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Abstract: Low quality automatic identification system (AIS) data often mislead analysts to a mis-
understanding of ship behavior analysis and to making incorrect navigation risk assessments. It
is therefore necessary to accurately understand and judge the quality problems in AIS data before
a further analysis of ship behavior. Outliers were filtered in the existing methods of AIS quality
analysis based only on mathematical models where AIS data related quality problems are not utilized
and there is a lack of visual exploration. Thus, the human brain’s ability cannot be fully utilized to
think visually and for reasoning. In this regard, a visual analytics (VA) approach called AIS Data
Quality visualization (ADQvis) was designed and implemented here to support evaluations and
explorations of AIS data quality. The system interface is overviewed and then the visualization
model and corresponding human-computer interaction method are described in detail. Finally, case
studies were carried out to demonstrate the effectiveness of our visual analytics approach for AIS
quality problems.

Keywords: automatic identification system; data quality; visual analytics; spatiotemporal data

1. Introduction

Automatic identification system (AIS) data are a primary source for maritime supervi-
sion and analysis of ship behaviors and they are significant for the research of waterway
traffic laws and trends whose accuracy and reliability directly affect the analysis results.
However, the raw AIS data usually have a few quality problems such as invalid data, errors,
values missing, abnormal values and duplicate records due to the communication link,
channel interference and human tampering on AIS equipment, which are also called “dirty”
data. Their existence in AIS data significantly affects maritime supervision, ship navigation
safety and understanding of the water traffic. For example, normal trajectories are hard to
discern in the mixed trajectories when multiple ships share one Maritime Mobile Service
Identity (MMSI) number and the assessment and decision-making of safety situations can
be negatively influenced. Thus, dirty AIS data should be applied to improve the data
quality before further analysis of AIS data.

AIS data quality management includes data profiling, cleaning and transforming and
helps to clean up the dirty data and change the data format to meet the given requirements.
It particularly needs to infer whether the abnormal AIS data represent any actual data
errors by the professional understandings of AIS data profiling. The quality problems
in AIS data are usually detected automatically by establishing mathematical models and
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using rules and thresholds. The quality of uncommon AIS data, which is consistent with
the situation at that time, is easily misjudged using these methods. In the case of evaluating
AIS data problems, their quality can be quickly and accurately identified by reasoning and
judgment with the help of human visual thinking ability while AIS data are visualized. For
example, the shapes and density of the trajectories can be utilized to quickly determine
whether there are offset, missing or other quality problems in AIS data by drawing a ship’s
trajectory in accordance with AIS data.

Raw data are usually filtered in accordance with certain rules or their combinations to
clean AIS data. Those data that do not meet the requirements are then directly removed
or repaired [1,2]. The evidence reasoning (ER) method was utilized to filter abnormal
AIS data and restore the filtered data in combination with ship dynamics [3]. This means
that abnormal and missing data would be entirely filtered out. Thus, existing dirty AIS
data cleaning methods aim to eliminate the dirty data or ensure they can become “better”
regardless of the value of the dirty AIS data and their exploration.

It was pointed out by Andrienko [4,5] and Hammond and Peters [6] that the hidden
information in the dirty data should be fully understood. For example, missing AIS data
can reflect that a ship may be located in a signal blind area. Thus, more attention should
be paid to AIS dirty data. If the information and characteristics of AIS dirty data are
effectively mined and utilized, vital supports can be provided for AIS data maintenance
and management. Moreover, cleaning and exploration of the dirty data are a cyclic and
repeated process. Visual analysis combines the powerful cognitive ability of humans with
the efficient computing ability of machines to explore and mine big data through human-
computer interactions whose integration with the visual model can be repeatedly utilized
to explore different types of quality problems in AIS data for analysis and understanding
of causes and the distribution of the quality problems. Thus, a combination of human
judgment and human-computer interaction can dominate AIS data quality assessment.

A visual analytics method was put forward and a visual analytics system was devel-
oped here to analyze AIS data quality problems. Our major contributions are as follows:

1. A visual analytics method was presented to identify and evaluate the quality of
AIS data;

2. A novel visualization model of AIS dirty data was proposed to visually analyze the
base station information in AIS data;

3. AIS data with quality problems were explored and discussed by examples to
excavate the corresponding hidden significance.

