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Abstract: Reducing the carbon emissions of ships and increasing the utilization of marine renewable
energy are the important ways to achieve the goal of carbon neutrality in ocean engineering. Estab-
lishing an accurate mathematical model is the foundation of simulating the motion of marine vehicles
and structures, and it is the basis of operation energy efficiency optimization and prediction of
power generation. System identification from observed input–output data is a practical and powerful
method. However, for modeling objects with different characteristics and known information, a sin-
gle modeling framework can hardly meet the requirements of model establishment. Moreover, there
are some challenges in system identification, such as parameter drift and overfitting. In this work,
three robust methods are proposed for generating ocean hydrodynamic models based on Bayesian
regression. Two Bayesian techniques, semi-conjugate linear regression and noisy input Gaussian
process regression are used for parametric and nonparametric gray-box modeling and black-box
modeling. The experimental free-running tests of the KRISO very large crude oil carrier (KVLCC2)
ship model and a multi-freedom wave energy converter (WEC) are used to validate the proposed
Bayesian models. The results demonstrate that the proposed schemes for system identification of the
ship and WEC have good generalization ability and robustness. Finally, the developed modeling
methods are evaluated considering the aspects required conditions, operating characteristics, and
prediction accuracy.

Keywords: system identification; carbon neutralization; hydrodynamic model; wave energy con-
verter; ship maneuvering; Bayesian regression

1. Introduction

The demand for mitigating anthropogenic CO2 emissions increasingly focuses on the
transportation system and energy system. Ship emission reduction and ocean renewable
energy power generation are the core methods to achieve carbon neutrality in ocean
engineering. The International Maritime Organization has set the first target for limiting
carbon emissions for international shipping: to limit emissions by at least 50% by 2050
compared to 2008 [1]. Among various types of renewable energy, wave energy resources are
enormous [2] and its intensity is high [3]. Moreover, the carbon emissions of wave energy
converter (WEC) are smaller than solar energy generation. For ships, the high precision of
ship maneuvering systems plays a crucial role in ship controller design [4] and operation
energy efficiency [5], which can significantly reduce the carbon emissions of the shipping
industry. A wave energy converter needs an accurate hydrodynamic model to predict
power generation efficiency under different wave conditions to be used for operational
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planning [6]. Various methods have been proposed to construct the hydrodynamic model
in naval architecture. Depending on whether prior knowledge and physical laws are used
in modeling, the modeling methods can be categorized as white-box modeling, gray-box
modeling and black-box modeling methods [7].

White-box modeling is the case in which a model is perfectly known. It needs to
predefine the mathematical structure entirely from prior knowledge and physical insight.
However, due to the strong nonlinearity of water resistance and the randomness of tur-
bulence [8], it is extremely difficult to establish an accurate white-box model of a marine
vehicle or structure. The practical way is to first select the model through certain criteria,
and then estimate the parameters in the selected model from observation data with system
identification. This modeling method is called gray-box modeling. Specific to marine
equipment, the most commonly used approach is to establish the equation according to
Newton’s second law and then substitute the fitted regression hydrodynamic force in it.

The traditional way to fit the hydrodynamic force in gray-box model is to expand it
into a linear function of velocity. For ship modeling, different parametric model structures,
such as Abkowtiz model [9,10], Maneuvering Model-ing Group (MMG) model [11] and
Nomoto model [12], have been proposed and validated over the years. The hydrodynamic
parameters can be obtained by a captive model test with planar motion mechanism (PMM),
computational fluid dynamics (CFD) and free-running tests with system identification [13].
Among the above approaches, the system identification with free-running test has been
proven to be a powerful and practical method with lower experiment cost [14]. System
identification is a general term for estimating parameters from observed input and output
data, which provides a reliable mathematical surrogate model in multiple engineering
areas [15]. The least square (LS) [16], extended Kalman filter (EKF) [17] and maximum
likelihood (ML) [18] algorithms are introduced to identify the hydrodynamic derivatives
and proved the effectiveness. Over the last decade, some new methods, with stronger
generalization ability and robustness, based on machine learning have also been applied
to the estimation of hydrodynamic parameters. Minimizing the Hausdorff metric with
the genetic algorithm (GA) can alleviate the impact of noise-induced problems [14]. Mei
et al. [19] introduced model reference and random forest (RM-RF) to model ship dynamic
model and validated the proposed scheme with free-running test data. Wang et al. [20]
presented nu-Support Vector Machine (v-SVM) to improve the robustness of the algorithm.

In the gray-box modeling of wave energy community, Cummins equation [21] is
used to define the hydrodynamic model. Generally, there are two ways to determine
the equation. Typically, the hydrodynamic model is predefined as the linear model and
solved by the potential flow theory [22], whereby the problem is simplified and linearized
through assumptions of small amplitude oscillations. However, the simplified linearizing
assumptions are invalid when the WECs have large amplitude motions resulting from
energetic waves or sustained wave resonance [23]. An alternative method is to use system
identification. The training data can be obtained from CFD simulation or scale experiments
in a towing tank [24,25]. A popular method is to estimate the real hydrodynamic force
using an EKF observer. EKF assumes that the excitation force can be expressed as the sum
of a finite set of harmonic components [26,27].

