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Abstract: This study investigates the trophic diversity of fishes living in a meadow of Caulerpa prolifera
on a bimonthly basis between May 2006 and April 2007 in a semi-enclosed coastal marine ecosystem
of the Mediterranean Sea (Elounda Bay, Crete Island). The study area is shallow and protected from
waves, and it is covered by a C. prolifera bed, characterized by high organic input and a highly diverse
macrobenthic community. Feeding patterns of the fish, investigated on the basis of stomach content
analyses, were described in terms of numerical abundance and frequency of occurrence of prey
taxa. A total of 1642 fish individuals, belonging to 17 species, were examined. In total, 45,674 prey
individuals were identified belonging to 110 prey taxa, most of which were Malacostraca including
their larvae and Copepoda (41,175 individuals identified to 71 taxa). Four different trophic groups
were identified: herbivorous, pelagic, benthic (hyperbenthic) and piscivorous. Trophic diversity
patterns of the fish species studied were also compared to the relative availability of macrobenthic
and zooplanktonic taxa during the same period in the study area. The coexistence of many different,
mostly benthic but also pelagic, fishes and their juveniles implies their high trophic flexibility, which
is probably important for their survival in this particular habitat. Results of the present study provide
basic knowledge on trophic diversity and interactions in the marine ecosystem and, therefore, some
evidence as to the protection value of this particular habitat, which is essential for the implementation
of a multispecies approach to decision-makers and managers of fisheries sources of the region.

Keywords: marine demersal fish; fish juveniles; nursery ground; feeding patterns; trophic diversity;
stomach content analysis; Caulerpa prolifera; prey selectivity; prey availability; eastern Mediterranean

1. Introduction

Though coastal marine habitats are very productive and diversified ecosystems, they
are under continuous pressure and threat due to human activities [1]. Most of these habitats
provide high food resource availability and protection against predators for the inhabiting
biota, thus supporting highly diversified and abundant populations of invertebrates and
fish throughout their entire life history [2]. Because of their high diversity and productivity,
these nearshore marine ecosystems are considered to be “nursery grounds” [2] or “effec-
tive juvenile habitats” [3]; therefore, their protection, management and conservation are
considered to be of high importance.

Feeding ecology of marine fishes utilizing specific habitats highlight their role in eco-
logical interactions, community structure and function of marine ecosystems [4–6]. Despite
its value and the progress achieved through the development of molecular techniques and
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modelling tools, the traditional approach, i.e., taxonomic identification of prey taxa, for
studying this field is still scanty. However, it comprises basic knowledge and, therefore,
it is essential in order to have a comprehensive view leading to holistic management
approaches and conservation strategies [7].

Many studies on feeding ecology have been conducted for demersal fish assemblages
e.g., [4,8,9]. However, far fewer refer to the trophic structure of fishes inhabiting vegetated
systems (e.g., seagrass meadows), which are considered to play a fundamental role in
maintaining populations of commercially exploited fish and invertebrate species by provid-
ing nursery areas for the successful development of juveniles, feeding areas for different
life-history stages and refuges from predation, e.g., [10–13]. Moreover, research on fish
feeding habits or preferences in relation to their prey availability are relatively limited,
e.g., [14–18]. In particular, marine macroalgal-dominated habitats have so far received very
little attention [19,20]. Furthermore, there are just a few studies on trophic structure of
fish species associated with habitats invaded by non-indigenous macroalgal species as this
knowledge is important to track their impacts [21–24].

The present study investigates the trophic diversity of the fish species associated with
a Caulerpa prolifera (Forsskål) bed in the semi-enclosed Elounda Bay of the Cretan Sea
(eastern Mediterranean). Although C. prolifera beds have been recorded in many coastal
areas of the Mediterranean Sea, there are just a few studies dealing with the associated
macrofaunal and fish assemblages [19,20]. These assemblages seem to be comparable, in
terms of species richness, to those of seagrass meadows, verifying the hypothesis that the
physical structure per se is one of the main factors affecting them. Moreover, studies on
the feeding habits of fish referring to the marine environment of the island of Crete are
scarce [4,18,25]. The study area is characterized by high organic input and hosts a highly
diversified macrobenthic community [20]. This shallow embayment has proven to be an
important nursery ground for fishes, many of which represent main target species for
commercial fisheries, thus contributing to the conservation and maintenance of marine
biological resources of the wider area [19,26]. The main objectives of the study were (a)
to explore the feeding patterns of the fish species, mostly benthic but also pelagic, and
their juveniles in the study area and identify different trophic groups; (b) to investigate
differences in the diet of each fish species in relation to body size and temporal occasion;
and (c) to examine prey selectivity of fishes taking into account the macrobenthic and
zooplanktonic taxa availability in the study area.