The main part of this study is divided into five sections as follows:
Section 2: Related work;
Section 3: Requirements;
Section 4: AIS Data Quality visualization (ADQvis);
Section 5: Application cases;
Section 6: Conclusions and prospects.

2. Related Work

AIS data quality as a broad research content primarily includes AIS data profiling,
cleaning and transforming. Research of data cleaning and exploration of AIS dirty data
(especially exploration and analysis of missing, abnormal and duplicate data) were focused
here. The preprocessing of AIS dirty data mainly focused on data filtering and repairing in
previous studies.

AIS data filtering is primarily used to find and remove data problems that devi-
ate greatly from most AIS data such as data outliers and numerical redundancy in AIS
data sources. Most researchers adopted mature data cleaning technologies in the field of
database research. However, these technologies are only aimed at tabular data quality
problems that are not fully applicable to trajectory data. On this basis, a few scholars
have formulated filtering rules of ship attributes and set a threshold for certain attributes
and corresponding filtered AIS dirty data. For example, while the range of MMSI and
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International Maritime Organization (IMO) numbers and the maximum average speed or
acceleration of a ship are set and whether it goes beyond is determined, these abnormal
data records should be cleared; however, there is no strict discussion on how to determine
an appropriate threshold. In studies [3,7,8], by simply setting the filtering threshold, the
velocity, heading angle and trajectory position information data are transformed into evi-
dence credibility between 0 and 1. Evidence reasoning (ER) rules and evidential reasoning
are utilized to synthesize and realize the identification and cleaning of abnormal data with
high recognition accuracy. There can be a drift of trajectory points with the same MMSI for
different ships by drawing AIS trajectories during the preprocessing [9]. A simple method
was selected to directly remove such data and ensure the data were clean. Clearly, this
method would directly result in the loss and waste of data resources; some abnormal ship
behavior data would always cover up their behaviors by tampering their own MMSI. The
trajectory was firstly segmented in accordance with the time threshold while the abnormal
data of the mix trajectory were filtered in light of the speed threshold [10]. Finally, the
processed data were utilized for ship classification and the clustering results were dis-
played on an electronic chart. Gao [11] suggested that the trajectories of different vessels
with same MMSI are often mistaken as noise data points because of their usual zigzag
shapes. Thus, median or average and Kalman and example filtering methods are usually
used to filter these offset points in the preprocessing period. However, these methods
only maintain the integrity of a certain trajectory rather than the extraction of multiple
trajectories to lose other trajectory data. The abnormal values of raw data were detected
and eliminated by means of artificial intelligence or filtering rules for the above method.
Those data conforming to the rules were only retained as input for further analysis. Thus,
the hidden meaning of the abnormal data cannot be correctly understood in loss and waste
of AIS data resources.

AIS data repairing as an approach covers and eliminates those abnormal data with
proper trajectory data; moreover, the ship maneuverability model and trajectory prediction
method were mainly adopted to restore problem trajectory data. Due to the loss of packets
causing the incompleteness of data during transmission or filtering of abnormal data, the
trajectory should be necessarily reconstructed to repair AIS data [12]. Linear interpolation
is one of the fastest and simplest algorithms being commonly applied in short-distance
trajectory reconstructions [13]. The maneuverability of the ship is taken into account and
the trajectory is repaired by dividing the ship’s trajectory into three parts (namely straight,
curve and rotation) [7]. Unluckily, this is not suitable for long-distance trajectory repairing.
A data-driven method was applied to predict a ship’s trajectory and fill the missing data
in accordance with its historical trajectory data [14]. Experiments have shown that this
method can effectively recover long-term missing trajectories. The above methods are
primarily used to cover or fill in the missing and filtered abnormal data of the raw AIS data
so that complete trajectory data can be reconstructed for subsequent analysis. However,
missing AIS data cannot be ignored and they may also imply critical information. Thus,
analysis results would be one-sided if the missing AIS data were not taken into account.

