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Abstract: The present paper shows an original study of more than 163 ship accidents in Spain
showing which of the usually employed variables are related to each type of vessel accident due to
the lack of information in this region. To this end, research was carried out based on the Spanish
Commission for Investigation of Maritime Accidents and Incidents (CIAIM) reports. Detailed
combinatory ANOVA analysis and Bayesian networks results showed a good agreement with studies
of other regions but with some particularities per each type of accident analyzed. In particular, ship
length was defined as the more relevant variable at the time to differentiate types of accidents. At
the same time, both the year of build and the fact that the ship meets the minimum crew members
required were excellent variables to model ship accidents. Despite this, the particularities of the
Spanish Search and Rescue (SAR) region were defined at the time to identify accidents. In this sense,
although variables like visibility and sea conditions were employed in different previous studies as
variables related to accidents occurrences, they were the worst variables to define accidents for this
region. Finally, different models to relate variables were obtained being the base of deterministic
dynamic analysis. Furthermore, to improve the accuracy of the developed work some indications
were obtained; revision of CIAIM accidents scales, identification of redundant variables, and the
need for an agreement at the time to define the classification limits of each identification variable.

Keywords: ship; identification; accidents; modelling; ANOVA; Bayesian network

1. Introduction

The traditional approach to studying or analyzing maritime safety is generally reactive
rather than proactive. Hence, the importance of historic technical studies to try to foresee
risk situations. Knowing which situations involve greater risk will in turn mean anticipating
a possible accident. An accident theory is a collection of propositions to illustrate the
principles that lead to accidents and an accident model is a simplified description of
a system or process to help present the occurrence of accidents based on an accident
theory [1]. According to Perrow [2], a normal accident is an intrinsic characteristic of
any system. Given the characteristics of a system, multiple and unexpected interactions
causing failures are inevitable. In this sense, the interactive complexity and the close
characteristic coupling of the system inevitably produces an accident called “Normal
Accident” or “System Accident”. These accidents are the ones that must be accepted as an
acceptable risk.

According to a study of Allianz, shipping in the 21st century is now safer than ever [3],
probably due to a combination of factors both at technical level (technological advances),
regulatory environment (international and national regulations), and fundamentally, to
the influence of human factor (preparation and training). In this sense, it is in standard
O-134: International Association of Marine Aids to Navigation and Lighthouse Authorities
(IALA) Recommendation on the Risk Management Tool for Ports and Restricted Waterways
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(2009) [4], where it addresses the IALA Waterway Risk Assessment Program (IWRAP) and
Ports and Waterway Safety Assessment (PAWSA) tools.

The aim is to make available to the Member States aid for the measurement (quantita-
tive and qualitative) of risk. The IWRAP MK2 tool, which IALA makes available to member
states, calculate risk, based on the theory of Fujii and MacDuf (1974) [5,6] and presents
results based on the possibility of an accident (although only collisions and groundings).
Other researchers like Hollnagel and Goteman [7], proposed the Functional Resonance
Accident Model, FRAM in its English nomenclature (for Functional Resonance Accident
Model). The idea suggests that accidents occur due to functional resonance within a system.

To reach this so complex objective a revision of the evolution of accidents analysis is
needed. In this sense, previous research works [8,9] indicated that around 75 to 96% of
maritime accidents are caused, at least in part, by some type of human error. Specifying
that this human error contributes to between 89% and 96% of collisions, 75% of explosions,
79% of landings, and 75% of collisions. What is more, 56% of the approaches are caused by
non-compliance or violation of Convention on the International Regulations for Preventing
Collisions at Sea, COLREGs [10,11].

Despite the previous indications, no single model has the capability of being useful to
satisfy all demands of the maritime industry at any moment. To solve this problem, different
research works were done in the last decades. In this sense, in 2007, Ibn Awal et al. [12],
proposed a dynamic model for maritime accident focused on ship-to-ship collision, using
two models of simulations, pre and post-accident, with the goal being to increase the
maritime transport safety. Although it can be considered one of the accidents that has the
worst consequences in the maritime world (for own ships, crewmembers, cargo, and the
environment), the model does not include aspects so relevant as the waves or wind forces.
This fact can give us an idea of the difficulty of proposing a model that can satisfy the huge
number of variables that can be present in maritime transport.

In 2005, Liu et al. [13] analyzed more than 100 marine incidents in order to improve
the navigation safety system (frequencies and causes) of a specific area through the Gray
Clustering Method (Gray system Theory). In this research work, it highlights the need
of models that can be useful for areas where the maritime accidents/incidents database
is incomplete or poor due to the unpredictability of maritime accidents, a fundamental
characteristic of this Theory. Furthermore, a reliable database is not always available
everywhere due to the opacity that the maritime industry sometimes presents when an
accident happens. In consequence, it is shown how the knowledge of frequency and causes
of maritime accidents can be very useful for shipping lines, underwriters and, in general,
stakeholders in the maritime industry.

Once the main data are collected, they must be analyzed, and the probabilistic method
is one of the most used in the maritime industry, in addition to simulation modelling
and statistical analysis of data [11]. In this sense, in 2009, Ulusçu, et al. [14] developed a
paradigmatic case such as the navigation risks in the Strait of Istanbul. In this study, the
authors implement a safety risk analysis with a model based on probabilistic data. In the
mathematical model proposed, factors that define situations and affecting the probability
of accident are grouped in vessel attributes (type, length, age, flag, tugboat, and pilot
assistance), and environmental attributes. Attributes also influence consequences; in
this case, vessel attributes (type and length) and shore attributes (populations, property,
and infrastructure).

After slicing the Strait in several legs and collecting local information from different
sources, the risk is calculated in two-tier accident types, related to a set of instigators that
may cause an accident (human error, steering, propulsion, communication, navigation,
mechanical, or electrical failure). As a weak point, in part of a study, authors resort to the
opinion of two experts (for comparative purposes) due to the lack of a solid database, which
can help to clarify the final result. As an example, the plotting of the normal probability
of residuals and residuals vs. predicted variable of pair is shown, focused mainly on the
human error and its influence in the collision.
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At the same time, at the time to define the variables related to accidents in vessels, it is
of interest to center this study on fishing vessels due to the high number of accidents. In
particular, recent review works based on journal articles and reports from the maritime
authorities in Poland, United Kingdom, Norway, Iceland, Denmark, United States and
Alaska, and Canada [15] showed that these fishing vessels are still 50% higher at risk than
on-shore workers, which is particularly high with respect to other types of vessels.

