of offspring of GA algorithms by using
multi-domain inversion, which effectively improved the local search capabilities of GA algo-
rithms. Experiments show that the path planned by the improved algorithm is shorter and
the convergence speed is faster. However, this method usually needs to continuously adjust
the initial population parameters to avoid falling into the local optimum. Ding et al. [14]
extracted the navigation environment information of ships in the electronic chart and carried
out experimental modeling. The PSO algorithm was used to carry out unmanned ship path
planning with path distance as the constraint condition. However, this method is prone
to premature convergence and the loss of diversity of the population in the search space.
Lazarowska et al. [15] showed a ship path planning method based on ACO algorithm. By
changing the path planning problem to dynamic optimization, collision risk and voyage
loss were taken as objective functions, and the optimal path and collision avoidance strategy
were obtained under dynamic obstacle environment. However, such bionic intelligent
algorithms usually need more prior knowledge and a large amount of calculation, which
leads to the problems of long calculation time and local minimum, so it is mainly used in
the auxiliary decision-making of path planning.
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Machine learning methods mainly include neural network and reinforcement learning.
Zhou et al. [16] proposed a USV autonomous path planning based on deep reinforcement
learning (DRL). At the same time, the USV motion model and collision risk assessment strat-
egy were integrated into the path planning. The algorithm was verified by experiments in
the constructed simulation environment and the actual ocean environment. Chen et al. [17]
introduced a path planning and maneuvering method for unmanned cargo ships based on
Q-learning. This method obtains the optimal behavior strategy through reward guidance,
and through continuous training and learning, the ship can obtain the optimal path. How-
ever, this method cannot solve the problem of high-dimensional space, large q-table may
lead to slow convergence. Zhang et al. [18] offered an autonomous navigation decision
model based on hierarchical DRL in order to realize ship path planning in port environ-
ment. The model mainly includes scene partition layer and navigation decision layer. The
experimental results show that the improved DRL algorithm can effectively improve the
safety and obstacle avoidance ability of ship path planning. Yu et al. [19] used the improved
DRL method to solve the problem of trajectory tracking control of underwater vehicles. The
method is composed of an action selection network and an action evaluation network, and
constantly modifies the action strategy. The experimental results show that the algorithm
can solve the problem of trajectory tracking of underwater vehicles in complex curves to a
certain extent. In order to solve the problem of path planning and autonomous obstacle
avoidance of maritime surface ships (MASS) in uncertain environments, Wang et al. [20]
proposed a decision-making model of MASS behavior based on improved DRL was pro-
posed. The APF is used to improve the network structure of DRL. The simulation results
show that the path planned based on the improved DRL meets the actual navigation
specifications, and improves the learning and adaptive obstacle avoidance ability of MASS.
The DRL overcomes the shortcomings of other algorithms, such as the large amount of
computation and the need for a certain number of prior samples. At the same time, it also
has strong learning ability and stability. However, there will be the problem of training
time stamp and slow convergence speed.

The Markov decision process (MDP) is a typical decision process model. Usually in
MDP, the decision maker (Agent) relies on a certain action strategy to perform an action
in the environment, and the environment generates a new state and reward for the corre-
sponding action after the Agent performs the action. Among them, a mapping of Agent
from state to action is called action strategy πθ , πθ(at|st) represents the probability of Agent
choosing action at under the condition of state st at a certain moment. The reward R can
also be called reward value, which is a kind of feedback information from the environment
to the action, which tells the Agent the quality of its action selection. Therefore, reinforce-
ment learning [21] in discrete time can essentially be regarded as MDP. The principle of
reinforcement learning is shown in Figure 1.
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The coastal ship path planning problem can be defined based on the sequential decision-
making problem. The MDP suitable for ship path planning can be defined by the following
elements: (S, A, P, R, γ). Among them, S represents the state information of the ship in a
limited space; A represents the action space that the ship can perform, that is, the collection
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of all the behavior spaces of the ship in any state; P represents the probability that the ship
will reach the next state after choosing action, which can be expressed as a conditional
probability formula P(s, s′) = P(s′|s, a) ; R represents the reward function, the real-time
reward obtained after the ship chooses action; γ represents the reward discount factor, and
the return value at the next moment is attenuated according to this factor, where γ ∈ (0, 1). It
can be seen that the process of ship’ path planning is a learning and decision-making process
of strengthening learning. The ship selects an action according to the current state, which
will affect the environment, and receives the feedback (reward or punishment) from the
environment. The ship selects the next action according to the current feedback information
and action strategy, and enters into the new environmental state. The principle of action
selection is to maximize the positive feedback given by the environment.

DRL combines the perception ability of deep learning with the decision-making ability
of reinforcement learning, and can realize direct control from the original input to the output
through the end-to-end learning method, which has strong versatility [22]. Among them,
the most representative is the DQN algorithm [23]. In the case of unknown environmental
information, it can obtain reasonable behavior decisions by virtue of self-learning ability, and
has strong universality and learning ability. On the other hand, DQN algorithm combines
convolutional neural network with Q-learning in traditional reinforcement learning. In
order to alleviate the instability of value function representation in nonlinear network, DQN
mainly improves the traditional Q-learning algorithm in three aspects: (1) Using experience
replay. At each time step, the sample information obtained by the Agent interacting with
the environment is stored in the experience buffer pool. During training, each time a small
batch of samples are randomly selected from the pool and the stochastic gradient descent
(SGD) algorithm is used to update the network parameters. This method greatly reduces the
correlation between the samples and improves the stability of the algorithm. (2) The DQN
algorithm uses neural network to approximate the current value function, and uses a single
network to generate the target Q value, which becomes the target value network. After the
introduction of the target value network, the Q value of the target value network remains
unchanged for a period of time, which reduces the correlation between the current value
network Q value and the target Q value, and improves the stability of the network. (3) DQN
algorithm reduces the reward value and error term to a limited interval, ensuring that both
the Q value and the gradient value are in a reasonable range. When solving various tasks
based on state awareness, DQN uses the same set of network models, parameter settings
and training algorithms, and has achieved good results, which fully shows that it has strong
adaptability and stability [24].