The gray-box modeling methods mentioned above are all parameterized. Recently, a
nonparametric gray-box model has been put forward in some studies, and encouraging
results have been obtained [28–30]. The model still follows the framework of Newton’s law,
and the force element, which is difficult to determine, is directly replaced by a machine
learning model of related variables. Wang et al. [28] used SVM to replace the Taylor
expansion in Abkowtiz model, and they compared the accuracy and computation speed
with parametric gray-box and black-box modeling. Xu and Guedes Soares [29] proposed a
nonlinear implicit model with nonlinear kernel-based Least Square SVM for a maneuvering
simulation of a container ship in shallow water. The forces and moments in [26] are
obtained by a PMM test and then trained as outputs for an SVM model related to speed
and water depth. In the study of WEC [30], an observer-based unknown input estimator is
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proposed to identify the wave excitation force, then a Gaussian Process (GP) model is used
to predict the wave excitation force. On the one hand, the nonparametric gray-box model
directly substitutes the information of the object itself. On the other hand, compared with
linear expansion, it can better fit the hydrodynamic force. Therefore, this method is worth
studying and comparing with the experimental data of more devices.

Black-box identification directly maps the input data into a high dimensional space
without physical insight, but the chosen model structure is selected from a known family [7].
The data-driven model of time-series avoids the inaccuracy caused by the unmodeled part
of the parametric gray-box model, such as low external perturbations and coupling ef-
fect among the different degrees of freedom (DOF). Machine learning techniques have
recently gained popularity in black-box modeling of maneuverability. Rajesh and Bhat-
tacharyya [31] used neural network model to identify the nonlinear maneuvering of large
tankers. Fuzzy artificial neural network (ANN) using generalized ellipsoidal basis func-
tion [32] are proposed for black-box modeling of ship motion. The assessment of heave
displacement for non-buoyant type WEC is investigated by means of ANN [33]. ANN is
utilized to predict the wave surface elevation at the WEC location using measurements
of wave elevation at ahead located sensor [34]. However, these NN methods have some
drawbacks, such as the need for a large amount of training data and the sensitivity to noise.
The kernel methods overcome these problems based on statistical learning theory [35].
The kernel methods, such as SVM [28], the Gaussian process (GP) [36], locally weighted
learning (LWL) [37] and kernel ridge regression confidence machine [38], are used for
identifying the marine dynamic model. Among them, the GP have stronger robustness and
generalization with a priori introduction from Bayesian perspective than other methods.

Recently, Bayesian regression has been successful applied in multiple fields for pa-
rameter estimation and black-box modeling. Bayesian method possesses an apparent
advantage over modeling with good statistical properties, predictions for missing data
and forecasting [39–42]. Moreover, Bayes’ rule provides a reasonable way to update be-
liefs in light of training data, and the hyperparameters in the Bayesian scheme have an
intuitive meaning [43]. Bayesian regression models can work well in dynamic system
modeling with a relatively small number of training data points and noisy output [44].
With regards to parametric gray-box modeling, ship dynamic models based on conjugate
and semi-conjugate Bayesian regression (ScBR) are adopted to estimate the hydrodynamic
parameters in our previous work [44]. For the black-box modeling, Ariza Ramirez et al. [36]
used multioutput GPs to identify the ship dynamic system and showed that the GP scheme
has better generalization than recurrent neural network (RNN). A series of Bayesian
methods is used to quantify the extremal responses of a floating production storage and
offloading (FPSO) vessel in [45]. Shi et al. [46] used GP to predict short-term wave for
optimal control of wave energy. A complexity penalty and an automatic regularization
are introduced in GP based on Bayesian theory. The complexity penalty makes Gaussian
process regression have a far smaller risk of overfitting than neural networks.

Based on the above discussion, it can be known that there are various effective system
identification methods in ocean engineering. The parameter estimation methods used for
gray box modeling are summarized in [14], and nonparametric methods used for black
box-modeling are explored and compared in [38]. However, to the best knowledge of the
authors, there are very few studies on modeling and comparison of an object using gray-box
and black-box models at the same time. When modeling different marine equipment, how
to choose a modeling method and design a regression framework based on the existing prior
knowledge is still a difficult problem. To answer this question, semi-conjugate regression
(ScBR) used for gray-box modeling [44] and noisy input Gaussian Process (NIGP) [47]
are proposed in our previous work. However, these two Bayesian algorithms have only
been verified by simulation data of different ships. To further verify the applicability
of the algorithms and explore the possibility of applying the Bayesian methods to other
marine equipment, experimental data including ships and wave energy devices are used
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for verification and comparison considering the aspects of prerequisite conditions, accuracy
and robustness.

This article contributes to the use of Bayesian regression to identify the nonlinear
dynamic model of a container ship and an oscillating buoy WEC with gray-box modeling
and black-box modeling. First, the Bayesian regression algorithms, including ScBR and
NIGP, are introduced. Then, parametric and nonparametric gray-box modeling and black-
box modeling schemes based on Bayesian algorithms are proposed for the ship and WEC,
respectively. These proposed schemes are validated and compared using experimental
data. Finally, the capabilities and challenges of the proposed models are further discussed.