In addition, most of the previous works about fishing vessel accidents were centered on
just one main variable, for instance, human factor [16–19]. Despite this, other variables were
indicated as the main causes of fishing vessel accidents other than human error [19,20], e.g.,
weather conditions, operational status of the vessel, vessel location, seasons, and unsuitable
fishing equipment [21–23]. In particular, a statistical study of accidents in fishing vessels
in the northeastern United States emphasized that the probabilities of accidents in fishing
vessels increase with wind speed and with placement near the shore and in the winter
season [24]. In this same year, more research studies showed Marine Accident Investigation
Branch (MAIB) as the better data source regarding fishing vessels accidents despite a
certain tendency of under-reporting [19]. In this work, a conclusion was obtained that
confirms the previous comments; the risk of accidents on fishing vessels increases as vessel
length decreases. What is more, a more recent study about fishing vessel accidents in
the northeastern of the United States [25] showed that the damage severity of accidents,
defined in accordance with the Damage equation obtained by [26], increases with loss of
stability, sinking, daytime wind speed, vessel age, and distance to shore, in agreement with
previous studies. At the same time, it was obtained that the damage severity of accidents
on fishing vessels increases as vessel length decreases (inversely proportional).

At the time, to identify the variables related to accidents, different research works
about the analysis of the variance (ANOVA) were done. In particular, a statistical analysis
centered on questionnaires and posterior ANOVA and correlations analysis was done
by [16]. Its main results showed that there were clearly differentiated groups of age,
vessel types, and occupation, among others. At the same time, in this work, there were
assumptions of regression analysis such as linearity, normality, and multicollinearity, which
were tested and found satisfactory. In consequence, it was possible to define the coefficient
of the relation between related variables. From this relation it was concluded that the safety
attitude is a fundamental parameter that depends on the previous experiences like people
that sought medical attention (less positive attitude) and fishermen involved in accidents
(positive attitude).

Once the main variables of these accidents were identified, there was a need to predict
these accidents. In this sense, Mullai and Pulasson [27] developed a conceptual model
based on the principles of Grounded Theory and content analysis of empirical data, in order
to explain and predict maritime accidents. For that purpose, a database containing the
marine accidents classified by ship and variable was used. Most of the variables were non-
metric and were grouped into 11 main categories (constructs). The design of variables was
based on the European Statistics guidelines, the International Maritime Organization (IMO)
investigations code, and the DAMA coding system (agreed in 1990 by the Scandinavian
countries for the analysis of maritime accidents). In total, 87 variables were taken into
account for designing the model, reduced to 11 “sets” or “constructs”, grouped as per their
common properties. Therefore, the model carried out consisted of a multilevel model of 87
variables in complex relationships and permits one to obtain the correlations among a large
number of independent variables as ship’s age, length, Gross Register Tonnage (GRT), and
the number of persons on board.

Another paper related to human factors is based on the human factors index system of
ship accidents to develop a multidimensional association rules algorithm by incorporating
the Reason model and classic correlation rules algorithm [28]. Other works are centered
on human factor as the main cause of most serious maritime accidents [29]. Authors use
the model Human Factor Analysis and Classification System (HFACS) based on the Swiss
Cheese model of human error, which had been developed to provide a methodological tool



J. Mar. Sci. Eng. 2021, 9, 192 4 of 21

to investigating an accident in the aviation industry. The modification of this model had
been implemented by the same authors to maritime accidents some years before, and for
this paper, more than 150 real cases were handled. The model consists of two interrelated
causal sequences: An active failure pathway and a latent failure pathway. Once coded, the
causal factors are presented and divided (organizational influences, unsafe supervision,
preconditions for unsafe acts and unsafe acts). Afterwards, the first-, second-, and third-tier
results are depicted.

More recent works try to address the human factor and statistical procedure together
to quantify the correlation path mode of the causal factor involved in marine accidents,
making use of complex structural chains supported by HFACS together with the statistical
method Structural Equation Modelling (SEM), used to quantitatively analyse the relation-
ships among human factors in accidents [30]. The paper is focused on the human factor
because authors consider that in the shipping industry, despite having achieved a high
level of safety from the point of view of equipment, human behavior still remains the
cause of many maritime accidents. In the research, a Swiss Cheese model is also produced,
and a novel method to analyze causal factors in the accidents is introduced with the help
of SEM, due to the difficulty of doing the basic premises of path analysis (relationship
among variables).

The measurement equation of SEM describes the relationship between the observed
dependent variable and the latent independent variable. Structure equations describe the
relationship between the latent variable. For the study, a database of 894 accident with
the presence of human error as the cause was taken. Depending on the consequences,
five levels were selected: Incidents, minor accidents, general accidents, major accidents,
and serious accidents. The data were integrated into 16 major accident factors and path
diagrams were carried out to check the accuracy and reliability of the model (relationships
of observation or indicator variables).

Other studies are not centered on the human factor and develop their predictive
procedures like a risk probabilistic model [31] in order to evaluate the probability of a
ship-grounding accident taking into account the causal factors. The database contained
more than 200 accident and incident reports, although using only a single accident report
for modelling has its own disadvantages. As in other papers, the grounding model was
developed used the Human Factor Analysis and Classification System for Grounding
(HFACS-Ground). In the model construction, in order to set up a qualitative causal model,
the Bayesian Belief Network (BBN) modelling was used. The model can quantify the
probability of grounding given a set of input parameters.

Finally, in recent works [32], this same methodology of a chi square method and
Bayesian networks were employed to be a help to estimate the occurrence of accidents
when the main variables of the problem change.

In the present work, based on these previous research works and the need for in-
depth study of these parameters, a real case study has been conducted analyzing more
than 163 accidents in the Spanish Search and Rescue (SAR) sea regions in the time frame
between 2008 and 2017. For this purpose, the official reports published by the Spanish
Commission for Investigation of Maritime Accidents and Incidents (CIAIM) were taken
into account [33]. In particular, a procedure similar to previous research activities was
employed but employing a more detailed analysis, replacing the VCH square method by
the Analysis of Variance for each type of accident. This procedure will help to identify the
more appropriate variable that allows us to identify the more probable type of accident in
the particular sea region of the Spanish Search and Rescue (SAR). This initial study will be
the base case to predict the occurrence of accidents when the main variables of the problem
change based on future Bayesian networks studies.
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2. Materials and Methods
2.1. CIAIM Accidents Analysis

The Spanish Commission for the Investigation of Maritime Accidents and Incidents,
CIAIM [33] performs investigations into maritime accidents and incidents in Spanish
waters, including inland waters, the territorial sea, and any area outside the territorial
sea upon which, in accordance with international law and on application of its domestic
legislation, the Kingdom of Spain exercises jurisdiction or sovereign rights. In particular,
in this study, the Spanish SAR territory has been selected. That is, the waters where the
Spanish State holds responsibility in terms of search and rescue missions. At the same
time, the selected period (2008–2017) was in accordance with the need to circumscribe our
analysis to a stable regulatory framework, essential for the coherence of the comparative
conclusions. In consequence, more than 163 accidents were analyzed in this case study.