DRL method is gradually being applied to the transportation field with its strong self-
learning ability and function fitting ability, especially in areas such as unmanned driving
and path planning. In the marine field, some scholars have applied DRL related algorithms
to surface unmanned vehicle and other aspects and have achieved good results. Therefore,
DRL has broad application prospects and room for expansion in the marine field.

However, there are few studies on path planning of coastal ships based on DRL. Part
of the research focuses on the combined use of DRL and traditional algorithms, such as
combining DRL with APF to get an algorithm model. Because a reasonably designed
reward function in DRL plays a key role in the effect of the entire model, thus guiding
the ship to learn autonomously to avoid obstacles and reach the target point. Therefore,
the combination of DRL and traditional algorithms weakens the main role of the reward
function to a certain extent, which may lead to failure to learn the optimal path planning
strategy. On the other hand, some DRL based path planning models use the distance
between the ship and the object as a constant reward value, which will lead to low learning
efficiency and slow convergence speed of the algorithm. In order to solve the problems
of slow convergence speed and long training period of traditional reward function, this
paper combines the COLREGS and referring to the actual navigation rules of ships, by
setting the potential energy reward of the target point to the ship, adding the reward area
near the target point and adding the danger area near the obstacle, So as to improve the
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convergence speed and stability of the algorithms, and ensure the safety and economy of
the coastal ship navigation process.

3. Model of Coastal Ship Path Planning
3.1. Environmental Status Information Processing
3.1.1. Gridding of Marine Environment

The grid method is a discrete modeling method. Its basic idea is to use a series of grids
with a certain resolution to represent the environment, and mark these grids separately to
complete the system modeling of the environment. The key of the grid method is to identify
the map, because of its simple data structure and strong current, it is convenient for spatial
analysis and surface simulation, and is conducive to the creation and maintenance of grid
map. On the other hand, the size of the grid partition is negatively related to the amount
of environmental information storage. When the grid partition is larger, the resolution of
the environment will decline, and the optimal path may be missed in the dense obstacle
environment. When the grid partition is smaller, the resolution of the environment is
higher, and the ability to deal with the dense obstacles is stronger, but the online planning
algorithm needs longer calculation time. At present, many researchers apply the grid
method to ship path planning, and it is still one of the more widely used methods [25].

Figure 2 shows the process of using grid method to process marine environmental in-
formation. Among them, Figure 2a shows the state information before marine environment
gridding, including the land and ocean information; Figure 2b shows the state information
after marine environment gridding, and uses grid to label non navigable areas.
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after gridding of marine environment.

In this paper, the grid method is used to treat the marine environment into a two-
dimensional simulation ocean environment, and the specific values are used to represent
the navigable area and the obstacle area, where the value 0 represents the navigable area,
which is displayed as the white area in the simulation environment; the value 1 represents
the obstacle, that is the non-navigable area, which is displayed as the black area in the
simulation environment. In the two-dimensional coordinate system, each coordinate point
corresponds to a state of the ship. There are only two states of the ship, navigable and
prohibited. The marine environment information is extracted and processed as shown in
Figure 3.

3.1.2. Ship Navigation in Accordance with COLREGS

The COLREGS must be considered before applying marine environmental information
to path planning model, so as to ensure the practicability and effectiveness. Only according
to COLREGS, the ship path planning can be applied to the actual navigation process. When
a ship makes a decision from the perspective of the first person based on its environmental
observation information, it is called “self-ship”, while other ships and obstacles nearby are
regarded as “other ships”. When the self-ship’s surrounding environment information is a
navigable area, the ship should consider the economic cost and design the path according



J. Mar. Sci. Eng. 2021, 9, 210 7 of 23

to the optimal way. When there is a non-navigable area around the ship, that is, there are
obstacles around, the ship should avoid the obstacles safely under the premise of complying
with COLREGS.
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According to COLREGS, the situation of ship encounter can be divided into three
types: head-on situation, crossing situation and overtaking situation. In each case, each
ship makes a decision according to the COLREGS, in which the give-way ship should take
action to avoid collision, while the stand-on ship keeps its original state and continues
to sail. When the marine environment has good visibility, the situation of ship encounter
situation is shown in Figure 4.
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As shown in Figure 4, taking the self-ship as the navigation center, the situation of
ship encounter is specifically divided as follows: head-on situation has the regional range
of (0◦, 005◦) and (355◦, 360◦). At this time, both sides of the meeting are giving way ships,
and they should respectively turn to the right and more than 15 degrees. The crossing
encounter situation includes (005◦, 112.5◦) and (247.5◦, 355◦). When the self-ship is located
in the (005◦, 112.5◦) area, the ship belongs to the give-way ship, and at this time, it should
take the right turning action to avoid collision with obstacles. When the self-ship is located
in the (247.5◦, 355◦) area, the ship belongs to the stand-on ship, and the ship keeps the
current path. The overtaking situation, the area is (112.5◦, 247.5◦). At this time, the self-ship
belongs to stand-on ship, does not take action and keeps the current path.