Data quality analysis as an iterative process is necessarily integrated with automatic
calculating technology and the human experiences and expertise to make a comprehensive
judgment. Thus, the means to combine the data visualization technology and human visual
cognition ability based on human-computer interaction is suitable in data visualization
analysis. Visual analysis was recently popular for data cleaning [15]. Studies on data
quality management and visual analysis (especially those focusing on data cleaning) were
summarized and discussed [16]. An iterative and progressive visual analysis framework
was then proposed based on the data cleaning process designed by Van den Broeck. The
data quality problems still existed at this stage after data cleaning. A visual analysis method
was presented to not only deal with data quality problems after preprocessing but also
to support data analysis [17]. Finally, the case study of Bogota’s public transport system
presents such a fact that the method can achieve analysis (such as data quality assessment).
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Visual analysis is applied in data quality analysis in many fields. Linked business data
were taken as the research object; a visual analysis framework was correspondingly put
forward by integrating the previous empirical rules and a visual display dashboard was
designed to evaluate the data quality based on sharing business data [18]. Stacking charts
and text display visualization methods were utilized to helpfully explore the data quality of
open data and select high-quality data versions for analysis [19]. The quality metrics were
applied to evaluate the quality of tabular data [20]. Different visual representations were
then designed for various data metrics and the MetricDoc system was developed to support
the exploration of quality problems based on the interaction of data quality metrics. Finally,
an analysis of open network test data indicated that the system could accurately reveal the
quality problems of the data. The design shortages of the visual analysis of the data quality
were discussed previously [21]. The impact of various visualization models was revealed
on the detection of data quality problems by cases and suggestions were provided on the
visual analysis design of data quality. In view of the shortcomings of the previous data
profiling methods that cannot support time series data cleaning, a two-dimensional heat
map, table display and human-computer interaction methods were integrated to design
a visual analytics system and support understanding of the quality issues in time series
data [22].

AIS data as a kind of spatiotemporal data are different from tabular data in that they
have spatiotemporal distribution characteristics. Similarly, AIS data have the characteristics
of not only time series but also spatial distribution. Thus, the aforementioned methods
cannot fully display the data quality problems but AIS dirty data, which mainly contains
missing and abnormal data, cannot be explored comprehensively. The visualization of
missing and abnormal data is elaborated on below.

Missing data are often overlooked. Even if they are crucial, a few visual analysis
methods only use the remaining data and draws corresponding conclusions. Missing
data have been visualized by means of the polyline with faults [23]. The visualization
method was applied to display the missing data by lowering the hue while keeping the
outline smooth and bright [24]. The possible range of missing data was calculated by the
statistical method and the uncertainty of missing data was visualized by a boxplot [25].
Vacancy, ambiguity and vacancy annotation were applied in the visualization model [26].
A practical analysis showed that the vacancy annotation method is more helpful for users
to understand the missing data. A visual analysis was performed by Andrienko [5] to
discover the location of tunnels in cities by showing the absence of vehicle movement data.
A set of processes and methods was proposed to understand data quality by visual analysis
and different visualization models were applied to display and analyze mobile data. The
results showed that missing data could be effectively found and their occurrence causes
were explained clearly.

Overall, various visual models can be applied to display the missing data. Their effects
are different where inappropriate visualization models can even mislead analysts. The
problem of missing data in time series data was discussed to study how the visualization
models and data repair methods affect the analysts’ judgment on the quality of raw data [27].
Design suggestions were then presented for a visual analysis of the missing data. Missing
data were regarded as an uncertainty of data quality [28]. The uncertainty visualization
method of cultural collection data was subsequently discussed and the feasibility of various
visualization models was analyzed. Unfortunately, missing data were not explored in the
above studies to reflect their hidden laws and surrounding environment characteristics.

In view of abnormal data visualization, abnormal AIS data refers to those data that
deviate significantly from most data. Road network information was utilized for the
abnormal trajectory and a two-dimensional map was projected for visualization [29]. As
parallel coordinates can represent the hidden relationships of various dimensions in high-
dimensional data, they were applied in network security anomaly detection [30] and
the results indicated that this method could detect network risks in time. An abnormal
visualization model was proposed based on the spherical visualization model in three
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dimensional space [31] and the results showed that it can represent network activities
and achieve network security supervision. A semi-supervised active learning method
was utilized and the visualization of trajectory features was applied to mine anomalies in
taxi data and evaluate the data quality [31,32]. The visualization and human-computer
interaction were combined to select abnormal data from raw positioning data and use
machine learning to discover more abnormal values [33]. Data quality was then detected
and evaluated. Further research was rarely carried out for the distribution patterns of those
detected abnormal data so far.