Based on both these reports and previous research works [16,31–33], the different
typical variables usually employed in those reports and associated with some types of
accidents were classified. In this sense, the variables selected for this study, per accident
were: Type of Ship, Year of construction, Wind direction, Wind force, Sea condition, Night
or day accident, Visibility, Ship Breadth, Ship Length, GT, Crewmembers, and the Minimum
number of crew members required. At the same time, the causes of the accidents were also
identified for future modelling applications. Finally, all these variables were codified in
accordance with standard scales like the Beaufort scale for wind force or the Douglas scale
for sea conditions, and other variables were codified in accordance with the typical scales
employed in the own reports. All the variable and its codes are shown in Tables A1–A8
(Appendix A).

2.2. Software Resources

Different software resources were employed to develop each different statistical study.
In this sense, to develop such specific statistical studies like One-Way ANOVA, the software
Statistical Package for the Social Sciences (SPSS) version 22 was employed [34]. Despite
this, due to the need for multivariable curve fit of response surface modelling, the software
Minitab version 18 was selected [35]. To classify the information, different datasheets
were employed.

2.3. Statistical Analysis

In the present paper, different statistical studies were employed. First of all, the
descriptive statistic and histograms were developed to identify each variable. After that,
to identify the variables actually related to accidents, a One-Way ANOVA was employed.
This statistical procedure determines whether the groups analyzed (defined by the levels of
the independent variable (accidents)) are different in their means respect the overall mean
of the dependent variable. To apply this study, some assumptions must be considered;
independence of observation (data collection), normally distributed response variable
(it will be showed by histograms), and homogeneity of variance. The other important
curve-fitting statistical procedure employed in this research work was the response surface
technique. This is a polynomial curve fitting with more than 3 variables (which is the main
limitation of the general curve fitting defined in most of the software resources). It is an
initial curve fitting tool that, like a neural network, models a process in accordance with a
minimum square procedure but with the advantage that gives us the mathematical model
obtained (IA is based in a black box).

2.4. Methodology

The original methodology employed in this research work is based on the inference
statistical procedure applied to the particular case study of ship accidents understanding.
In this sense, the first step was to define the correlation between each variable. It is a linear
correlation defined by the determination factor and just for linear relations will show an
adequate value over 0.9.
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After that, an ANOVA analysis between the accidents type and each different selected
variable (selected in accordance with CIAM reports) will show the variables related to the
accidents and not identified by a linear correlation, taking it a step further than previous
works [16]. Besides, as it is evident, not all the variables are related in the same way with
all the types of accidents so a specific ANOVA analysis between each accident with respect
to the other is a more in-depth analysis that what has been done in previous statistical
works. In consequence, the relevance of each variable to the detection of each different
type of accident will be described and, in consequence, the adequacy of the employed scale
in some variables. Finally, due to about 7 dependent variables that were related to the
accident type, a response surface model will be defined to relate this influence with the
type of accident (TA) as an initial general identification model. In this sense, based on the
previous information obtained from the initial ANOVA study, different models that related
these independent variables will be shown. This process is summed up in Figure 1.
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3. Results
3.1. Linear Correlation Analysis

In this section, an initial correlation study between the main selected variables was
done. As we can see in Table 1, the determination factor is very high when it is obtained
between two variables. For instance, the highest value was obtained between length (L)
and breadth (B) (0.95), which is a common-sense value due to some design criteria of these
types of merchant ships. This same length variable is directly related to gross tonnage (0.79)
and the number of crew members (0.78). This is another logical result due to the fact that
these two new variables are usually related to the ship dimensions. A similar relation, but
with lower determination factor, was obtained between the breadth and the Gross Tonnage,
GT, (0.70) and between the breadth and the number of crewmembers (0.77). To sum up this
initial correlation study, it can be concluded that the length of the ship is a representative
variable that can replace other variables like breadth, GT, and number of crewmembers at
the time to develop a mathematical model to identify the type of accident.
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Table 1. Linear correlation analysis.

ST TA CY WD WF SC V N L B GT CA CM MNC

ST 1.00
TA −0.02 1.00
CY 0.00 0.22 1.00
WD 0.02 −0.02 −0.02 1.00
WF 0.13 0.02 0.12 −0.04 1.00
SC 0.06 −0.01 0.12 −0.05 0.77 1.00
V −0.01 −0.11 −0.03 −0.12 −0.04 −0.05 1.00
N 0.04 −0.07 0.01 0.15 −0.12 −0.08 0.08 1.00
L 0.00 0.09 0.18 0.02 0.14 0.21 −0.04 −0.12 1.00
B 0.08 0.08 0.20 0.04 0.15 0.18 −0.05 −0.10 0.95 1.00
Gt −0.09 0.08 0.12 0.03 0.03 0.15 0.01 −0.09 0.79 0.71 1.00
CA −0.08 −0.16 −0.14 0.02 0.00 0.08 0.11 −0.09 −0.01 −0.02 0.01 1.00
CM −0.12 0.04 0.12 0.04 0.07 0.10 −0.04 −0.06 0.78 0.77 0.59 0.02 1.00

MNC 0.10 −0.46 0.07 0.00 −0.14 −0.21 0.02 0.09 −0.02 0.00 −0.06 −0.17 −0.04 1.00
ST: Type of ship, TA: Type of accident; CY: Year of build; WD: Wind direction; WF: Wind force; SC: Sea condition; V: Visibility; N: Nocturnal;
L: Length; B: Breadth; GT: Gross Tonnage; CA: Cause of accidents (Human factor); CM: Crewmembers; MNC: Minimum number of crew
members.

Another interesting determination factor is that which relates to the type of acci-
dent and if the ship fulfills the minimum crewmembers required in the moment of the
accident (0.46). In consequence, these two variables can be defined as of interest, but
cannot be derived one from another due to the not-so-high determination factor like in the
previous cases.

Another high determination factor was derived from the study of the wind force and
sea conditions (0.76). It is another logical result that will let us replace both variables by
just one at the time to define the main variables related to a ship accident.

Finally, a reduced determination factor of 0.22 shows a slight relationship between
the type of accident and the year of construction. In this sense, caution must be taken at
the time to understand this so low value. As it will be shown in the next sections, the
year of build is a decisive variable, but it does not exert a linear effect over accidents. In
consequence, posterior, not linear, correlation between variables must be done for the
variables with a low linear determination factor; for instance, wind direction, type of ship,
visibility, night period, the cause of the accident, and the real number of crew members
were not directly related to the type of accident.

3.2. One Way ANOVA
3.2.1. Accidents Independent Variables Recognition

As explained before, due to the determination factor shown in the correlation analysis
being related to a line relation between variables, a One-Way ANOVA study must be
done. In this sense, a significance of 0.05 was selected as it used to be done in this kind of
technical analysis. Main results are shown in Tables 2 and 3 for an ANOVA analysis between
variables and type of accidents and between variables and causes of accidents, respectively.