2. Materials and Methods
2.1. Study Area

Elounda Bay (total area: 6.5 km2) is a shallow, semi-enclosed coastal marine ecosystem
relatively isolated from the outer area of Mirabello Bay (Figure 1). The present study was
carried out in the inner muddy shallow part of the Bay, characterized by the presence of
a continuous C. prolifera meadow and covering an area of 4.7 km2, and depths ranging
between 2 and 9 m (Figure 1). The environmental variables in the water column and the
sediment of the study area were described in detail in [20]. However, it should be noted that
the study area is characterized by strong seasonality, with sea water temperatures ranging
from 13 ◦C in winter to 25 ◦C in summer. Nutrients and organic matter concentrations
indicate an oligotrophic to mesotrophic marine ecosystem without any severe impacts,
despite the tourist activities taking place in the area [27].

2.2. Sampling Design and Techniques

Fish samples were collected with a boat seine during daylight. Each haul swept an
area of approximately 0.006 km2. A single haul was taken in each of the following months:
May 2006, July 2006, September 2006, November 2006, February 2007 and April 2007
for a total of six sampling hauls at one sampling site (Figure 1). The seine net was used
(cod-end mesh size: 8 mm bar length), operated from a local fishing boat to sample the
fishes. All the captured fish were identified to species level (Table 1), and a subsample
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of thirty specimens of each species per haul (where possible) was randomly selected for
stomach content analysis. The sample material was then fixed in 10% formalin on board
ship and transferred to the laboratory for further analysis.
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Figure 1. Map showing the study area of Elounda Bay. Asterisk represents the sampling site. Depth
contours of 5 m, 10 m and 20 m are also indicated.

Table 1. Fish species and number of specimens examined for stomach content analysis during all six sampling occasions in the study
area. The numbers of empty stomachs, in terms of vacuity index, are also shown. Size range of the total length (TL) of the fish
specimens is given. Lm: length at first maturity for each species is also included.

Family Fish Species Size Range of
TL (mm)

No Indi-
viduals

Lm
(mm)

Juveniles
(%)

Vacuity
Index (%)

Number of
Prey Taxa

Atherinidae Atherina boyeri Risso, 1810 52.55–90.25 119 58 5.9 5.00 11

Blenniidae Parablennius tentacularis
(Brünnich, 1768) 38.95–97.44 126 75–134 24–82 12.70 36

Centracanthidae Spicara maena (Linnaeus, 1758) 82.47–108.23 61 103 98.4 6.56 14
Centracanthidae Spicara smaris (Linnaeus, 1758) 48.88–114.27 180 91 92.8 1.11 13

Gobiidae Gobius niger Linnaeus, 1758 34.72–125.36 177 54–80 61–100 2.26 56

Labridae Symphodus cinereus (Bonnaterre,
1788) 45.80–100.70 102 40 0.0 3.92 35

Monacanthidae Stephanolepis diaspros
Fraser-Brunner, 1940 31.72–51.48 2 80–106 100.0 0 2

Mullidae Mullus barbatus Linnaeus, 1758 51.70–173.35 150 111 94.0 1.33 69

Mullidae Mullus surmuletus Linnaeus,
1758 54.12–185.90 41 161 97.6 0 36

Serranidae Serranus hepatus (Linnaeus,
1758) 30.01–90.72 167 78 97.6 8.98 51

Siganidae Siganus luridus (Rüppell, 1829) 31.03–112.06 100 142 100.0 31.00 1
Sparidae Boops boops (Linnaeus, 1758) 53.55–162.07 152 143 99.3 3.95 23

Sparidae Diplodus annularis (Linnaeus,
1758) 35.90–99.53 46 112 100.0 2.17 26

Sparidae Pagellus acarne (Risso, 1827) 44.71–93.73 126 160 100.0 4.76 23
Sparidae Pagrus (Linnaeus, 1758) 39.10–162.08 46 266 100.0 6.52 23

Sphyraenidae Sphyraena sphyraena (Linnaeus,
1758) 85.40–245.24 46 230–260 100.0 13.04 2