On the other hand, in the case of restricted visibility at sea, there will be no obvious
separation of responsibilities between stand-on ship and give-way ship. For this kind of
sea situation, the COLREGS regulations that when the incoming ship is within the range of
(0◦, 90◦) and (270◦ and 360◦), the self-ship will turn to the right. For coming ships in the
range of (90◦, 180◦) and (180◦, 270◦), the self-ship takes a turn towards other ships. In this
article, we mainly study the situation of good visibility at sea.
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3.2. Design of Coastal Ship Path Planning Model
3.2.1. Optimized Design of the Reward Function

The reward function is also known as immediate reward or enhanced signal. After
the ship performs an action, the environment will make a feedback information according
to the action, which is used to evaluate the performance of the action. The reward function
is designed by the environment and the decision maker. It is usually a scalar, with positive
value indicating reward and negative value representing punishment.

In the learning and training process of ship path planning model, the design of the
reward function plays an important role, also determines the effect and efficiency of neural
network training. The reward function can be used as the evaluation index of the effec-
tiveness and safety of ship behavior decision-making, which has a result-oriented role.
Traditionally, the reward function of the target to the Agent is usually defined as the fixed
positive reward value when the next state of the ship is closer to the target point after
the ship performs the action, otherwise, the fixed negative reward value is given. For the
problem of ship path planning, the disadvantage is that it cannot know quantitatively the
future impact of the current selected action on it, thus ignoring the optimal strategy, and will
lead to low learning efficiency of the model and slow convergence speed of the algorithm.

In order to solve the problems of slow convergence speed and long training period of
traditional reward function, this paper optimizes the reward function and proposes a new
design method of the reward function. This paper mainly proposes three optimizations to
the reward function. (1) The potential energy reward of the target point to the ship is set.
(2) The reward area is added near the target point. (3) The danger area is added near the
obstacle. Through the above optimized method, the ship can avoid obstacles to reach the
target point faster, and the convergence speed of the model is accelerated.

1. The potential function reward of target point to ship is designed as follows:

rt =
dk−1

t − dk
t∣∣∣dk−1

t − dk
t

∣∣∣ c|dk−1
t −dk

t | (1)

where, dk−1
t is the distance from the ship to the target point at the k− 1 moment; dk

t is the
distance from the ship to the target point at the k moment; c is a constant.

After each action, the dynamic reward is set according to the current state of the ship
and the environment. According to Formula (1), when dk−1

t > dk
t , it means that the ship

is closer to the target point after executing the current action. At this time, rt is positive,
which means that the environment gives the ship a positive reward. The value of positive
reward changes exponentially with the difference between the ship’s current time and the
previous time from the target point, which can accelerate the ship approaching the target
point, similar to the effect of potential energy. On the contrary, when the ship is far away
from the target point, it will get a negative reward value.

2. The reward area near the target point is designed as follows:

The reward area means that when the ship is near the target point, but has not reached
the target point, in order to help the ship quickly reach the target point, different rewards
are given for different distances from the target point in the reward area. This method can
speed up the convergence speed of the model. At the same time, in order to avoid falling
into the local optimum, the reward in the reward area should not be too dense, and there
should be a gap between the reward area and the reward reaching the target point. The
design of reward field is shown in Formula (2).

ry =

{
2, dk

t > ∂ and dk
t ≤ `

1, dk
t > ` and dk

t ≤ λ
(2)

where, ∂, ` and λ are the thresholds of reward area, and different rewards are given in
different threshold ranges.
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3. The dangerous area near the obstacle is designed as follows:

Dangerous area refers to that the ship is near an obstacle, but has not yet collided
with the obstacle. In order to help the ship leave the obstacle quickly, it is necessary to
increase the punishment near the obstacle. In order to avoid the ship falling into the local
situation, the punishment in the dangerous area should not be too dense, and there should
be a certain gap between the punishment in the dangerous area and that in the position of
the obstacle. The dangerous area design is shown in Formula (3).

rn =

{
−3, dk

o > α and dk
o ≤ β

−1.5, dk
o > β and dk

o ≤ δ
(3)

where, dk
o represents the distance between the ship and the obstacle at the k moment, α, β

and δ are the thresholds of the dangerous area, and different penalties are given in different
threshold ranges.

Because the actual ship navigation process is continuous, the environment state and
action space of DQN algorithm are limited. Therefore, combined with the above design of
the reward function, the reward function is generalized to nonlinear piecewise function.
The final design of the reward function R is as follows.

R =


10, dk

t = 0
−5, s = 1
rt, s = 0
ry, s = 0
rn, s = 0

(4)

where, s = 1 indicates that the ship is in the non-navigable area, that is, the ship collides with
the obstacles; s = 0 indicates that the ship travels in the navigable area; dk

t represents the
distance between the ship and the target point at time k, rt represents the potential function
reward value of the target point to the ship, ry represents the reward value when the ship is
near the target point, rn represents the penalty value when the ship is near the obstacle.

3.2.2. Description of State Space and Action Space

The state space is used to represent the relevant characteristics of the ship’s environ-
ment, which is usually used as the input information of DRL. In the process of navigation,
the position of the self-ship relative to the target point and obstacles is always changing,
which has uncertainty. In this paper, the input state information of the model comes from
the real-time sensing information of ship sensors in electronic chart, including position
information and azimuth information between ship and object.