In these two tables, the variables with a significance below 0.05 were highlighted in
grey due to the fact that they are statistically different in the categories or groups of the
independent variable (the type of accident or cause of the accident, respectively). From
Table 2, it can be observed that year of build, ship length, and the cause of accident have
lower significant values, and, in consequence, they show great differences with respect to
the type of accident; or what is more, they have more possibility to be a better variable for a
curve fitting model that predicts the type of accident. As opposite variables, the number of
crew members and wind direction cannot be defined as having changed for each different
type of accident, so they are not good variables for a future modelling process.
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Table 2. Identification of related variables with accidents (significance).

Type of Ship ST 0.007
Year of build (years) CY 0.002

Wind direction (degree) WD 0.519
Wind force WF 0.107

Sea condition SC 0.014
Nocturnal N 0.000
Visibility V 0.007

Breadth (m) B 0.979
Length (m) L 0.002

Cause of accidents (Human factor) CA 0.002
GT (tonnes) GT 0.107

Crew members CM 0.438
Minimum number of crew members MNC 0.033

Finally, it is interesting to understand that, despite the fact that the cause of each
accident is a good curve fitting variable, it cannot be employed to develop a model to
predict the type of accident. What is more, as it can be observed in Table 3, the cause of the
accident can just be related to the GT and wind force variables.

Table 3. Identification of variables related with the cause of the accident (significance).

Year of build 0.290
Breadth (B) 0.568

Gt (tons) 0.000
Crew members 0.951

Minimum crew members 0.563
Type of Ship 0.076

Type of accident 0.341
Wind direction (degree) 0.286

Wind force 0.000
Sea condition 0.056

Visibility 0.076
Night or day 0.341
Length (m) 0.290

3.2.2. In-Depth Analysis of Types of Accidents Identification Variables

As it was explained before, the initial classification of types of ships, sea conditions,
etc., were developed as common sense and in accordance with the usual procedure in
this type of accidents. Despite this, the selected a variable and its scale may not be
statistically adequate to identify the different type of accidents. In consequence, it is
necessary to develop an ANOVA study employing each independent variable to identify
the real statistical difference to each different type of accident respect the others. To do so,
the first goal of the study was to do the ANOVA analysis of the accident type a1 when
it is compared with the others, employing the ship Type (Appendix B, Table A9), year
of construction (Appendix B, Table A10), sea conditions (Appendix B, Table A11), the
time period (Appendix B, Table A12), visibility level (Appendix B, Table A13), the ship
length (Appendix B, Table A14), and the Minimum crew member required (Appendix B,
Table A15) as independent variables.

From Table A9 (Appendix B), as a result of the ANOVA analysis, it can be concluded
that accidents a2, a6, a8, and a10 can be identified as significantly statistically different
to accident a1 by employing the type of ship as the comparative variable. So, this vari-
able can be employed to predict future accidents and its type. In other words, there are
different types of ships for each type of accident. Thus, from the data, it can be seen that
accident 1 (a1) is associated with a vessel type 3, 2, 7, 8, and 5 accident 3 (a3) is associated
with ship types 3, 7, and 10; accident 4 (a4) to ship type 3 and 2; and accident 5 (a5) to
type 4, 3, and 2. In particular, accident type 2 (a2) is always with type 3 vessels. Finally,
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it is interesting to remember that it does not mean that the other groups of column 1 of
Table A9 (Appendix B) are equal, they are just not dependent groups to this a1 variable.

If we now compare each of these tables, it can be concluded that visibility level and
sea conditions are the worst variables to differentiate types of accidents. At the same
time, the year of build and if the ship meets the minimum crew members required are
better variables to differentiate types of accidents, in agreement with the initial general
ANOVA analysis. Despite this, it must be observed that ship length shows, only for the
types of accidents that it can differentiate, the lowest significance level so it is a stronger
differentiation parameter. What is more, the year of construction (Table A10, Appendix B)
is the more useful variable to differentiate accidents, except accident type 2 (a2), to the
others a1, a3, and a4. It must be related with the fact that, when employing the year of
construction as identifier variable, it may be not easy to differentiate sinking, an approach,
grounding, or collision due to the fact that these variables maybe not really be related
to the antiquity of the ship. This same effect happens in Table A15 (Appendix B) when
differentiating a2 (sinking) from the other accidents based on the minimum number of
crew members required. In addition, in this particular case, the minimum crew members
seems to be slightly worse in identifying accidents than the year of construction based on
the difficulty to differentiate a3 (Grounding) from other accidents. Despite this, it is the
second-best parameter.

From Table A9 (Appendix B), it can be concluded that ship type can be employed to
differentiate the accidents a5 (Fire), a6 (Capsizing), a8 (Stranded), and a10 (operational
Accident) from the other accidents and that it is not as useful of a parameter as it is usually
considered. From Table A14 (Appendix B), it is observed that the ship length is a good
parameter, but it has some difficultness in differentiating a2 (sinking) and a6 (Overturning),
while it is better at differentiating the other accidents due to its significance being zero in
most of the cells. This important information must be considered, and it can be concluded
that, in accordance with the type of accident to be identified, the ship length may be the best
one variable. Finally, sea conditions (Table A11, Appendix B), that used to be considered
the most important variable to identify a ship accident, was the worst variable due to not
allowing researchers to differentiate the types of accidents at the time to classify it.

As an illustrative example of the interpretation of these tables showing the relation
between accidents and each related variable, histograms of Figures 2–4 were developed
for construction year, ship length, and ship type. From these histograms, one of the
requirements of ANOVA analysis can be observed, the normality, as it was done in previous
research works [16]. It must be highlighted that this normality can be identified by a single
mode: It is asymptotic to the abscissa axis and it is symmetric with respect to the mean.
In this sense, Figure 2 shows a wave similar to a normal distribution if it is considered
a decreasing frequency from 2007 until present day. In consequence, it seems logical to
obtain a good accident identification based on this so characteristic ship variable. From
these figures, it can also be concluded that most of the ships were built between 1999 and
2007, with a length between 24 m and 44 m, and belong to ship type 3 (Fishing vessels).

As a final analysis, it is interesting to see in Table A16 (Appendix B) that the human
factor is an interesting variable that allows one to differentiate ship contact (a1) from the
other accidents with maximum accuracy (sig. 0.000). At the same time, it allows one to
differentiate grounding, collision, and fire accidents (a3, a4, and a5) from capsizing and
groundings (a6 and a8).

After these initial conclusions, it is interesting to conduct a comparison with results
from previous research works. In this sense, it was defined by previous studies that flood-
ing, grounding, and collision are influenced by the human factor in a high percentage [8].
If we analyze this indication with our results, it was observed that, when the accidents
were compared in accordance with some variable, for instance, ship type, sea conditions,
and visibility, it cannot differentiate the accidents a2, a3, and a4, which implies that another
factor must exert a strong influence, presumably the human factor. It is in agreement
with previous works’ indications, and a possible solution is highlighted in this paper
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showing that just ship length allows one to successfully differentiate between the difficult
identification of these types of accidents. Finally, all these tables are summed up in Table 4.