Tetraodontidae Lagocephalus sceleratus (Gmelin,
1789) 111.38 1 433 100.0 0 2

Total 1642 0–31 110

After sampling, all individuals were measured to the nearest mm (total length, TL)
and weighed to the nearest 0.01 g in the laboratory. Juveniles were defined on the basis of
individual body size (Lm: length at first maturity) for each species, which was taken into
account according to previous work [28–30]. Size range of Lm was included only for Gobius
niger, Parablennius tentacularis, Sphyraena sphyraena and Stephanolespis diaspros according to
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references from different areas of the Mediterranean Sea or due to different sizes of sexes.
The stomach and intestine, or in the case of labrid species (which generally have a poorly
defined stomach) the anterior half of the alimentary tract, were then dissected and wet-
weighed. The organisms found as prey in the fish stomachs were initially identified to major
taxonomic prey categories (Appendix A) and also counted. In particular, macrobenthic
Polychaeta, Mollusca and Crustacea were subsequently identified to species level, where
possible, and also counted (Appendix B).

Data of macrobenthos and zooplankton collected during the same sampling occasions
in the study area are included in order to determine the availability of prey and thus
to be able to determine the selectivity of the fishes under examination. Three tows of
approximately 30 m length were performed along the study area during each sampling
occasion using an epibenthic sledge (0.5 mm mesh size) in order to sample macrofauna.
Sampling design and data on macrobenthos are given in detail in [20]. Five vertical
hauls were also taken from ~1 m above the seabed to the water surface on each sampling
occasion using a plankton net (0.5 mm mesh size) in order to collect zooplankton [27]. The
material collected was immediately fixed with 10% formalin and sorted under a dissecting
microscope upon return to the laboratory.

2.3. Data Analysis

The following three indices were used for the estimation of the contribution of each
prey item to the diet of each fish species and characterization of the trophic group: (a)
percentage numerical abundance (% N), i.e., the number of each prey taxon in all stomachs
(non-empty) expressed as a percentage of the total number of prey taxa in all stomachs;
(b) percentage frequency of occurrence (% F), i.e., the number of stomachs in which a prey
taxon was found as a percentage of the total number of stomachs (non-empty); (c) the
vacuity index (% VI), i.e., the number of empty and nearly empty stomachs as a percentage
of the total number of stomachs analyzed [31–33]. On the basis of % N contribution of each
prey, the fractional trophic level (TROPH) of the species was estimated, using the routine
for qualitative data of TrophLab (ICLARM: Manila, Philippines) [34]. TROPH is estimated
as the contribution of the TROPH values of each prey (TROPHj) in the diet, increased by
one (1) and is calculated according to the formula:

TROPHi = 1 +
G

∑
j=1

DCij × TROPHj

where DCij is the % N of prey (i) in the diet of consumer (i).
A cluster analysis (using group average linkage) was performed using the Bray–Curtis

similarity coefficient [35] based on numerical abundance matrices of prey taxa (species
where possible) found in the stomachs of the fish species examined in order to identify
different trophic groups. The data were transformed to log (x + 1) prior to analysis. For the
detection of significant differences between diets of fish species, the one-way analysis of
similarity test (ANOSIM) was applied [36]. The similarity percentage (SIMPER) procedure
was applied for the investigation of prey taxa contribution to the similarity of the above-
mentioned groups. Because of the low number of individuals, the stomach contents of fish
species L. sceleratus (1 specimen) and Stephanolepis diaspros (2 specimens) were excluded
from the multivariate analysis. Siganus luridus and Sphyraena sphyraena were also excluded.
Siganus luridus was excluded as its prey, i.e., fragments of C. prolifera, cannot be expressed
by relative abundance and frequency of occurrence. Shyraena sphyraena was also excluded
as all individuals were found only during one sampling occasion (July 2006, except for one
specimen caught in November 2006) feeding almost exclusively on fishes. The PRIMER
v6 (Plymouth, UK) statistical software package was used for the above-mentioned data
analyses. In order to investigate prey selectivity of the fish species, percentage numerical
abundance (%N) of the taxa collected in the study area with the sledge and the plankton
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net during the same sampling occasions was compared with the percentage numerical
abundance (%N) of the prey taxa found in the fish stomachs.

3. Results

A total of 1642 individual fishes, belonging to 17 species, were examined (Table 1). A
total of 45,674 prey individuals were identified to 110 prey taxa (Appendix B). The highest
diversity of prey taxa (69) was observed for Mullus barbatus, while the highest number
of prey individuals (11,666) was found in the stomachs of S. smaris (Table 1). The dietary
composition of the fish species consisted mostly of crustacean taxa as 41,175 individuals
were identified to 71 taxa of Malacostraca (Appendix B).