This paper is organized as follows. Section 2 describes the marine dynamic model. The
algorithms of ScBR and NIGP are depicted in Section 3. In Sections 4 and 5, the identification
schemes of the ship and WEC and experimental examples are presented to demonstrate the
distinction and effectiveness of the proposed two methods. Sections 6 and 7 present the main
conclusions and a further discussion.

2. Kinematic Model

The classical kinematic model in naval architecture is motivated by Newton’s second
law, and the rigid-body kinemics equations can be expressed in vector form as [48]

MRB
.
V = τRB − CRB(V)

τRB = τh + τenv + τcontrol
(1)

where MRB is the rigid-body inertia matrix; CRB(V) is a matrix of rigid-body Coriolis
and centripetal terms; and τRB is a vector of generalized forces containing hydrodynamic
water resistance, τh, environmental forces, τenv, and control forces, τcontrol . V denotes the
generalized velocity in 6 DOF. The notation of motion variables is shown in Table 1.

Table 1. Notation of motion variables.

DOF Motions Forces Linear Velocity Positions

1 Surge F1 u x
2 Sway F2 v y
3 Heave F3 w z

Rotations Moments Angular Velocity Rotation Angles

4 Roll M1 p ϕ
5 Pitch M2 q θ
6 Yaw M3 r ψ

The marine dynamic model is essentially a nonlinear autoregressive model with an
exogenous input (NARX) system, and the predictions are based on the previous measure-
ments of the input signals and output signals [43]. Figure 1 shows the first-order NARX
configuration for dynamic system, where ck is the excitation signals such as propeller speed
and rudder angle of the ship and the wave force for the WEC; yk is the original output,
which is polluted by noise, ε; z denotes the z-transformation; and subscript k stands for
time step.
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3. Bayesian Regression Framework
3.1. Semi-Conjugate Bayesian Regression

Linear regression is to estimate the hydrodynamic parameters β in damping matrix
τh, the form of multiple linear regression as

yt = xtβ + εt (2)

where t = 1, n is time step; yt denotes the measured response; xt is a 1× c row vector of
the measured values of c predictors; β is a c× 1 column vector of regression parameters
corresponding to the argument; and εt denotes the random disturbance with a mean of
zero and common variance of σ2.

Bayes theorem treats β and σ2 as random variables belonging to some probability
distributions. In the Bayesian analysis process, the probability density functions (PDF)
of the parameters are updated by incorporating information from the training data. The
posterior PDF from Bayes’ theorem can be given as

P(parameters|data) =
P(data|para)P(para)

P(data)
(3)

Generally, the measured value distribution is the normal-inverse-gamma conjugate
model [48], in which β obeys the multivariate normal distribution (N ) and σ2 is the inverse
gamma (IG) distribution. Equation (3) can be abbreviated as follows:

π
(

β, σ2
∣∣∣y, x

)
∝ N (β)N

(
σ2
) n

∏
t=1

φ
(

yt; xtβ, σ2
)

(4)

where φ
(
yt; xtβ, σ2) is the Gaussian probability density with mean xtβ and variance σ2

on yt. The regression model contains two types, conjugate and semi-conjugate Bayesian
regression, depending on whether the parameters and noise are independent [48].

Parameters and noise are usually not independent of each other in engineering [49].
The prior distributions of β and σ2 are as follows when β and σ2 are dependent:

β
∣∣σ2 ∼ Nc(µ, V)

σ2 ∼ IG(A, B)
(5)

where µ denotes the mean value (c × 1 vector), V is the c × c diagonal matrix in which each
element equals the prior variance factor of β j and IG(A, B) stands for the inverse gamma
distribution with shape A and scale B.

The conditional posterior distribution of β and σ2 can be obtained:

β|σ2, y, x ∼ Nc(
(

V−1 + σ−2XTX
)−1[

σ−2
(

XTX
)

β̂ + V−1µ
]
,
(

V−1 + XTX
)−1

) (6)
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σ2|β, y, x ∼ IG(A +
n
2

, (B−1 +
1
2

SSR(β))
−1

) (7)

where X is an n× c matrix of training data and SSR(β) is given by

SSR(β) =
n

∑
i=1

(
yi − βTxi

)2
= (y− Xβ)T(y− Xβ) (8)

The posterior distributions of β and σ2 are not analytically tractable because they are
mutually influential. In the present work, the Gibbs sampler [50] is applied to approximate
the posterior of β and σ2. The Gibbs sampler is an iterative algorithm based on the Markov
chain Monte Carlo method. It constructs a dependent sequence of parameter values whose
distribution converges to the target joint posterior distribution. The values of parameters
are the mean of the posterior of β.

In multivariate linear regression, introducing the L2—norm into the algorithm to
overcome the problems of multicollinearity and overfitting is a generally accepted and
effective method, such as ridge regression. ScBR naturally introduces the norm through
prior parameters. These types of parameters in the algorithm framework are called hy-
perparameters in machine learning. Compared to other algorithms, the hyperparameters
of the prior distribution, such as the mean and variance, in the Bayesian approach have
a clear and intuitive meaning: The value of the prior mean µ represents the parameter to
be identified, which we subjectively set before the regression is performed. When there
is no other prior information about the parameter to be estimated, the mean µ is usually
set to zero. The prior variance is obtained by Bayesian optimization algorithm (BOA).
BOA is a powerful global optimization algorithm, which is suitable for scenarios with
fewer hyperparameters and slower operations of the objective model for hyperparameter
optimization [51]. More details about the ScBR with BOA can be found in our previous
work [44].