Figure 5 shows the state space of the self-ship. The blue circle represents the self-ship,
the red five-pointed star represents the target point, and the gray circle represents the
obstacle area. The Cartesian coordinate system is established based on the environment
of the self-ship. Assuming that the position of the ship in the environment is (xs, ys), the
position of the target point is (xt, yt), and the position of the nearest obstacle to the ship
is (xo, yo), dt is the distance between the ship and the target point, and do is the distance
between the ship and the obstacle. At the same time, the angle between the line from
the ship to the target point and the positive half axis of the X axis can be calculated as ϕt,
and the angle between the line between the ship and the obstacle and the positive half
axis of the X axis is ϕo. Choosing S = (dt, ϕt, do, ϕo) as the state space of the ship in the
environment can express the state of ship at any time in the environment.

The action space is used to describe what actions a ship can take in the current
environment. The input of current value network is the state information of ship, and
the output is the discrete action space Q value in DRL. In theory, the motion space of the
ship in the environment can be in any direction, but too many actions will lead to a great
increase in the training time of the model, resulting in the final path is too tortuous. On the
other hand, too little action space will lead to the problem of “right angle” in ship planning
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path, which obviously does not conform to the actual navigation rules. Therefore, the
selection of an appropriate action space has a great impact on the quality of path planning
and training time.
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After setting the starting point and target point of the ship, the ship is regarded as
a particle in the environmental. In the actual navigation process, the ship’s navigation
process is a continuous state, so the ship’s action space is generalized into 8 discrete actions,
the specific execution actions are up, down, left, right, upper left 45 degrees, right upper
45 degrees, left lower 45 degrees and right upper 45 degrees. Adding diagonal action can
improve the ship’s exploration of the corner situation in the environment, and avoid the
increase of training round caused by too little action space. Formula (5) defines a set of
motion spaces centered on the ship’s position.

A = {(r− 1, c); (r + 1, c); (r, c− 1); (r, c + 1); (r− 1, c− 1); (r− 1, c + 1); (r + 1, c− 1); (r + 1, c + 1)} (5)

In the above formula, A represents the set of action spaces, r represents the x-axis
direction of the ship’s two-dimensional coordinate system, and c represents the y-axis
direction of the ship’s two-dimensional coordinate system.

3.2.3. Action Exploration Strategy

In the training and learning process of DRL, it is necessary to deal with the relationship
between exploration and exploitation. The exploration emphasizes the discovery of more
information in the environment, not limited to the known information; the exploitation em-
phasizes maximizing the reward from the known information. Appropriate action exploration
strategy can make the Agent try more new actions and avoid falling into local optimum.

The greedy strategy selects the action that maximizes the value function each time.
However, this method does not consider the exploration. For the state-action values that
have not appeared in the sampling, there is no corresponding Q value because there is no
evaluation, and the action will not be selected later. Therefore, greedy strategy only focuses
on exploitation, does not involve exploration, and stores disadvantages in action exploration.

The ε − greedy strategy has both exploration and exploitation. It selects an action
randomly from all action spaces with the probability of ε and chooses the greedy strategy
with the probability of 1− ε, that is to extract the state-action value with the highest average
reward, so as to prevent the Agent from falling into the local optimal situation. Generally, ε
gradually decreases with the increase of training times, which fully reflects that in the early
stage of training, more attention is paid to the exploration of environment, while in the
later stage of training, the use of high-quality movements is gradually emphasized.

In the training process of ship path planning model, on the one hand, the ship needs
to try and error to obtain the optimal search strategy, that is, exploration; on the other
hand, it needs to consider the whole path planning, so as to maximize the expected value
of the model to obtain future rewards, that is, exploitation. In this paper, ε− greedy is used
as the action exploration strategy. When the search behavior maximizes the state-action
value function, the probability of selecting this action is 1− ε. Otherwise, the probability
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of selecting other random actions is ε. The ship exploration and exploitation strategy is
shown in Formula (6).

a =

{
argmaxQ(s, a), with probability 1− ε
random, otherwise

(6)

where, a represents the action of ship selection, Q(s, a) represents the state-action value
function under state s and ε ∈ (0, 1], while in other cases, an action will be selected
randomly under the probability of ε.

3.2.4. Training and Learning Process of Model

In order to solve the problem of ship path planning in the coastal environment, this
paper proposes an optimized DQN algorithm to solve the problem. Figure 6 shows the
schematic diagram of path planning for coastal ships based on optimized DQN algorithm.
Firstly, the sensor system is used to obtain the environmental information of the ship, and
combined with COLREGS to ensure the safety and effectiveness of ship action. Secondly,
the current environment state information of the ship is taken as the input of the current
value network, and the behavior based on the current policy is generated through training,
and the action corresponding to the maximum state-action value argmaxaQ(s, a; θ) is
selected. Then, the ship performs the action and obtains the corresponding reward value
r, and stores the current state s, action a, next moment state s′ and reward r as historical
experience information in the experience replay memory. At each time, a number of sample
data are randomly selected for current value network training, so that the trained current
value network can fit the optimal action value. Finally, the loss function is calculated by
combining the Q value of the current network and the target network, and the network
parameters are updated by using historical experience data. When the current value
network is trained enough, its weight will approach the best parameter. At the same time,
the current value network copies its own network parameters to the target network every
N time steps to reduce the correlation between the two networks.
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In summary, the coastal ship path planning model is mainly divided into the following
stages: first, before the training and learning, it is necessary to design the environmental
state, ship action, action strategy and reward function properly; secondly, the model
obtains a maximum future return strategy in the interaction process through learning, and
constantly modifies it to the optimal strategy through the value function; Finally, when
the training and learning process is completed, the optimal control strategy based on state
information is obtained, the ship can use this model to avoid all obstacles and plan an
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optimal path in line with the navigation rules to guide the ship to safely travel from the
starting point to the target point.