The similarity dendrogram, based on the numerical abundance (%N) matrices of the
prey taxa in the stomachs of the fish species, comprised three different trophic groups
based on the types of food examined (Figure 2): (i) Pelagic trophic group included species
Boops boops, S. smaris, S. maena, Atherina boyeri, Diplodus annularis and P. acarne. The diet
of these fish species was characterized by planktonic copepods according to the results of
SIMPER analysis (Table 2). (ii) Benthic trophic group I included the species M. barbatus, M.
surmuletus, Gobius niger, Parablennius tentacularis, Symphodus cinereus and Serranus hepatus.
The diet of most of these fish species consisted of a broad range of prey taxa (Table 2).
However, M. barbatus and G. niger seem to have a very specific diet. (iii) The diet of species
Pagrus pagrus comprised benthic trophic group II based on decapods. An ANOSIM test
showed differences which were statistically significant between the three trophic groups
(R = 0.52, p < 0.001).
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Table 2. Results of SIMPER analysis.

Taxa Averaged Numerical
Abundance Averaged Similarity Contribution %

Group 1 Average similarity: 41.59
Copepoda 59.37 38.15 91.71

Group 2 Average similarity: 18.46
Copepoda 16.15 4.00 21.69

Larvae insects 13.72 2.26 12.27
Aora spinicornis 11.20 2.17 11.74
Leptochelia sp. 4.67 1.55 8.38

Caprella acanthifera discrepans 3.09 1.12 6.04
Microdeutopus stationis 3.20 1.05 5.69

Cymodoce truncata 5.20 1.00 5.42
Varia 3.32 0.91 4.92

Microdeutopus versiculatus 1.31 0.38 2.04
Caprella acanthifera 2.61 0.38 2.03

Phtisica marina 2.77 0.36 1.96
Fish 1.86 0.36 1.93

Paguristes syrtensis 1.83 0.33 1.81
Abra alba 1.83 0.30 1.64

Ericthonius sp. 1.15 0.29 1.56
Caprella rapax 1.85 0.23 1.22

Group 3 Average similarity: 12.52
Varia 26.17 6.32 50.46

Paguristes syrtensis 17.03 3.78 30.16
Liocarcinus navigator 7.64 1.82 14.52

The composition of diet of the fish species studied, in terms of numerical abundance
and frequency of occurrence of the major taxonomic prey categories, is shown in Appendix
A. In the same Appendix the fractional trophic levels (TROPH) of the species, as estimated
in the present study, are given with the corresponding values from FishBase [28] and
those from the Mediterranean Sea [4]. Crustacean larvae were the dominant prey taxon
(85% N and 97% F) for the small individuals of B. boops caught in July (Appendix A)
despite their relatively low availability in the study area (Figure 3). On the contrary,
copepods were its dominant prey (maximum values of 79.4–90.3% N and 92.3–96.6% F)
when larger individuals of this species were caught (Appendix A). Individuals of S. smaris
fed almost exclusively on copepods (Appendix A), the most abundant planktonic animal
group in the study area (Figure 3). Copepods and crustacean larvae were also among the
dominant components of the diet of individuals of A. boyeri and S. maena (Appendix A).
Small individuals of the fish species P. acarne (Appendix A) preyed almost exclusively on
copepods (78.2–99.5% N and 100% F). The few larger ones caught in February seemed
mostly to prefer amphipods and tanaids (Appendices A and B).
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The fish species M. barbatus, G. niger, P. tentacularis, S. hepatus, S. cinereus and M.
surmuletus fed on a broad variety of dietary items; however, each species was characterized
by its specific prey taxa (Appendices A and B). The smallest individuals of M. barbatus
preyed mostly on copepods (41.5–91.2% N and 72.4–86.2% F). The common prey items
for larger individuals of this species caught in May and September were polychaetes,
copepods, bivalves and amphipods. The dominant prey for G. niger was insect larvae
(35.6–78.8% N and 43.3–88.9% F, Appendix A).

The bulk of the diet of P. tentacularis, S. hepatus, S. cinereus and M. surmuletus was made
up mostly of malacostracans (Appendices A and B). In particular, amphipods made the largest
contribution to the diet of P. tentacularis (maximum values of 83.8–85.9% N and 81.8–100% F),
especially in November when the smallest individuals were caught (Appendices A and B).
Amphipods also made a large contribution to the diet of small individuals of S. hepatus
(maximum values of 71.5–82.9% N and 81.5–100% F, Appendices A and B). The individuals
of S. cinereus fed mostly on amphipods and often on tanaids (31.9–83.8% N and 82.1–100% F,
10.1–29.7% N and 60.7–81.8% F, respectively, Appendices A and B). The small individuals of
M. surmuletus, which were caught especially in July (Appendix A), mostly fed on copepods
(88.8% N and 46.7% F). Larger specimens of this species caught in September and February
seemed to prefer decapods followed by amphipods (Appendices A and B).