3.2. Noisy Input Gaussian Process

A GP is a distribution over functions and a generalization of the Gaussian distribution
to an infinite-dimensional function space. GP is fully specified by a mean function, m(x),
and a covariance function, k(x, x′), as

m(x) = E[ f (x)] (9)

k
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))]

(10)

where E stands for the expectation operator.
The objective of system identification using GP is to approximate some function f (x),

which maps a D—dimensional input to a scalar output value, f . Some training points n,
which include c—dimensional inputs, {xt}n

t=1 and noisy observations {yt}n
t=1, are given.

The training data are denoted as the n× c input, X, and the n× 1 output vector, y. The
training outputs is assumed to be corrupted by noise in the regular Gaussian process (RGP).

y = f (x) + εy (11)

where εy stands for Gaussian white noise, which follows a Gaussian distribution with zero
mean and variance σy

2. RGP defines a GP prior on the function values,

p( f |X) = N (m(X), k(X, X)) (12)

The likelihood function can be obtained through the above assumptions in place,

p(y| f , X) =
n

∏
t=1
N
(

yt; ft, σy
2
)

(13)
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Then, combining the prior Equation (12) and the likelihood function Equation (13),
the posterior probability distribution and predict the function values f ∗ can be calculated
at a set of test points X∗.[

f ∗

y

]
∼ N

( [
m(X∗)
m(X)

]
,
[

K(X∗, X∗) K(X∗, X)
K(X, X∗) K + σy

2 I

] )
(14)

RGP predictive equations are given as

p( f ∗|X∗, X, y) = N (m, ∫ ) (15)

m = m(X∗) + K(X∗, X)[K(X, X) + σy
2 I]
−1

(y−m(X)) (16)

∫ = k(X∗, X∗)− K(X∗, X)[K(X, X) + σy
2 I]
−1

K(X, X∗) (17)

The RGP only considers output noise σy
2, while the input data are assumed to be

noise-free. However, the output noise will be passed to the input in the NARX models,
as shown in Figure 1. Incoming input noise will reduce the accuracy of prediction of GP.
Noisy input GP, proposed to solve this problem in [52], takes into account the input noise
and posterior data. NIGP further assumes that the inputs are also noisy, and the actual
inputs and outputs are labeled x̃ and ỹ, respectively.

x = x̃ + εx (18)

where εx stands for Gaussian white noise with zero mean and variance ∑x. Because each
input dimension is independently corrupted by noise in this model, ∑x is diagonal. Similar
to Equation (11), the output function can be written as:

y = f (x̃ + εx) + εy (19)

A first-order Taylor series expansion of the GP latent function, f , is used to approxi-
mate Equation (19) as,

y = f (x) + εT
x

∂ f (x̃)
∂x̃

+ εy (20)

The derivative of one GP mean function in Equation (20) is denoted as ∂ f , a c-
dimensional vector. 4 f , an n × c matrix, stands for the value of the derivative for the
n functions.

The prior of NIGP is the same as RGP, p( f |X) = N (0, K(X, X)) , where K(X, X) is the
n× n training data covariance matrix. The predictive posterior mean and variance can be
obtained, as

E[ f ∗|X, y, X∗] = K(X∗, X)[K(X, X) + σy
2 I + diag

{
4 f ∑

x
4T

f

}
]

−1

y (21)

V[ f ∗|X, y, X∗] = k(X∗, X∗)− K(X∗, X)[K(X, X) + σy
2 I

+diag
{
4 f ∑x4T

f

}
]−1K(X, X∗) (22)

where the notation “diag” results in a diagonal matrix.
In this way, the input is regarded as deterministic and a correction term, diag

{
4 f ∑x4T

f

}
,

is added to the output noise. In other words, the influence of the input noise depends on the
slope of the function we are approximating. Compared to the RGP, the NIGP introduces extra
hyperparameters εx per input dimension. A major advantage of this method is that these
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hyperparameters can be trained alongside any others by ML. The marginal likelihood function
of the NIGP is given as,

− log pNIGP(y|X, θ) =
1
2

log|Kn|+
1
2
(m(X)− y)TB +

N
2

log2π (23)

where

Kn = K(X, X) + diag

{
4 f ∑

x
4T

f

}
+ σy

2 I (24)

B = Kn
−1(m(X)− y) (25)

A two-step iteration approach is used to estimate all the hyperparameters. In Step 1, a
regular GP without input noise is trained by gradient descent algorithm, and the hyperpa-
rameters except input noise can be obtained. In Step 2, the derivatives are calculated and
used to approximate the posterior distribution. The marginal likelihood of the GP with
corrected variance can also be obtained, and the process continues until the convergence.
The computation involves chaining the derivatives of the marginal likelihood back through
the slope calculation. A complete explanation of NIGP can be found in [47–54] and some
supplementary notes are in Bijl’s study [55].