3.3. Execution Process of Coastal Ship Path Planning Model

In this paper, the real marine environment is abstracted, and the optimized DQN
algorithm is used to plan the path that meets the navigation specification. The information
of ship and environment is collected by sensors (marine radar equipment), and the distance
and angle between the ship and the target point and obstacle are taken as the input data of
the algorithm. Through the model training learning, the cumulative reward income in the
learning process is maximized, and the optimal action strategy is finally determined. When
the model training is completed, the ship can avoid the obstacles and reach the destination,
planning a safe and economic path.

The execution process of coastal ship path planning model is described as follows:

1. Firstly, the ship’s environment is processed, and the state information of the ship and
the environment is obtained by the sensing equipment.

2. Call the model and take the state information as the input data of the model. After the
model calculation, we can get the action that the ship should take under the current state.

3. The ship controller obtains the action and executes the action in the current ship state.
4. Obtain the state information of the next moment after the ship performs the action,

and determine whether the ship state after execution is the end state.
5. If the current state is not the end state, the ship state information at the next moment

will be handed over to the model for further use. If the current state is in the end state,
it indicates that the ship has reached the target point, and the calculation and call of
the model are finished.

The pseudo code of path planning for coastal ships is as follows (Algorithm 1).

Algorithm 1. DQN algorithm for path planning of coastal ships

1. Initialize replay memory D
2. Initialize action-value Q current value network with random weights θ

3. Initialize action-value Q̂ target value network with random weights θ− = θ

4. For episode = 1 to M do
5. Input initial ship and environment observation states:
6. Input initial unmanned ships and environment observation states sequence:

s1 =
(

d1
t , ϕ1

t , d1
o , ϕ1

o

)
7. For t = 1 to T do
8. With probability ε select a random action ak, otherwise select ak = argmaxQ(s, a; θ)
9. Ship execute action ak in environment and calculate the reward r of k time

10. Obtain the state of the ship at k +1 time: sk+1 =
(

dk+1
t , ϕk+1

t , dk+1
o , ϕk+1

o

)
11. Store (sk, ak, rk, sk+1) transition in D
12. Sample random mini-batch Dmin = (si, ai, ri, si+1) of transitions from D
13. Calculate target value function yk:

yk =

{
rk, if episode terminates

rk + γmaxa′ Q̂
(
sk+1, a′k; θ−

)
, otherwise

14. Perform a gradient descent step on (yk −Q(sk, ak; θ))2 with respect to the current value network parameters θ

15. Every C setps reset Q̂ = Q
θµ′ ← τθµ + (1− τ)θµ′

θQ′ ← τθQ + (1− τ)θQ′

16. End for
17. End for
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4. Experimental Verification and Result Analysis

In this section, the reliability and effectiveness of the path planning model of coastal
ships are verified by simulation experiments. It mainly includes the establishment of
training experimental environment and the setting of algorithm parameters, the model
prediction of path and the smooth processing of path.

4.1. Experimental Environment Construction and Algorithm Parameter Setting

Based on the electronic chart platform, this paper selects the real sea environment
as the environment space of model training. Using the grid method in Section 3.1.1, the
marine environment is rasterized with 0.1 nautical mile as the grid size, and finally the
marine environment is quantified as “0” and “1” format data. Then, a 400 × 350 two-
dimensional simulation environment is built, based on the quantized data in Python. In this
two-dimensional coordinate system, each coordinate position corresponds to the quantized
marine environment information, each coordinate can be mapped to each element of the
environmental state, which can be used to represent the navigable area and no navigation
area. At the same time, in the simulation environment, each coordinate position uses 0
or 1 to represent the current environment state value, where 0 represents the navigable
area of the ship, which is displayed as a white area in the environment model; 1 represents
the obstacle, which is the non-navigable area, which is displayed as a black area in the
environment model.

Figure 7 shows the two-dimensional simulation training marine environment required
for the experiment. Figure 7a shows the real marine environment information, including
the information of the ocean, shore-based islands and sunken ships. Figure 7b shows
the corresponding simulation experiment environment information of the real marine
environment after processing by the grid method. On the other hand, the safe driving
distance of the ship is related to the size of the ship itself. Large ships often need a long
safe distance and take action earlier. Therefore, this paper expands the obstacles in the
marine environment, and increases the boundary of the obstacles by 0.1 nautical miles on
the basis of the original proportion.
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The goal of the model is composed of two parts: goal orientation and action decision.
When there are no or few obstacles in the marine environment, the action decision made
by the model will guide the ship to approach the target point quickly until it reaches the
target point. When the obstacles in the marine environment affect the ship approaching
the target point, the model helps the ship to avoid the obstacles and move towards the
target point by action decision-making, and improves the quality of action decision-making
through the interaction between the ship and the environment and the constraints of rules
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in the navigation process. The parameter settings of the model in the training process are
shown in Table 1. Among them, only a part of the neurons in the activation function ReLu
will be activated at the same time, which makes the network very sparse and efficient.
Therefore, the sparse model implemented by ReLu can better fit the data and learn the
relevant features autonomously. Because the activation function ReLu has the advantages
of simple calculation, high training efficiency and overcoming the gradient disappearance,
it is selected as the activation function of the neural network of the algorithm. It can better
enhance the ship’s autonomous learning ability, speed up the model training speed, and
realize the stability and effectiveness of path planning.