Based on the above-mentioned shortcomings of AIS data quality research and applica-
tion examples of data quality analysis, it was found that the current AIS quality analysis
primarily lies in how to filter out or clean dirty data. Rather, the dirty data that are valuable
inherently cannot be ignored in AIS data. Thus, a visual analytics system was designed
here to overcome this shortcoming and explore and recycle the dirty data in massive AIS
data. The specific requirements are described in detail in the next section.

3. Requirements

For filling the aforementioned gaps, a visual analytics approach was designed and
developed to explore and analyze dirty data. Based on our discussion and review in
Section 2, the tasks for exploring AIS data quality were configured as follows:

T1: Identifying and filtering out various kinds of data quality issues;
T2: Exploring the spatiotemporal distribution of dirty data;
T3: Exploring the relationship between dirty data and environmental factors;
T4: Analyzing causes of data quality problems.
For successfully implementing an environment that supported these analysis and

exploration tasks, the following requirements were presented before the development of
our ADQvis system:

R1: Data quality identification. The visual analytics (VA) approach should be able
to help users to quickly identify data quality issues by a reasonable visualization model.
Moreover, interactions with the visualization model should be supported to select specific
dirty data.

R2: Dirty data distribution. A visual overview of the dirty data distribution should be
provided. The details of the overall distribution should be observed and further explored
by appropriate human-computer interactions.

R3: Dirty data relevance exploration. The relevance between dirty data and other
factors such as navigation environment and vessel static features should be intuitively
discovered by applying the customized visualization model. Users should be supported to
interactively explore the association information between the different attributes.

R4: Data interactive filtering. It is necessary to help users to realize data interactive
filtering and exploration using time-range screening tools such as a calendar and spa-
tial brushing tools (area selection). Moreover, human-computer interactions should be
designed to transform and interact with the data behind the designed visualization model.

4. ADQvis

The overall system architecture, analysis process, visual design and human-computer
interaction of ADQvis, an environment for the visual analysis and exploration of AIS
quality issues, are presented in detail here. Based on Bokeh’s server backend, ADQvis was
developed by using a browser-server architecture that ensured that the system could have
not only stronger data processing capabilities but also the stability for data management.
In combination with the Bokeh library and interaction of the web browser, the system has
a more flexible exploration environment and the ability for the analysis of AIS data quality
with both dynamic and static information.
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4.1. User Interface

The interface design of ADQvis (Figure 1a) included an AIS time filtering tool in the
form of a calendar table. It could realize the filtering display of our object ship’s trajectory
by combining the single selection and multi selection of MMSI. The overall distribution
map based on the track of the OSM (Open street map, Figure 1b) showed the overview and
details of the dynamical and interactive distribution of the ship’s geographical location by
zooming in and out of the map. The scatter plot of the differential distance of trajectory
points (Figure 1c) provided a visual exploration environment to quickly distinguish data
quality problems. A custom configuration for various visualization models could be
modified by a slider widget (Figure 1d). Moreover, the visualization model of a four
image stacked graph (Figure 1e) was designed to realize the association analysis of AIS
dirty data and other attribute features. In the figure, the symbol D represents the distance
between the adjacent trajectory points of a unified ship and the symbol T represents the
time between adjacent trajectory points. The symbol m is the unit of D, which means the
meter. The symbols of s, min and h are the units of T, representing seconds, minutes and
hours, respectively.
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Figure 1. User interface of automatic identification system (AIS) Data Quality visualization (ADQvis). The interface design
of ADQvis (a) included an AIS time filtering tool in the form of a calendar table. The overall distribution of ship’s location
showed in the OSM (Open street map, b). The scatter plot of the differential distance of trajectory points (c) provided a visual
exploration environment. A custom configuration for various visualization models could be modified by a slider widget (d).
Moreover, the visualization model of a four image stacked graph (e) was designed to realize the association analysis.