The squared exponential (SE) covariance function is used in NIGP, expressed as

k
(
xi, xj

)
= σf

2 exp(−1
2
(
xi − xj

)T ∧
(
xi − xj

)
(26)

where σf is the amplitude and ∧ denotes a diagonal matrix of the squared length-scale parameter.

4. Identification of Marine Craft
4.1. Parametric Gray-Box Modeling

The essence of the parametric gray-box modeling is to construct a simplified parame-
terized equation to replace Equation (1). Figure 2 shows the 6 DOF reference frames for
the ship. The nondimensional rigid-body kinetics using the Prime system of surface ship 3
DOF maneuvering motion is given as follows: m′ − X′.u 0 0

0 m′ −Y′.v m′x′G −Y′.r
0 m′x′G − N′.v I′zz − N′.r


 .

u′
.
v′
.
r′

 =

 F′1
F′2
M′3

 (27)

where m stands for the ship mass; xG stands for the longitudinal coordinate of the ship’s
center of gravity in the body-fixed coordinate frame; Iz stands for the moments of inertia of
the ship about the z0-axes; X .

u, Y .
v, Y.

r , N .
v and N.

r stand for acceleration derivatives; and F1
F2 and M3 stand for forces and moment disturbing quantity at x0-axis, y0-axis and z0-axis,
respectively. The superscript “′” indicates that the corresponding variable is normalized
using the Prime-system.
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Model complexity and model capacity should be balanced when selecting the mathe-
matical model for identification. The most widely used model is the Abkowitz model, a
Taylor-series expansion model. It has good generalization performance but includes many
coefficients. Some of the coefficients have no physical meaning. A simplified Abkowitz
3-DOF model [56] is employed to construct the white-box model as it contains fewer hy-
drodynamic parameters while ensuring high accuracy, which can suppress parameter drift
caused by too many variables [57]. The nonlinear forces and moment are defined as:

F1
′ = Xhydro·A(i)

F2
′ = Yhydro·B(i)

M3
′ = Nhydro·C(i)

(28)

where the hydrodynamic derivatives and speed state variables in Equation (28) are as
follows:

Xhydro = [X′u, X′vv, X′rr, X′δδ, X′vr, X′vδ, X′rδ, X′0, ]1×8
Yhydro = [Y′v, Y′r , Y′δ, Y′v|v|, Y′v|r|, Y′|r|r, Y′r|v|, Y′δδδ, Y′vvδ, Y′vδδ, Y′rδδ, Y′rrδ, Y′rvδ, Y′0]1×14
Nhydro = [N′v, N′r, N′δ, N′v|v|, N′v|r|, N′|r|r, N′r|v|, N′δδδ, N′vvδ, N′vδδ, N′rδδ, N′rrδ, N′rvδ, N′0]1×14

A(i) = [u′a(i), v′2(i), r′2(i), . . . , r′(i)δ′(i) , 1 ] T
1×8

B(i) = [v′(i), r′2(i), δ′(i), v′(i)|v′(i)|, . . . , r′(i)v′(i)δ′(i) , 1]
T
1×14

C(i) = [v′(i), r′2(i), δ′(i), v′(i)|v′(i)|, . . . , r′(i)v′(i)δ′(i) , 1]
T
1×14

with the relative speed ua = u− unom. As seen, there are 36 hydrodynamic parameters
in the simplified Abkowitz model. Euler’s stepping method is utilized to discretize the
equation of motions. The constructor of samples for hydrodynamic parameter estimation
can be obtained as follows:

Input variables: [A(i), B(i), C(i)]
Output response:

(
m′ − X′.

u

)
L ua ′ (i+1)−ua ′ (i)

U(i)4t(
m′ −Y′.

v

)
L v′(i+1)−v′(i)

U(i)4t +
(

m′x′G −Y′.
r

)
L r′(i+1)−r′(i)

U(i)4t(
m′x′G − N .

v
)

L v′(i+1)−v′(i)
U(i)4t +

(
I ′zz − N.

r
)

L r′(i+1)−r′(i)
U(i)4t

 (29)

where U =
√

u2 + v2 is the resultant speed in the horizontal plane and4t is the time sample.
The procedure of the parametric gray-box modeling and motion prediction using

ScBR is briefly depicted in Figure 3. A Bayesian optimization algorithm (BOA) is employed
to tune the value of prior variance, V, in semi-conjugate regression. For more details
regarding the use of semi-conjugate regression with BOA to identify the parameters, please
refer to our previous work [44].
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4.2. Black-Box Modeling

A continuous-time black-box model directly describes the relationship between the
input variables and out response without any constrains. The principal parameters and
the mathematical model are not required in the black-box modeling. The structure of the
training data follows the form

Input variables: [u(i− 1), v(i− 1), r(i− 1), δ(i− 1)]

Output response : [u(i), v(i), r(i)] (30)

Figure 4 shows the process of black-box modeling and motion prediction using NIGP.
The SVM is also used with the same training data for comparison with Bayesian regression.
The RBF kernel function in Equation (31), with an automatic kernel scale σSVM, is used to
train the SVM.

k
(
xi, xj

)
= exp (−

∣∣xi − xj
∣∣2

2σSVM
) (31)
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The hyperparameters in SVM are trained by BOA with the “Bayesopt” function in
Matlab. In theory, this scheme can overcome the drawbacks of parametric gray-box models,
such as a failure to represent the actual behavior of the system due to unmodeled components.