From Table 4 it can be concluded that year of construction, crew members, and vessel
length are the more useful variables to differentiate between the types of possible accidents
in vessels.
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Table 4. Sum up of the utility of each defined classificatory variable per each type of accident.

Classificatory Variables Indistinguishable Accidents Differentiable Accidents

Ship type a1, a2, a3, a4 a5, a6, a8, a10

Year of construction a2 a1, a3, a4, a5, a6, a8, a10

Sea conditions a1, a2, a3, a4, a5, a6, a8, a10

Night or day period a1, a2, a3 a4, a5, a6, a8, a10

Visibility a1, a2, a4, a5, a6, a8,a10 a3

Vessel length a2, a6 a1, a3, a4, a5, a8, a10

Minimum Crew members a2 a1, a3, a4, a5, a6, a8, a10

Human factor a2, a3, a4, a5, a6, a8, a10 a1

3.3. Bayesian Networks

In a similar way to the study recently conducted by Uğurlu et al. [32] (Figure 2), in the
present research work, a Bayesian network was developed to define the probability of each
type of accident based on the causal variables, which are identified in the previous sections.

Previous to develop the graphical model, it is necessary to define the ranges of the
three more relevant variables identified in Table 4. In particular, as ship was identified as
New if the ship was built after 1996, identified as Long if the ship had a length higher than
12 m, and, finally, it was identified as having a high number of crew members when it was
higher than the minimum number required.

Once these ranges were defined, it is possible to define the initial probability of each
one, as it is reflected in Figure 5. Despite this, it may be not a realistic value that allows us
understand the importance of each variable, so further analysis must be done.
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In this sense, by applying the Bayesian theorem, it is possible to define the new
probability of each related variable (relevance) once it is known that one type of accident
happens. In consequence, the Bayesian theorem allows us to define the new probability of
vessel age, vessel length, and vessel number of crew members for the more representative
accidents (a1, a4, and a10), in a similar way to how it was done in previous studies; this is
reflected in Table 5.

As it was explained before, Table 5 shows the relevance of each related variable once
a type of accident is identified. In this sense, from this table, an increase can be observed
of the probability (from 17.17 to 58.82%) of the relationship between accident a1 (contact)
and a minimum compulsory number of crew members employed. The same happens with
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this same accident, being more strongly related to a high ship length, and experiencing an
increment of probability from 46% to 77%.

Table 5. Probability of each different causes once it is known the type of accident happened (Posteriori).

Accident Model Initial Probability(%) Final Probability(%)

a1 (Contact) P (Age = Old/Accident = a1) 46.01 41.17
a1 (Contact) P (Age = New/Accident = a1) 53.99 58.83
a1 (Contact) P (Crew = Min./Accident = a1) 17.17 58.82
a1 (Contact) P (Crew = High/Accident = a1) 82.82 41.18
a1 (Contact) P (Length = Short/Accident = a1) 47.85 23.52
a1 (Contact) P (Length = Long/Accident = a1) 52.14 76.48

a4 (Operational accident) P (Age = Old/Accident = a4) 46.01 77.77
a4 (Operational accident) P (Age = New/Accident = a4) 53.99 22.23
a4 (Operational accident) P (Crew = Min./Accident = a4) 17.17 11.11
a4 (Operational accident) P (Crew = High/Accident = a4) 82.82 88.89
a4 (Operational accident) P (Length = Short/Accident = a4) 47.85 77.77
a4 (Operational accident) P (Length = Long/Accident = a4) 52.14 22.23

a10 (Collision) P (Age = Old/Accident = a10) 46.01 42.85
a10 (Collision) P (Age = New/Accident = a10) 53.99 57.15
a10 (Collision) P (Crew = Min./Accident = a10) 17.17 14.28
a10 (Collision) P (Crew = High/Accident = a10) 82.82 85.72
a10 (Collision) P (Length = Short/Accident = a10) 47.85 28.57
a10 (Collision) P (Length = Long/Accident = a10) 52.14 71.43

In a similar way, when an operational accident happens (a4), a reduced ship length
experiences an increment of implication in the accident by increasing the conditioned
probability from 47% to 77%.

Finally, once again, it was observed that, when ship length is high, it exerts an in-
crement of its relevance and conditioned probability in collision accidents (a10). In this
particular situation, there is an increment from 52.14% to 71.43%, as it is shown in Table 5.

All these results were in agreement with previous works developed in other regions
like that done by [32]. In general terms, a clear agreement with [32] was obtained in the
identification of the relation between vessel length, age, and accident types.

Despite this, some differences with respect to. previous works were obtained. In
this sense, sea conditions do not seem to be related to most of the accidents analyzed, in
disagreement with [32] that identifies sea conditions and weather as some of the more
relevant variables related to accidents. It must be related to the fact that the region that
is the object of this study does not experience bad weather conditions or casualties. In
consequence, there is a need to develop a recompilation of real case studies of different
regions to develop a general stochastic model.

Finally, old ships (in this research work, identified as that with more than 24 years)
only showed a higher relevance in operation accidents, in disagreement with the general
conclusion obtained by [32]. Once again, it must be related to the particularities of each
region object of study. In consequence, a ship age limitation of 20 years, as it is proposed
by other researchers [32], may be not of interest in this particular fishing region.

At the same time, another difference with previous studies was obtained at the time to
analyze ship length effect. The research work developed by [32] concludes that in smaller
ships, the accidents increase. In our case study, this conclusion was obtained for operation
accidents and the inverse effect for contact and collision accidents. In this sense, it is of
interest to introduce the concept of a small ship due to it dependence on the limits fished at
the time to analyze the problem. In our particular case study, the classificatory limit value of
12 m was selected and in [32], it was 24 m in accordance with different national standards.

From these results, it can be concluded that there is a need to develop particular case
studies for different regions and to obtain variable conclusions per each type of accident
due to the differences in accidents between regions paper.
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3.4. Response Surface
3.4.1. Accident Modelling

As it was explained in previous sections, most research works try to define the stochas-
tic probability of each variable in each type of accident [36–38], but once the main variables
are identified, it is of interest to define a deterministic model that allows us to understand
the dynamic risk of each situation as it used in different engineering areas.