The analysis flow of the visual exploration is schematically shown in Figure 2. First of
all, the differential distance was calculated from the raw data and displayed in a scatter plot.
According to the visualization of distance in the scatter plot, the data quality problems were
identified and their spatiotemporal distribution was displayed on the OSM by interacting
with the scatter plot. Finally, the hidden values of dirty data were explored by interaction
and observation with the distribution graph and the four quadrant stack graph.
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Figure 2. Analysis flow diagram.

4.2. Visual Exploration Environment

Our visualization design mainly consisted of an OSM, a scatter plot of differential
distance, a ship track detail map and a stacking map. The details are as follows.

4.2.1. Scatter Plot of the Differential Distance

The scatter plot of the differential distance was composed of a horizontal axis and a
vertical axis representing the time and distance differences of adjacent trajectory points of one
vessel, respectively. In a schematic scatter plot (Figure 3), the maximum and minimum speed
lines and the maximum timeline are in red, green and yellow, respectively. Figure 3 is divided
into normal, abnormal, static and AIS data missing areas by these lines. The time and distance
differences of a trajectory point that fell into the normal meant that it was normal. If the time
difference was too small but the distance was large, it meant that the ship moved far in a
short time and this was an abnormal point. If the time difference was large but the distance
difference was small, the ship basically stayed in place for a long time so that there would
be many redundant data. If the time and distance differences were large but the speed was
in the normal range, it meant that data were missing. The actual effect is shown in Figure 4
where different kinds of trajectory points selected in the human-computer interaction tool are
in red and yellow, respectively.
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4.2.2. Four Quadrant Stack Graph

The four quadrant stack graph was composed of a stack and flow graph for local
and global base stations in different colors. The data of the flow graph on the right side
was composed of stacked data at different times. An analysis of the model adopted the
clockwise system and the method of one-to-one comparative analysis is shown with arrows
in Figure 5. It indicated that the proportion of each base station in the local flow graph
could be analyzed based on a comparison of the local stack diagram in the upper left
corner with the local flow graph in the upper right corner. The correlation of the volume in
different periods was analyzed based on a comparison of the local flow graph on the upper
right and the global flow graph on the lower right. The comparison between the lower
right corner and the lower left corner could be applied to analyze the structure relationship
of each base station stack in each flow graph. In the lower left corner and the upper left
corner, the ratio between local traffic volume and global traffic volume in each period in a
single base station was analyzed. A crosshair line was applied to facilitate a comparison of
data flows in each graph at the same time.
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4.2.3. Data Distribution

The OSM platform provided basic map editing components and supported common
trajectory display operations. Due to its open source characteristics, users can draw points,
lines and other data freely according to their own data. For this, the OSM map system
(Figure 6) was applied as the geographic information background for data display where
the geographical distribution of the trajectory points belonging to the selected MMSI was
displayed in blue dots. The density distribution of the track points in different geographical
locations was observed by adjusting the transparency. Moreover, details of the ship’s
trajectory could be observed by connecting the trajectory points with selected MMSI.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Four quadrant stack graph. 

4.2.3. Data Distribution 
The OSM platform provided basic map editing components and supported common 

trajectory display operations. Due to its open source characteristics, users can draw points, 
lines and other data freely according to their own data. For this, the OSM map system 
(Figure 6) was applied as the geographic information background for data display where 
the geographical distribution of the trajectory points belonging to the selected MMSI was 
displayed in blue dots. The density distribution of the track points in different geograph-
ical locations was observed by adjusting the transparency. Moreover, details of the ship’s 
trajectory could be observed by connecting the trajectory points with selected MMSI. 

 
Figure 6. Geographical distribution of the trajectory in an open street map (OSM). 

4.3. Interaction 
According to our design rules, overview, zoom, filtering and detailed interactive ex-

plorations were performed sequentially and then the corresponding visual model inter-
action tools were developed. 