4.3. A Case Study of a Large Container Ship

KVLCC2 is a scale model of large tankers. It is one of the benchmark ships for
verification and validation of ship maneuvering simulation methods recommended by
Simulation Workshop for Ship Maneuvering (SIMMAN) [58]. Maneuvering and course
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maintaining tests with the KVLCC2 models were performed at the Hamburg Ship Model
Basin (HSVA). The main dimensions of the scale ship are detailed in Table 2.

Table 2. Particulars of KVLCC2.

Elements Full-Scale Model

Lpp (m) 320.0 7.0
B (m) 58.0 1.1688
D (m) 30.0 0.6563

Displacement (m3) 312,622 3.2724
Draught (m) 20.8 0.4550

Beam coefficient 0.8098 0.8098
Nominal speed (m/s) 7.97 1.18

Rudder speed (
.
δ) 2.3 deg/s 15.8 deg/s

Nondim mass (m′) 1908× 10−5

Nondim x coordinate of CG (x′G) 3486×10−5

Nondim inertia in yaw (I′z) 119×10−5

Here, 35◦/5◦ zigzag maneuver data with a cumulative time of 180 s are used for
training the parametric gray-box model using ScBR, and the sample time is 0.5 s. The
hyperparameters of ScBR, prior variance V, are tuned by BOA. The posterior hydrodynamic
parameters estimated by ScBR are listed in Table 3. The added mass, including X′.u and
Y′.v, is calculated by slender-body instead of SI [59]. For comparison of the ScBR, Luo and
Li’s results of SVM under the same parameterization gray-box modeling are also listed
in the table. It should be noted that the mainstream algorithms for marine equipment
identification are offline algorithms, which are usually trained after the data are obtained
and then deployed in the controller or simulation system [14]. Therefore, the time spent on
tuning the hyperparameters is not mentioned in the article.

Table 3. The nondimensional hydrodynamic parameters for ScBR and SVM (1 × 10−5).

X-Coef. ScBR SVM Y-Coef. ScBR SVM N-Coef. ScBR SVM

X′u −140.1 −128 Y′v 350.4 −94 N′v −44.8 −54.9
X′vv 152.6 175 Y′r 1936.0 2066 N′r −125.5 −82.9
X′rr −180.0 −118 Y′δ 568.3 486 N′δ −180.9 −146.8
X′δδ 125.2 −116 Y′v|v| 68.7 63 N′v|v| 5.4 −5.4
X′vr −328.2 −303 Y′v|r| 128.5 67 N′v|r| −3.3 2.6
X′vδ 245.2 196 Y′|r|r 932.6 737 N′|r|r −48.5 −30.8
X′rδ −584.2 −455 Y′r|v| 30.8 177 N′r|v| −14.3 −5.5
X′0 −144.0 −85 Y′δδδ 216.3 −58 N′δδδ −65.2 −52.9

Y′vvδ 98.7 29 N′vvδ −9.6 −8.0
Y′vδδ 41.0 17 N′vδδ 1.6 −6.3
Y′rδδ 306.5 −50 N′rδδ 9.6 6.1
Y′rrδ 314.2 99 N′rrδ 12.4 12.9
Y′rvδ 350.4 −40 N′rvδ −44.8 2.1
Y′0 1936.0 −56 N′0 −125.5 1.4

Added mass
not identified

X′.u −95.4 Y′.v −1283 N′.v 0
Y′.r 0 N′.r −107

Here, 35◦/5◦ and 20◦/5◦ zigzag maneuvers every 5 s are used for training the black-
box modeling driven by NIGP and SVM. It is of no application value to predict the
training movement of ship by using the model obtained from the training data. To verify
the generalization ability of the models identified by gray-box modeling and black-box
modeling driven by SVM and Bayesian regression, the 30◦/5◦ and 15◦/5◦ zigzag tests
are predicted. Figures 5 and 6 show the prediction results of each method, and the root
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mean square error (RMSE) is adopted to analyze the prediction performance of these
methods, which is shown in Table 4. In addition, the computation time of each step of
these methods for prediction is also listed in the table. From the validation results, it can be
concluded that the trends of all the predictions before 70 s are basically consistent with the
experiment. After 70 s, the difference between the predictions results of various methods
gradually increased. On the whole, the parametric gray-box and black-box modeling based
on Bayesian regression results are in acceptable agreement with the validation samples
and show a stronger ability to predict than SVM. From the perspective of the modeling
framework, the prediction results of gray-box modeling are better than those of black-box
modeling in 30◦/5◦ zigzag maneuvers, but worse in 15◦/5◦ zigzag tests. The main reason
is that the training data of gray-box modeling only contain 35◦/5◦ movement, which is
closer to the 30◦/5◦ zigzag validation test. For the prediction time, parametric gray-box
modeling is significantly faster than black-box modeling because the calculation process
of parametric gray-box modeling is entirely linear. Because it considers the input noise
and variance in the calculation process, NIGP spends more time on the prediction than
SVM. Note that the black-box modeling usually requires more training data to enhance
generalization ability than parametric gray-box modeling, because the specified framework
of the parametric gray-box model already contains some information about the system. In
a similar study [28], four groups of ship maneuver datasets are used for training black-box
models while one group dataset is used for parameter estimation.
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Table 4. Estimation of forecast accuracy by RMSE and computation time for the validation test.