In this sense, a modelling procedure based on the response surface may help to
obtain a mathematical model that allows us to relate the type of accident and the main
independent variables. As it was shown in Table A1 (Appendix A), the ANOVA study
allowed us to define the main related variables identified with a significance level below
0.05. In consequence, it could be defined as a mathematical model that interrelates the
independent variable with all seven dependent ones. For this objective, the response surface
procedure was selected due to the useful curve fitting of multivariable models. Based
on this procedure, a model with a determination factor of 54.89% could be considered as
adequate due to its proceeds from real sample data in 163 case studies. The model obtained
is shown in Equation (1):

TA = 1085 − 62 · ST − 0.75 · CY + 57.8 · WF − 105.9 · SC − 67.7 · V − 86.7 · N − 14.1 · L + 0.42 · GT +
+ 18.3 · NC + 0.2 · MNC + 0.279 · ST2 + 0.000109 · CY2 − 0.232 · WF2 + 0.156 · SC2 + 0.353 · V2 −
− 0.00479 · L2 − 0.0464 · NC · NC + 0.078 · MNC2 + 0.0300 · ST · CY + 1.36 · ST · WF − 1.96 · ST · SC +
+ 1.11 · ST · V − 0.89 · ST · N + 0.0411 · ST · L − 0.00110 · ST · GT − 0.165 · ST · NC −
− 1.020 · ST · MNC − 0.0295 · CY · WF + 0.0545 · CY · SC + 0.0308 · CY · V + 0.0420 · CY · N +
+ 0.00730 · CY · L − 0.000222 · CY · GT − 0.0086 · CY · NC + 0.0001 · CY · MNC + 0.019 · WF · SC −
− 0.377 · WF · V + 0.013 · WF · N + 0.0416 · WF · L − 0.00084 · WF · GT − 0.120 · WF · NC +
+ 0.047 · WF · MNC + 0.213 · SC · V + 1.178 · SC · N − 0.0324 · SC · L + 0.00133 · SC · GT −
− 0.068 · SC · NC − 0.153 · SC · MNC + 1.110 · V · N − 0.100 · V · L + 0.00430 · V · GT +
+ 0.042 · V · NC + 0.474 · V · MNC − 0.144 · N · L + 0.00232 · N · GT + 0.009 · N · NC −
− 0.061 · N · MNC + 0.000093 · L · GT + 0.0326 · L · NC − 0.0239 · L · MNC −
− 0.000102 · GT · NC + 0.00170 · GT · MNC − 0.072 · NC · MNC

(1)

If we try to define a model that incorporates the human factor, a better equation is
obtained with a higher determination factor of 62.51, as we can see in Equation (2):

TA = 2713 + 14 · ST − 2.55 · CY + 59.9 · WF − 112.4 · SC − 102.7 · V − 8.7 · N + 3.90 · L − 0.204 · GT −
− 7.3 · CA − 13.9 · MNC + 0.438 · ST2 + 0.000601 · CY2 − 0.150 · WF2 + 0.303 · SC2 −
− 0.202 · V2 − 0.000366 · L2 + 2.111 · CA2 + 0.023 · CMN2 − 0.0087 · ST · CY + 0.88 · ST · WF −
− 1.35 · ST · SC + 1.41 · ST · V − 0.81 · ST · N + 0.0416 · ST · L − 0.001512 · ST · GT −
− 2.33 · ST · CA − 0.869 · ST · MNC − 0.0306 · CY · WF + 0.0581 · CY · SC + 0.0496 · CY · V +
+ 0.0021 · CY · N − 0.00165 · CY · L + 0.000090 · CY · GT + 0.0012 · CY · CA +
+ 0.0081 · CY · MNC − 0.236 · WF · SC − 0.422 · WF · V + 0.255 · WF · N − 0.0087 · WF · L +
+ 0.00062 · WF · GT + 0.862 · WF · CA + 0.298 · WF · MNC + 0.303 · SC · V + 0.596 · SC · N −
− 0.0452 · SC · L + 0.00052 · SC · GT − 1.073 · SC · CA − 0.225 · SC · MNC +
+ 0.869 · V · N − 0.0654 · V · L + 0.00335 · V · GT + 0.284 · V · CA + 0.025 · V · MNC −
− 0.058 · N · L + 0.00141 · N · GT + 0.829 · N · CA + 0.340 · N · MNC + 0.000057 · L · GT +
+ 0.0456 · L · CA − 0.1173 · L · MNC + 0.00040 · GT · CA + 0.00249 · GT · MNC − 0.380 · CA · MNC

(2)

In this sense, human factor allows an increase in the accuracy of the developed model
and to differentiate the approach accidents to the others. Despite this, results indicate that
the accuracy and, in consequence, its human factor scale, must be improved, therefore
changing the simple scale usually employed in most of the CIAIM reports to a more
in-depth scale allows us to improve the accident classification.

Finally, it is interesting to highlight that these models include aspects like wind forces,
among other variables, as an improvement of the limitations defined in previous works [12].
It is true that, like in other studies [14], the determination factor must be improved in future
analysis and it must be done paying special attention to the influence of the human factor
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in some accidents, as it was concluded previously in agreement with the more recent
research lines [29,30].

As an example of future study, a final model was developed. In this sense, an analysis
of the more representative variable (ship length) showed that it is in fishing vessels (with
a length below 40 m) where most of the values are centered. In consequence, a decrease
of model definition is concluded at higher ship lengths due to a lack of a representative
number of accidents of ships in this ship length range.

If we now simplify this data analysis to the most common vessel (fishing are 96 cases of
163 analyzed) just excluding two ambiguous accidents (sinking and operational accident),
the model increases its precision to a determination factor of 0.83, see Equation (3).

TA = −2727 + 2.99·CY + 33.1·WF − 192.2·SC–102·V + 33.4·N + 18.2·L − 1.86·GT + 40.8·CA − 80.2
·MNC − 0.000812·CY2 − 0.296·WF2 − 0.204·SC2 − 0.226·V2 − 0.0100·L2 − 0.000273
·GT2 + 2.59·CA2 + 0.047·MCN2 − 0.0169·CY·WF + 0.0978·CY·SC + 0.0516·CY·V
− 0.0194·CY·N − 0.00922·CY·L + 0.000950·CY·GT − 0.0275·CY·CA + 0.0425·CY
·MNC + 0.443·WF·SC + 0.254·WF·V − 1.003·WF·N − 0.076·WF·L + 0.0044·WF·GT
+ 1.044·WF·CA + 1.076·WF·MCN − 1.065·SC·V + 1.385·SC·N + 0.241·SC·L
− 0.0175·SC·GT − 2.044·SC·CA − 1.135·SC·MCN + 0.295·V·N + 0.152·V·L
− 0.0225·V·GT + 0.945·V·CA − 0.737·V·MNC + 0.168·N·L − 0.0420·N + 2.084·N
·CA − 0.119·N·MCN + 0.00651·L·GT − 0.180·L·CA − 0.296·L·MCN + 0.0156·GT
·CA + 0.0157·GT·MCN + 0.13·CA·MCN

(3)

Finally, excluding operational accidents, a determination factor of 0.90 is obtained
with 76 accidents analyzed, which are half of the sampled data, see Equation (4).