Table 1. Model training parameter definition.

Parameters Name Parameters Value Description

Action space size 8 Optional action of the ship
Learning rate α 0.01 Learning rate of neural network
Decay factor γ 0.9 Decay factor of cumulative reward

Exploration rate ε 1 Exploration rate of action
Explore decay rate 0.995 Exploration decay rate of action

Experience replay memory D 10,000 Stores historical experience data
Sample size Dmin 512 Size of extracted empirical data

Hidden layers size 3 Size of hidden layers in networks
Number of neurons 128 Number of neurons in hidden layer
Activation function ReLu Neuron activation function

4.2. Model Validation Results

In order to verify the effectiveness of the coastal ship path planning model based on
optimized DQN, this chapter introduces the ship path planning results under different
training iterations, as shown in Figure 8. The black area represents the type of obstacle,
that is area where the ship is prohibited from sailing, and the white area represents the
navigable sea area. At the same time, the initial position of the ship is set as (183, 239) and
the green dot is used to indicate the initial position. The target point position is (283, 268)
and the target position is indicated by a red five-pointed star. The planned path of the ship
is represented by a solid blue line.
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As shown in Figure 8a, in the initial 500 iterations, although the planned path finally
reached the target point, there were more turn back paths. This is because the DRL algo-
rithm in training is through constant trial and error behavior, so as to find the optimal
solution, so there will be more trial and error behavior in the early stage of training. On the
other hand, ships constantly exploring in the early stage, which cannot accurately judge the
obstacles and target areas in the environment, and there are many exploration behaviors
when facing obstacles. Therefore, it can be seen from the figure that there are many turn
back phenomena in the path planned by the model. Figure 8b shows the prediction result
after 1000 iterations. The model gradually plans the path with less redundant paths and
reaches the target point. However, the planned path passes through some obstacles and
collides with obstacles many times in the process, which obviously does not meet the
requirements of the ship safety regulations. Figure 8c shows the prediction result after
2000 iterations. After continuous self-learning, the predicted path is guaranteed in terms of
safety, and the collision phenomenon is gradually reduced, and finally it reaches the target
position successfully. However, the planned path still fluctuates greatly, and the corner
angle is too large to meet the actual navigation requirements. Figure 8d shows the result
after 3000 iterations. The ship does not pass through the obstacles and successfully avoids
all obstacles, and finally reaches the target point. At this time, the planned path fluctuation
is weak, and gradually tends to be stable. This is because the random exploration rate of
action space is reserved, so there is slight fluctuation in the whole path.

In order to verify the credibility and effectiveness of the model, this paper selects
other complex marine environment for the experimental verification of ship path planning.
Figure 9 shows the path planning results of the model in marine environment case 1.
Figure 9a shows the initial environment of marine environment case 1, and Figure 9b
shows the path planning results after 3000 iterations. The starting point coordinates of
the ship are (86, 265) and the target point coordinates are (326, 45). It can be seen from
Figure 9b that the trajectory planned by the model avoids the obstacles and keeps a safe
distance from the obstacles, and finally reaches the target point safely. Figure 10 shows the
path planning results of the model in marine environment case 2. Figure 10a shows the
initial environment of marine environment case 2, and Figure 10b shows the path planning
results after 3000 iterations. The starting point coordinates of the ship are (110, 70) and the
target point coordinates are (800, 470). It can be seen from Figure 10b that the path planned
by the model can reach the target position safely, which is in line with the specifications
and requirements of the actual navigation. Through the above experimental verification
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and analysis, it can be seen that the model can better plan the path in line with the actual
navigation specifications in different marine environment.
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On the other hand, this research applies result of path planning to the obstacle potential
map in three-dimensional environment, as shown in Figure 9. Different colors in the figure
indicate the level of potential energy. In the figure, the red represent positive potential
energy and it corresponds to the relevant obstacles. The potential energy of 0 in blue
represents the navigable sea area. The higher the potential energy value is, the larger the
influence range of obstacles is, and vice versa. The interaction process between the actual
predicted path and the marine environment can be better observed from the graph.

Figure 11a,b shows the initial obstacle potential images in the actual marine environ-
ment, as well as the initial positions of the ship’s starting point and target point. Figure 11c
shows the ship’s course along the path predicted. It can be seen that the current ship
does not reach the area with high potential energy value, that is, there is no collision with
obstacles. Figure 11d shows the effect picture of the path predicted by the model. The
predicted complete path does not reach the area with high potential energy value, that is
avoids the obstacle area and finally reaches the target safely.