Parametric Gray-Box Model Black-Box Model

SVM ScBR SVM NIGP
30◦/5◦u 0.053 0.040 0.115 0.094

v 0.182 0.092 0.186 0.121
r 2.530 1.226 2.213 1.834

15◦/5◦u 0.155 0.240 0.262 0.021
v 0.126 0.163 0.238 0.062
r 0.605 1.294 2.140 0.443

time (s/step) 0.0009 0.004 0.014

5. Identification of WEC
5.1. Nonparametric Gray-Box Modeling

Similar to the ship model in Equation (27), the time domain 3 DOF model of the WEC
buoy is given as,  m− X′.u 0 0

0 m′ − Z′.w m′y′G − Z′.q
mzG −mxG Izz


 .

u
.

w
.
q

 =

 F′1
F′3
M′2

 (32)

Different from the parametric model in Equation (28), the force and moment on the
right side of the equation are not fitted by the method of multiplying the hydrodynamic
coefficient and the speed. In this case, NIGP is adopted to perform nonlinear regression
among forces, speed and other variables. The training sample that couples hydrodynamic
forces and moment nonlinear regression for training NIGP is

Input variables: [u(i), w(i), q(i), h(i)]
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Output response:
(

m− X .
u

)
u(i+1)−u(i)

4t(
m− Z .

w

)
w(i+1)−w(i)

4t +
(

myG − Z .
q

)
q(i+1)−q(i)
4t

mzG
u(i+1)−u(i)

4t −mxG
w(i+1)−w(i)

4t + Izz
q(i+1)−q(i)
4t

 (33)

The process of nonparametric gray-box modeling and motion prediction using NIGP
is depicted in Figure 7.
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5.2. Black-Box Modeling

In the same way as the black-box modeling of the ship, only the time series of motion
state variables and wave height are used to train the NIGP model. The structure of the
training data follows the form

Input variables: [u(i− 1), w(i− 1), q(i− 1), h(i− 1)]

Output response : [u(i), w(i), q(i)] (34)

The detailed process of the black-box modeling of the WEC using NIGP is shown in
Figure 8.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 21 
 

 

Output response: 

[
 
 
 
 
 (𝑚 − 𝑋𝑢̇

 )
𝑢(𝑖 + 1) − 𝑢(𝑖)

△ 𝑡

(𝑚 − 𝑍𝑤̇
 )

𝑤(𝑖 + 1) − 𝑤(𝑖)

△ 𝑡
+ (𝑚𝑦𝐺 − 𝑍𝑞̇

 )
𝑞(𝑖 + 1) − 𝑞(𝑖)

△ 𝑡

𝑚𝑧𝐺

𝑢(𝑖 + 1) − 𝑢(𝑖)

△ 𝑡
− 𝑚𝑥𝐺

𝑤(𝑖 + 1) − 𝑤(𝑖)

△ 𝑡
+ 𝐼𝑧𝑧

𝑞(𝑖 + 1) − 𝑞(𝑖)

△ 𝑡 ]
 
 
 
 
 

 (33) 
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5.3. A Case Study of a Multi-Freedom Buoy WEC

The experiment was carried out in the wave tank of Ocean University of China [60],
as shown in Figure 9. The model had three independent DOF: surge, heave and pitch. The
main dimensions and parameters of the model are listed in Table 5. The NDI Optotrak
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Certus 3D investigator was used to collect the buy’s motion data. The mass of the sliding
frame was 58 kg. A spring was used to provide the restoring force for the motion of surge.
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Table 5. Particulars and test conditions of the WEC.

Elements Value

Water depth (m) 1.0
Wave heihgt (m) 0.2

Radius (m) 0.4
Draft (m) 0.4

Height (m) 0.12
Spring stiffness coefficient 85 N/m

Mass (kg) 58
Inertia in yaw (Izz) 2.2

The added mass can be calculated as

m∞ = A(ω) + 1
ω

∫ ∞
0 K(t) sin(ωt)dt

K(t) = 2
π

∫ ∞
0 B(ω) cos(ωt)dt

(35)

where ω is the wave frequency and B(ω) is the radiation damping matrix. The values of
A(ω) and B(ω) were calculated by the ANSYS AQWA software package (AQWA-LINE
suite), which implements a boundary element method algorithm.