TA = −7088 + 7.44·CY − 122·WF + 186·SC − 138·V − 97·N + 9.8·L + 2.62·GT − 138·CA + 42.7
·MCN − 0.00194·CY2 + 0.501·WF2 + 0.891·SC2 − 0.229·V2 + 0.0423·L2 + 0.000712
·GT2 − 0.135·MCN2 + 0.0582·CY·WF − 0.092·CY·SC + 0.070·CY·V + 0.0474·CY·N
− 0.0071·CY·L − 0.00093·CY·GT + 0.0668·CY·CA − 0.0180·CY·MCN − 0.71·WF·SC
+ 0.479·WF·V − 1.86·WF·N + 0.187·WF·L − 0.0432·WF·GT + 0.71·WF·CA + 1.858
·WF·MCN − 1.15·SC·V + 1.91·SC·N + 0.285·SC·L − 0.0005·SC·GT − 3.14·SC·CA
− 1.61·SC·MCN − 1.36·V·N + 0.467·V·L − 0.0760·V·GT + 1.07·V·CA − 1.134·V
·MCN + 0.417·N·L − 0.1075·N·GT + 5.80·N·CA − 0.86·N·MCN − 0.0107·L·GT
− 0.038·L·CA + 0.032·L·MCN − 0.0303·GT·CA − 0.0156·GT·MCN − 2.53·CA·MCN

(4)

From these last models, it can be concluded that an adequate scale in accident reports
and an adequate variables selection may allow researchers to define highly accurate models.
What is more, the minimum number of ships that suffer an accident must be defined to
prevent modelling accuracy problems. These are really interesting indications for future
research works about ship accidents.

3.4.2. Relation between Variables and Scales Employed

In the present section, different models to relate implied variables are developed and
shown in Table 6 with the aim to simplify the previous accidents models of Equations (1)–(4).
For instance, from Table 1, it was obtained that sea conditions are related to the wind force
and now a model with a determination factor of 60% was obtained. It is in accordance with
the previous relation between Beaufort and Douglas scales shown in Table A8 (Appendix A)
and is a good proof of an adequate variable analysis and modelling. Another interesting
model is that which relates the crew member and the ship dimensions with a determination
factor of 79.15, in agreement with common sense and international standards requirements.

Despite this, results indicate an inadequate model to relate the construction year
and the minimum crew members to identify types of accidents. As it was commented
in previous sections, the type of accident is, sometimes, a little ambiguous and the same
happens with the minimum number of crew members (just meets (1) or does not meet (2)).
Due to the information from CIAIM reports, a better understanding of these accidents and
an improvement of these scales must be developed in the future.
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Table 6. Models that relate main variables.

Related Variables Model Determination
FACTOR (%)

SC and WF SC = 0.390 + 0.604 WF + 0.0021 WF2 59.12

GT, L, B and CM CM = −0.32 + 0.180 L + 0.536 B + 0.00009 GT − 0.00353 L2 − 0.101 B2 + 0.0327 L B +
0.000007 L GT + 0.000127 B GT

79.15

TA, MNC TA = 7.86 − 2.07 MNC + 0.135 MNC2 21.18
TA, MNC, CY TA = 254 + 11.6 MNC − 0.31 CY + 0.185 MNC2 + + 0.000092 CY2 − 0.0070 MNC CY 28.00

TA, CY TA = 454 − 0.50 CY + 0.000136 CY2 4.99

4. Conclusions

In the present work, a case study about ship accidents in the Spanish SAR territory
was conducted due to the lack of similar research works about this in this region. Despite
the fact that a similar analysis was employed as that in previous case studies [16,32,33],
in our case, it was done with more than two related variables. In consequence, the VCH
square method was replaced with the Analysis of Variance, allowing for the definition
of the relation between more numbers of variables for the particular Spanish Search and
Rescue (SAR) sea regions. What is more, the importance of each of the three more relevant
variables for each type of accident was defined by the Bayesian networks procedure. Finally,
different deterministic models based on the variables identified were developed to show
the feasibility of a deterministic model in a dynamic process. In consequence, a more
in-depth analysis than before was done showing the sensibility of each implied variable to
determine the more probable expected type of accident and the relevance of each variable
to each type of accident. The main conclusions can be defined as:

1. The most relevant variables to identify the more probable type of accident and their
average values were identified. In this sense, weather conditions do not have any kind
of effect over analyzed accidents, in disagreement with previous works. Wind direction
does not influence the type of accident or other parameters, and wind intensity is of
interest and related to the sea condition. This effect is a consequence of the particularities
of the region of study. The ship length and the year of construction were identified
as other important parameters, which exert a clear effect over ships accidents (except
some of type a2). This must be related to the standards of each country allowing the
modification of the working life of ships higher than 20 years in this region.

2. It is possible to define different multinomial models that let us predict the type of
accident in a deterministic way, that were developed based on the most relevant
variables employed in accidents reports.

3. Improvements in accident reports and its scales are proposed, and common classifica-
tory limits to define ship age, ship length, and crew members must be employed to
compare results of different research works. What is more, a minimum number of
accidents analyzed per each ship type must be defined.

Finally, it is of interest to highlight that this initial study will be the base case to
predict the occurrence of accidents when the main variables of the problem change. In this
sense, future works based on neural networks for clustering and accident modelling and
prediction must be done to define the characteristics of the safest ship.
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a10 Operational accident
a2 Flooding
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CY Year of build
DAMA A coding system agreed in 1990 by the Scandinavian countries for the registration

and analysis of marine accidents.
FRAM Functional Resonance Accident Model
GRT Gross Register Tonnage
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SAR Search and Rescue
SC Sea condition
SEM Structural Equation Modelling
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ST Type of ship
TA Type of accident
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WD Wind direction
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Appendix A. Variables and Its Codes

Table A1. Ship type code.

Code Ship Type

1 Extraction Platforms and Auxiliary Supply vessels
2 Passenger and/or cargo vessels
3 Fishing vessels
4 Fishing and Aquaculture Auxiliary Boats
5 Tugboats and auxiliary boats of the Port Service
6 Commercial Yachts
7 Recreational Boats

8 Vessels of Public Organizations
(National or Autonomous Communities)

9 Provisional List of Vessels under Construction

Table A2. Type of accident code.

Code Type of Accident

1 Contact
2 Flooding
3 Grounding
4 Collision
5 Fire
6 Capsizing
7 List
8 Stranded
9 Loss of Stability

10 Operational Accident

Table A3. Code of minimum crew members’ requirement.

Code Denomination

One ship involved Two ships involved
1 Meets -
2 Do not meet -
3 - One does not meet
4 - Two do not meet
5 - Two meet

Table A4. Code of visibility level.

Code Visibility Level

1 Very Bad (less than 1000 m)
2 Bad (between 1000 m and 2 nautical miles)
3 Moderate (between 2 nautical miles and 5 nautical miles)
4 Good (more than 5 nautical miles)

Table A5. Code of time period in which the accident occurs.

Code Period of Time

1 Day
2 Night



J. Mar. Sci. Eng. 2021, 9, 192 18 of 21

Table A6. Code of human factor influence.