4.3.1. Selection on The Map 
In addition to the basic operations such as zooming in/out and panning, the map part 

also included a Lasso Selection, Box Selection and so on. Lasso Selection could more freely 
filter the trajectory in any shape. As shown in Figure 7, a more free and convenient selec-
tion could be performed with the Lasso Selection when there were multiple tracks and 
they were relatively dense. 

Figure 6. Geographical distribution of the trajectory in an open street map (OSM).

4.3. Interaction

According to our design rules, overview, zoom, filtering and detailed interactive explo-
rations were performed sequentially and then the corresponding visual model interaction
tools were developed.

4.3.1. Selection on The Map

In addition to the basic operations such as zooming in/out and panning, the map
part also included a Lasso Selection, Box Selection and so on. Lasso Selection could more
freely filter the trajectory in any shape. As shown in Figure 7, a more free and convenient
selection could be performed with the Lasso Selection when there were multiple tracks and
they were relatively dense.
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4.3.2. Selection on The Scatter Plot

The box selection of a scatter plot was similar to the above map. The selected data
points were highlighted in red and the corresponding points being selected in the scatter
plot were displayed similarly in the map. For example, those points in the left and right
were in red (Figure 8).
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In addition, hovering over the corresponding data points could display the specific
information of data in the case of selecting the information tooltip such as time, MMSI and
speed (Figure 9).
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4.3.3. Interaction with a Four Quadrant Stack Graph

The interaction with a four quadrant stack graph shown in Figure 10 was mainly
as follows:
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Figure 10. Interaction with a four quadrant stack graph.

1. Basic operations of a stack graph were zooming in/out, panning, view revoking
and resetting and hovering the mouse on the graph to display the corresponding details.

2. By clicking the target base station stack diagram in the graph, the density dis-
tribution of the AIS trajectory points received by the base station could be shown on
the map.

3. Through the box selection of the corresponding period, AIS data could be filtered
in the time dimension. The density distribution of selected AIS trajectory points could be
displayed on the map.

5. Use Cases
5.1. Abnormal Data Analysis

In a scatter chart of a spatiotemporal differential distance, any point located at the
upper left corner referred to a trajectory segment that had a short time interval but long
moving distance. As shown in Figure 11, the abnormal trajectory points of vessels could be
extracted by observing and selecting the points in the upper left corner.
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Selected points were then marked in red both on the OSM and scatter charts. More-
over, MMSI belonging to these points appeared in the list at the left side. By clicking
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specific MMSI numbers, the corresponding trajectories were displayed. Through the above
interactions, it was found that there were two kinds of frequent trajectory anomalies.

The most remarkable findings of our analysis were that a zigzag shape trajectory
(Figure 12a) was formed by moving and stationary vessels. According to the observation, it
inferred that two vessels sharing same MMSI, which were tampered with by crews, caused
such a case. Thus, the trajectory would be intertwined together when two vessels with the
same MMSI displayed the same movement in the same period.
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Figure 12. Abnormal AIS trajectory.

Additionally, the trajectory deviated frequently from the normal trajectory. When
vessels were moving near to the land or a bridge, such phenomenon usually occurred
(Figure 12b). It may suggest that AIS data transmitting was interfered with by the radio
signal broadcast from the station on land and the buildings over a navigation channel so
that the moving trajectory points may drift.

5.2. Data Missing Analysis

A large amount of AIS data missing to a certain extent represented the existence of
blind spots in this area. A four quadrant stack graph was applied here to explore the
missing data. Firstly, the area where AIS data were frequently lost were discovered by
selecting points in a scatter plot. Secondly, the area of interest could be located on the map
and the corresponding missing data could be filtered out to seek any pattern at the aspect
of time attribute. Thirdly, the overview of AIS data in the area was displayed and the data
receiving of the base station was visualized by a stacked graph. Finally, the base station
and the amount of AIS data were analyzed at the moment when data were missing. If any
user was interested in AIS data reported in river branches, they could brush this area to
select the data. A combined selection of a multiple area was supported by holding on the
shift key and brushing any area of interest.

As shown in Figure 13, the 24 h data flow graph of a base station could also be
observed from the four quadrant stack graph according to the above process. The base
station receiving the data and the time period of occurrence could be found out by an
interactive selection in the map and the scatter plot. Thus, it was easy to judge and compare
the data reception and loss at each base station.
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Figure 13. Analysis of the blind spots of a base station.