The wave period of the experimental data is 1.6 s. The first 30 s of the experimental
data were used to train each model, and the last 15 s of the data were used as the test set
to verify the accuracy of the identified models. The sampling interval of training data
for nonparametric gray-box modeling is 0.05 s, while the black-box modeling is 0.1 s.
Figure 10 shows that, except for the nonparametric gray-box model driven by SVM, the
predicted results of the other three methods are almost the same as the experimental
values. The rest motion data with a wave period of 1.8 s were used to further verify
the identified models, as presented in Figure 11. It should be noted that the WEC buoy
has different added mass in a different wave frequency, so we recalculated the added
mass with the wave period 1.8 s and substituted it into Equation (31) for gray-box
modeling prediction. Figure 11 shows that the trend of the experimental and Bayesian
gray-box and black-box modeling prediction fit well in the motion of surge and heave.
However, it can be observed that there is some discrepancy between the prediction and
the experiment in pitch. This may be mainly due to fact that the frequency of wave in
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the training data is higher than that of the test, and the motion is very regular, which
means that the training data do not fully reflect the dynamic characteristics of the device.
In the 1.8 s wave period, the prediction of the gray-box modeling based on SVM failed,
and its motion state was significantly slower than the experiment. The RMSE of u, w
and q and computation time of the models are listed in Table 6. Table 6 demonstrates
that the black-box model based on NIGP is the most accurate identification method for
WEC buoy.
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Table 6. Estimation of forecast accuracy by RMSE and computation time for the WEC motion with
the wave period 1.6 s and 1.8 s.

Nonparametric Gray-Box Model Black-Box Model

SVM NIGP SVM NIGP

T = 1.6 su / 0.866 1.883 2.184
w / 0.580 0.610 1.143
q / 0.151 0.346 0.404

T = 1.8 su / 1.503 3.872 1.142
w / 0.979 1.935 0.620
q / 0.396 0.664 0.211

time (s/step) 0.0012 0.086 0.0013 0.025
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6. Discussions

In this work, three different identification frameworks, parametric gray-box modeling,
nonparametric gray-box modeling and black-box modeling based on Bayesian regression,
are developed. The main objective is to propose a robust and widely used identification
methodology for hydrodynamic models of marine equipment for carbon neutralization
using experimental data. The Bayesian regression approach was compared with SVM on a
KVLCC2 and WEC buoy model and showed good generalization ability.

The relative strengths and weakness of each method are summarized in Table 7. For
different modeling objects and characteristics, the corresponding modeling method should
be selected according to their capabilities. For conversional ship, choosing traditional
parametric modeling can produce good results under the limited data conditions. For new
types of vehicles such as unmanned surface vehicle (USV) and remotely operated vehicle
(ROV), as well as other irregularly shaped marine structures, nonparametric modeling
could be a better choice. However, when very few training data exist, the parametric gray-
box modeling method can provide a useful model with the help of prior knowledge such
as the added mass of the marine equipment. The obtained experimental data is usually the
velocity obtained by MRU (motion reference unit) or displacement data measured with a
camera. If the force of the device can be obtained by CFD simulation or directly measured by
a PMM test, the nonparametric gray-box modeling with nonlinear fluid dynamics would be
a very effective method. In terms of the practicality of the algorithm, compared with SVM
and ANN, Bayesian regression introduces a prior into the loss function, which has stronger
generalization ability. Moreover, NIGP shows stronger predictive ability because of its
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additional processing of input noise. However, it needs to be acknowledged that it requires
a longer execution time due to the complicated calculations in nonparametric modeling.

Table 7. Capabilities and challenges of Bayesian gray-box modeling and black-box modeling.

Property Parametric Gray-Box Model
Driven by ScBR

Nonparametric Gray-Box
Driven by NIGP

Black-Box Model
Driven by NIGP

Modeling framework
Newton’s second law
equation with Taylor

expansion forces

Newton’s second law
equation with nonparametric

forces

High-dimensional mapping of
time series

Required prior knowledge weak fair strong
Nonlinearities fair strong strong

Training with limited data strong fair weak
Noise robustness weak fair strong
Execution time strong weak fair

7. Conclusions

In this paper, we explore three modeling methods using Bayesian methods for high-
dimensional marine systems. Taking the ship maneuvering model and the WEC device as
examples, this work shows how to use Bayesian regression to design and train gray-box
and black-box models of marine dynamic systems for prediction. The results show that the
proposed scheme is more robust than ordinary SVM and has the potential to be further
applied to other marine equipment. Finally, the characteristics and advantages of these
methods are summarized to facilitate international managers and scientists to choose
suitable modeling methods for different modeling objects.

Although the preliminary application of the proposed Bayesian methods seems en-
couraging thus far, the work needs further extension and investigations. (1) For a model
calculation to be used in the practical application of control design, the training dataset
should be richer and obtained from more abundant excitation signal, to make the iden-
tification model more accurate. The experimental data used in this article are not from
experiments specially designed for system identification, so the excitation signal of the
training data is not enough. Especially for the wave energy device, compared with regular
waves, the motion data under irregular waves (such as Jonswap spectral waves) can better
reflect its dynamic feature. (2) The experiments of ship and WEC presented in this article
were all carried out in water tank, but the equipment in the ocean will be affected by various
factors such as wind, water depth and current. Further study is required to introduce these
factors as inputs into nonparametric modeling. (3) The WEC used in the article only uses
waves as the excitation signal. To obtain better power generation effects, the WEC used
in the article only uses waves as the excitation signal for motion prediction. It is better to
model PTO damping as the control signal of the device and apply it to power generation
control. (4) Model predictive control (MPC) based on GP allows the direct assessment of
residual model uncertainly to enable cautious control. It is very interesting to integrate
NIGP-based nonlinear nonparametric modeling into MPC for marine systems.
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