4.3. Path Smoothing

Trajectory data compression algorithms are generally divided into two categories: one
is to linearize the motion trajectory by segments [26], which is the most commonly used
algorithm due to its simple algorithm form and low computational complexity, the other is
nonlinear trajectory fitting [27], which is closer to the real track, but faces the problems of
complex algorithm and large amount of calculation. Because the ship’s trajectory is along
the established path and the real path is composed of several channel points, the linear
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compression algorithm is more suitable for the ship’s actual path, and also can save some
computing resources. Among many linear compression algorithms, the Douglas–Peucker
algorithm is the most representative.
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4.3.1. Douglas–Peucker Algorithm

The Douglas–Peucker algorithm, referred to as DP algorithm, is an algorithm that
approximately represents a curve as a series of points and reduces the number of points [28].
It was proposed by Douglas and Peucker in 1973 and perfected by other scholars in the
following decades.

The basic idea of DP algorithm is as follows: the first and last positions of each curve
are connected by imaginary connecting lines, the distance between all points and the
straight line is calculated, and the maximum distance value dmax is found. Compared with
the limit threshold dmax by Dmax, the appropriate points are retained and the points that
do not meet the requirements are removed. The steps of the algorithm are as follows:

1. Connect a straight line, AB, between two points A and B at the beginning and end
of a trajectory curve, which is the chord of the curve, traverse all other points on the
curve, calculate the distance from each point to the line AB, find the point C with the
maximum distance, and mark the maximum distance as dmax.

2. The distance dmax is compared with the pre-defined threshold Dmax. If dmax < Dmax,
the AB curve segment is approximated and the curve segment is processed.

3. If dmax > Dmax, the curve AB is divided into AC and CB at point C, and the two
sections are processed in steps (1) (2) respectively.

4. When all the curves are processed, the broken line formed by connecting each seg-
mentation point in turn is the path of the original curve.

The DP algorithm has a simple structure and high computational efficiency. It is a
post compression method which needs to define the starting point and target point, and
is an offline compression method. In the aspect of ship path planning, the initial path
obtained by the planning is smoothed by DP algorithm, which will be more suitable for
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the requirements of ship’s navigation trajectory, and improve the safety and economy of
navigation. This paper will further optimize the path predicted by model based on DP
algorithm, so that the final path meets the actual navigation needs.

4.3.2. Path Smoothing Based on DP Algorithm

The path planning result retains the random action exploration in order to fully explore
the environmental information, so there are some redundant path corners. However, in
the actual navigation process, unnecessary turning action should be avoided to reduce
operational risk and improve economy. Therefore, it is necessary to smooth these improper
path corners.

In this chapter, the path planned by the model is combined with DP algorithm to
smooth and optimize the path results, so as to improve the safety and economy of ship
driving. Figure 12 shows the path optimized by DP algorithm. It can be seen from the
figure that the optimized path removes redundant corners, and the overall path is smoother,
which is in line with the actual navigation specifications. Figure 13 shows the actual ship
path planning results of the optimized path in the electronic chart.
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Table 2 shows the number of path corners and path length before and after optimiza-
tion using DP algorithm. From the data in the table, it can be seen that the optimized path
has better performance in the number of path corners and path length, thus improving the
economy and safety of ship navigation.
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Table 2. The number of path corners and path length before and after optimization by DP.

Before Optimization After Optimization

Number of path corners 6 1
Path length/meter 137.612 111.318

4.4. Comparative Analysis of Experimental Results

In this section, by comparing the traditional DQN algorithm with the algorithm
proposed in this paper, the number of training iterations and steps of the model are
compared and analyzed, as shown in Figure 14.
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The abscissa in the figure represents the number of training iterations, the ordinate
represents the number of steps required from the starting point to the target point of each
iteration. The blue dotted line represents the iterative trend result of traditional DQN algo-
rithm, and the red solid line represents the iteration trend result of the algorithm proposed
in this paper. The graph clearly and intuitively shows the convergence speed and training
effect of the two algorithms. It can be seen from the figure that the number of round steps
of the proposed algorithm began to decrease around the 200th round, showing a gradual
convergence trend, while the traditional DQN algorithm began to show a convergence trend
around the 450th round. At the same time, it can be seen that the number of round steps of
the traditional DQN algorithm is maintained at about 138 steps and does not converge to
the minimum number of steps, but the proposed algorithm has converged to the minimum
number of steps of about 103 steps, which shows that the path calculated by the traditional
DQN algorithm has more redundancy. In the later training process, the proposed algorithm
has smaller fluctuation frequency and better stability than the traditional DQN algorithm.
Experimental results show that the proposed algorithm has faster iteration speed and better
decision-making ability, and can quickly reach the target point with less steps.

On the other hand, the length of path trajectory and the number of path corners deter-
mine the safety and economy of path planning, and the time of path planning also determines
whether the path can be used in time. In this research, the optimized DQN algorithm is
compared with other path planning algorithms from three aspects: path length, number of
corners and planning time.

The other path planning algorithms used in this paper include the following six:
traditional DQN algorithm, Q-learning algorithm [17], deep deterministic policy gradient
(DDPG) algorithm [19], A* algorithm, BUG2 algorithm and APF algorithm. In the same
marine environment, this paper analyzes and compares the experimental results and
performance data of the above algorithms. Among them, the action space of Q-learning
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algorithm and traditional DQN algorithm is the same as that of the algorithm proposed in
this paper. The action space of the DDPG algorithm is (−35◦ and 35◦) and the continuous
action output is obtained.