Code Human Factor Conditions

1 Human factor influences the accident
2 Human factor does not influence the accident
3 Doubtful

Table A7. Code of wind velocity in accordance with the Beaufort scale.

Wind Force (Code) Denomination
Velocity

(km/h) Knots

0 Calm 0–2 Till 1
1 Light air 2–6 1–3
2 Light breeze 7–11 4–6
3 Gentle breeze 12–19 7–10
4 Moderate breeze 20–29 11–16
5 Fresh breeze 30–39 17–21
6 Strong breeze 40–50 22–27
7 High wind 51–61 28–33
8 Gale 62–74 24–40
9 Strong gale 75–87 41–47
10 Storm 88–101 48–55
11 Violent storm 102–107 56–63
12 Hurricane force >118 >64

Table A8. Code of sea conditions in accordance with the Douglas scale.

Sea Conditions (Code) Douglas Scale Wave Height
Beaufort Scale(m) (ft)

0 Calm (Glassy) No wave 0
1 Calm (rippled) 0–0.10 0.00–0.33 1–2
2 Smooth 0.10–0.50 0.33–1.64 3
3 Slight 0.50–1.25 1.6–4.1 4
4 Moderate 1.25–2.50 4.1–8.2 5
5 Rough 2.50–4.00 8.2–13.1 6
6 Very rough 4.00–6.00 13.1–19.7 7
7 High 6.00–9.00 19.7–29.5 8–9
8 Very high 9.00–14.00 29.5–45.9 10–11
9 Phenomenal 14.00+ 45.9+ 12

Appendix B. Results

Table A9. Identification of the accidents that can be identified as different to each other (columns)
employing Ship type as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.187 0.024 0.316 0.477 0.293 0.413 0.450
a2 0.000 0.871 0.000 0.000 0.206 0.088 0.319
a3 0.826 0.595 0.731 0.780 0.880 0.731 0.731
a4 0.319 0.030 1.000 0.177 0.074 0.092 0.062
a5 0.055 0.001 0.918 0.016 0.013 0.000 0.013
a6 0.018 0.000 0.838 0.023 0.009 0.000 0.006
a8 0.000 0.000 0.762 0.000 0.000 0.000 0.004

a10 0.000 0.001 0.789 0.001 0.000 0.017 0.002
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Table A10. Identification of the accidents that can be identified as different to each other (columns)
employing year of construction as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.212 0.000 0.000 0.000 0.000 0.000 0.000
a2 0.005 0.000 0.000 0.000 0.006 0.000 0.000
a3 0.021 0.485 0.000 0.056 0.021 0.021
a4 0.298 0.139 0.000 0.020 0.298 0.037 0.139
a5 0.001 0.069 0.000 0.000 0.001 0.000 0.003
a6 0.006 0.055 0.000 0.000 0.000 0.000 0.000
a8 0.000 0.028 0.000 0.000 0.000 0.000 0.000

a10 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Table A11. Identification of the accidents that can be identified as different to each other (columns)
employing sea conditions as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.666 0.646 0.613 0.032 0.066 0.235 0.58
a2 0.469 0.731 0.972 0.066 0.865 0.835 0.85
a3 0.441 0.299 0.736 0.736 0.152 0.736 0.590
a4 0.643 0.301 0.911 0.645 0.613 0.015 0.887
a5 0.494 0.499 0.911 0.022 0.162 0.240 0.452
a6 0.007 0.593 0.586 0.081 0.136 0.932 0.454
a8 0.687 0.289 0.911 0.204 0.917 0.283 0.097

a10 0.921 0.891 0.646 0.906 0.354 0.528 0.048

Table A12. Identification of the accidents that can be identified as different to each other (columns)
employing night or day period as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.832 0.49 0.075 0.446 0.086 0.399 0.230
a2 0.832 0.218 0.581 0.632 0.606 0.596 0.192
a3 0.211 1 0.160 0.063 0.160 0.063 0.141
a4 0.759 0.283 0.027 0.005 0.007 0.005 0.007
a5 0.483 0.350 0.004 0.000 0.000 0.000 0.000
a6 0.089 0.443 0.001 0.000 0.000 0.000 0.000
a8 0.482 0.463 0.000 0.000 0.000 0.000 0.000

a10 0.187 0.638 0.000 0.000 0.000 0.000 0.000

Table A13. Identification of the accidents that can be identified as different to each other (columns)
employing visibility as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10

a1 0.299 0.645 0.63 0.677 0.677 0.533
a2 0.859 0.449 0.459 0.881 0.779 0.343
a3 0.000 0.000 0.000 0.000
a4 0.645 0.673 0.000 0.758 0.796
a5 0.866 0.882 0.000 0.054 0.886 0.790
a6 0.683 0.803 0.752 0.275 0.108 0.211
a8 0.733 0.772 0.324 0.875 0.040 0.500

a10 0.109 0.777 0.515 0.515 0.351 0.738
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Table A14. Identification of the accidents that can be identified as different to each other (columns)
employing length as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.424 0.000 0.000 0.000 0.900 0.000 0.000
a2 0.000 0.000 0.000 0.000 0.034 0.113 0.348
a3 0.000 0.000 0.000 0.000 0.930 0.000 0.000
a4 0.000 0.000 0.000 0.000 0.178 0.000 0.000
a5 0.000 0.160 0.000 0.000 0.377 0.000 0.000
a6 0.000 0.247 0.000 0.000 0.000 0.000 0.000
a8 0.000 0.106 0.000 0.000 0.000 0.345 0.352

a10 0.000 0.144 0.000 0.000 0.000 0.680 0.142

Table A15. Identification of the accidents that can be identified as different to each other (columns)
employing minimum crew members as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.025 0.052 0.18 0.003 0.003 0.002 0.001
a2 0.031 0.314 0.009 0.226 0.227 0.401 0.346
a3 0.144 0.257 0.041 0.46 0.041 0.009 0.009
a4 0.001 0.002 0.26 0.001 0.001 0.001 0.000
a5 0.000 0.094 0.004 0.000 0.000 0.000 0.000
a6 0.000 0.091 0.004 0.000 0.000 0.000 0.000
a8 0.000 0.182 0.000 0.000 0.000 0.000 0.000

a10 0.000 0.152 0.000 0.000 0.000 0.000 0.000

Table A16. Identification of the accidents that can be identified as different to each other (columns)
employing human factor as dependent variable.

a1 a2 a3 a4 a5 a6 a8 a10
a1 0.000 0.000 0.000 0.000 0.000 0.000
a2 0.157 0.497 0.109 1.000 0.318 0.396
a3 0.354 0.633 0.650 0.818
a4 0.528 0.633 0.477 0.285
a5 0.253 1.000 0.939 0.287 0.630
a6 0.259 0.000 0.000 0.000 0.742 0.768
a8 0.462 0.000 0.000 0.522 0.742 0.467

a10 0.446 0.506 0.939 0.630 0.500 0.365
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