For exploring the relationship between missing data and their load of each base
station, the missing data were filtered through a scatter plot. As shown in Figure 14, the
left side represented the base station where data were missing and the time and data
distributions. The right side displayed the flow graph of the corresponding base station
workload. Additionally, various base stations were marked in different colors and the
number of each base station could be obtained by hovering the mouse over them.
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Figure 14. Visualization of missing data.

Base Station No. 4121244 was focused on by the zooming tool. As shown in Figure 15,
a comparison of the peak value of missing data on the left and that received by the base
station on the right indicated that its total reception amount was proportional to its amount
of missing data. A similar correlation existed for missing data of any other base station.
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In addition, the geographic distribution of the missing data could be figured out by
clicking on the stack graph on the left, which provided a reference for a further construction
of the AIS base station (Figure 16).
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5.3. Relevance Exploration of Dirty Data

The generation of dirty data is not an isolated phenomenon; it is related to the naviga-
tion environment, the coverage of the base station and other attributes of itself. Therefore,
exploring the relevance between dirty data and their attributes helps the analyst to mine
meaningful information from dirty data. The relevance between dirty data and their
attributes such as base station information was explored here through a four quadrant
stack graph.

1. The stack graph indicated that the receiving base station of a ship also changed as it
traveled through different river channels with time. As shown in Figure 17, the main data
were received by the light green base station at the beginning of the track and the dark
green and purple base stations were evolved in sequence.
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Figure 17. Stack graph of AIS data report.

2. There was a positive correlation between the number of messages received by
multiple base stations. As shown in Figure 18, the river section near Shipai Village was
selected. Its upper left corner indicated that there was a remarkable simultaneous growth
or reduction between the green and purple base stations. An observation of the specific
track showed that the same track was commonly composed of data received by multiple
base stations, which were not only received by a single base station. Thus, multiple base
stations nearby received the data at the same time when a ship passed the river channel so
that the phenomenon of rising and falling in the stack graph occurred. The overall curve
envelope of the flow graph was also the same as that for most base stations.
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Due to the mechanism of multiple base stations receiving the same part of the river
when some base stations did not work, other base stations could receive ship data that the
fault base station was responsible for. As shown in Figure 19, the blue base station had
data disconnection near 6–8 o’clock in the morning. The main distribution of the trajectory
points that were received could be displayed by selecting the data of the base station in
any other period.
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Figure 19. Stack graph of a base station.

All data in a fault period for a base station could be selected by using the river map
time filtering tool. The observation of received AIS data indicated that the nearby base
stations would support the retrieving of the data in case the main base station was under
failure so that the trajectory data of the river section could be presented completely during
the failure period.

6. Conclusions and Prospects

A visual analytical approach for AIS dirty data exploration was established here based
on an OSM where a scatter plot that displayed the spatiotemporal distance of AIS data was
cut into various areas and AIS dirty data were selected in accordance with the differential
distance between the trajectory points in the spatiotemporal space. Moreover, the relevance
between the dirty data and the environmental factors were explored by interactions with
our four quadrant stack graph. The primary conclusions of this study are listed as follows:

1. Compared with the traditional AIS data quality analysis method, our visual analyt-
ics approach presented the characteristics of intuitive display and flexible interactions to
rapidly identify and explore AIS data quality issues.

2. Our ADQvis system that was applied in the empirical study of AIS data in the
Wuhan Section focused on two kinds of typical dirty data (namely abnormal and missing
data). The distribution of base station blind areas in the Wuhan Section and causes of AIS
abnormal data could be obtained, which showed that our approach in data quality study
could be put into practical applications.

Further research should be conducted from the following aspects:
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1. The scalability of the system will necessarily be improved to meet the visual analysis
of massive AIS historical data. Thus, the visual model can be generated and interacted
more smoothly and quickly when a great number of data are input.

2. This study focuses on data quality analysis and the exploration of abnormal and
missing data. However, AIS data quality issues are broad, which primarily include invalid,
redundant and duplicate data. How to apply our visual analysis to these data shall be
centralized in future.
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