Figure 15 shows the path planning result of different algorithms in the same marine
environment. Figure 15a is the path planning result of 3000 rounds of training based on the
traditional DQN algorithm. It can be seen from the figure that the ship can autonomously
learn to plan a safer path, but the path has more redundant corners, which increases the
risk of driving the ship and does not conform to the actual navigation specifications of
the ship meet the requirements of path economy. Figure 15b is the path planning result of
3000 rounds of training based on the traditional Q-learning algorithm. It can be seen from
the figure that the ship finally plans a path, but there are still many redundant corners in
the path, and the algorithm training takes a long time due to the size limitation of Q-table.
Figure 15c is the path planning result of 3000 rounds of training based on the traditional
DDPG algorithm. It can be seen from the figure that the path planned is a curve. This
is because the result obtained by DDPG algorithm is the continuous action value, so the
action taken by the ship changes in real time. Because the coastal ships need to take as few
actions as possible in the process of navigation, the path obtained by this method does
not meet the actual navigation requirements. Figure 15d is the result of path planning
based on A* algorithm. It can be seen from the figure that the planned path is closer to the
obstacles, and there are more path corners, which increases the risk of ship driving and
is not applicable to the actual navigation specifications. Figure 15e is the result of path
planning based on BUG2 algorithm. Since the obstacle information in the environment is
required to be polygon when planning path, the obstacle is filled as a circle circumscribed
square in the experiment. When planning the path, the algorithm needs to circle around
the obstacle to determine the point closest to the target point. It can be seen from the
figure that the planned path has a large angle point, not in line with the actual navigation
rules of the ship. Figure 15f is the result of path planning based on the APF algorithm.
The algorithm regards the whole environment as a large magnetic field. The target point
generates a gravitational magnetic field on the ship, and the obstacle generates a repulsive
magnetic field on the ship. It can be observed from the figure that although the trajectory
of the path planned based on APF is short and has a certain distance from the obstacle, the
planned path has radian and is not suitable for the actual navigation of the ship.

By comparing the above algorithm with the path planned in this paper (Figure 8d).
The path planned by the proposed algorithm is smoother, has less path corners, and keeps
a certain safe distance from obstacles, which is more in line with the actual navigation
specifications of ships.

Meanwhile, based on the above experimental data, the performance of different
algorithm is compared and analyzed in terms of path length, path planning time and
corner number. Table 3 shows the comparative information of experimental data. It can be
observed from the table that the path length planned by this paper proposed algorithm is
137.612 m, taking 0.6105 s, and 6 path corner; the path length planned by the traditional
DQN algorithm is 154.241 m, taking 0.9254 s, and the path corner is 16. The path length
planned by the Q-learning algorithm is 146.617 m, taking 0.7613 s, and the path corner is 6.
The path length planned by the traditional DDPG algorithm is 172.315 m, taking 0.8251 s,
because the path also is arc, the corner is not calculated. The path length planned by the A*
algorithm is 116.421 m, taking 1.2253 s, and the path corner is 28. The path length planned
by BUG2 algorithm is 92.728 m, which takes 2.3268 s, and the path corner is 6. The path
length planned by APF algorithm is 135.513 m and takes 1.6216 s, because the path also is
arc, the corner is not calculated. From the above experimental results and data analysis,
it can be seen that under the premise of meeting the actual navigation specifications, the
algorithm proposed in this paper has shorter path length and time consumption, as well as
fewer corners, and has better actual path planning effect.
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based on the APF algorithm. The algorithm regards the whole environment as a large 
magnetic field. The target point generates a gravitational magnetic field on the ship, and 
the obstacle generates a repulsive magnetic field on the ship. It can be observed from the 
figure that although the trajectory of the path planned based on APF is short and has a 
certain distance from the obstacle, the planned path has radian and is not suitable for the 
actual navigation of the ship. 
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Table 3. The comparison of experimental data.

Method Path Length/Meter Time/s Number of Path Corners

Optimized DQN 137.612 0.6105 6
Traditional DQN 154.241 0.9254 16

Q-learning 146.617 0.7613 6
DDPG 172.315 0.8251 -

A* 116.421 1.2253 28
BUG2 92.728 2.3268 6
APF 135.513 1.6216 -

5. Conclusions

For the traditional path planning algorithm, due to the lack of autonomous learning
ability and historical experience, data cannot be recycled, resulting in a slow convergence
speed and the actual planning path is not smooth and so is redundant. In this paper, a
global path planning model for coastal ships based on an optimized DQN algorithm is
proposed, and the path planning problem is divided into three parts: environment status
processing, path search and smooth path. The traditional reward function generally adopts
the idea of fixed reward value, but this method will lead to slow convergence speed of
traditional DQN algorithm and easy to fall into local iteration problem. In order to solve
this problem, this paper optimized the reward function. By setting the potential function
reward of the target point, adding the reward area near the target point and the penalty
area near the obstacle, a ship path planning model based on optimized DQN is established.
Firstly, the actual marine environment information for algorithm training is obtained based
on a grid method. Secondly, the structure of the model is designed according to the ship
navigation rules, and the reward function is optimized. Through learning and training, the
experimental results show that the coastal ships take reasonable actions under the premise
of path specification, successfully complete the autonomous path planning, and realize
the end-to-end learning method of ships. Finally, the proposed algorithm is compared
with other algorithms. The results show that the optimized DQN algorithm has a fast
convergence speed, high accuracy and small navigation error. At the same time, it has a
shorter planning time and more secure and reliable path results, which further verifies the
effectiveness of the method. However, this paper does not consider the marine environment
where static obstacles and dynamic obstacles exist simultaneously in an actual verification
environment. Considering the path planning of ships in more complex sea areas, and
verifying it in the actual environment is the focus of the next research in this paper.
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