As far as S. luridus is concerned, fragments of C. prolifera dominated its diet, except for a
few amphipods. Amphipods, tanaids and copepods were common prey items for the small
individuals of D. annularis found in the study area, while decapods were common in the
stomachs of the small individuals of P. pagrus (Appendices A and B). Stomach contents of
the small individuals of the species S. sphyraena examined in July were almost exclusively
dominated by other fishes (98% N and 97% F). Finally, three small individuals of the non-
indigenous species L. sceleratus (TL = 111.38 mm) and S. diaspros (31.72 mm and 51.48 mm)
were found to feed on small crustaceans (e.g., Leptochelia sp. and Microdeutopus sp.).

4. Discussion

The present study attempts to shed some light on the trophic diversity of mostly
benthic but also pelagic fish species associated with a C. prolifera bed in a coastal marine
ecosystem of the Mediterranean Sea. The presence of a C. prolifera meadow in Elounda Bay
has led to the settlement of a highly diversified macrobenthic faunal community [20] and
relatively abundant zooplanktonic populations [27]. All these faunal organisms support
an important feeding ground for several fish species and their juveniles living within this
particular habitat. Two main strategically different trophic groups can be distinguished
in the study area: a) fishes that had a relatively narrow food spectrum concerning mainly
planktonic copepods, and b) fish species that prefer feeding on a highly diverse dietary
composition consisting mostly of benthic and especially hyperbenthic small crustaceans
(e.g., amphipods, isopods, tanaids), apart from Pagrus pagrus which seems to prey almost
exclusively on decapods [37]. Siganus luridus, regardless of its size, feeds on fragments
of algae [38,39] such as C. prolifera in the study area. The few amphipods found in the
stomachs should be considered as accidental prey, having been consumed along with the
algae [39]. Meanwhile, juveniles of the piscivorous predator S. sphyraena [40,41] occurred
only sporadically in the study area. Temporal variations of the diet were also observed in
most of the fish species most probably due to the important factors of fish body size and
prey availability in the marine environment [15,17].

In general, the fractional trophic levels of the species studied fell within the range of
previously reported ones [4]. Only in the case of the two Spicara commercial species the
values estimated here were lower than those previously reported, most probably due to a
strong preference towards highly available Copepoda and confirming their pelagic trophic
behavior [18,42–44]. This preference further supports the hypothesis on the importance of
these two species on the flow of energy in the food web [45]. A copepod-based diet was
also characteristic of commercial species A. boyeri and B. boops [46–48], as prey abundance is
considered to be one of the major factors influencing the choice of prey [14,17]. However, in
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July, their diet was dominated by crustacean larvae, indicating food selection that often occurs
for available prey but of low abundance in the marine environment [49,50]. Though P. acarne
and D. annularis are not considered to be pelagic feeders [18,42,44,51,52], their juveniles found
in the study area fed on planktonic copepods probably as an effect of body size [15].

The residents G. niger and P. tentacularis of Elounda Bay appeared to be opportunistic in
their trophic behavior as they consume a wide food spectrum [18,29,42,53]. Mullus barbatus
is also characterized by opportunistic feeding habits, while M. surmuletus seems to have a
more specialized feeding behavior [18,53–58]. However, most of the individuals of these
two commercial species examined in Elounda Bay were juveniles, especially in July, and the
most frequent and abundant prey items in their stomachs were planktonic copepods and
small hyperbenthic crustaceans. This corresponds to a study in north Aegean Sea where
fishes in their early life history tend to a planktonic-oriented diet, regardless of their feeding
habits as adults [59]. The feeding behavior of S. cinereus and S. hepatus also indicated a
degree of opportunism exploiting the most commonly available food resources [14,17].
The few individuals of P. pagrus seem to select decapods [37] as they comprise available
prey but were of low abundance in the study area.

The juveniles of M. barbatus, M. surmuletus, P. acarne, D. annularis and the pelagic
species A. boyeri, B. boops, S. smaris and S. maena mainly consumed the same food resources,
i.e., the highly abundant planktonic copepods, which are also rich in highly unsaturated
fatty acids (HUFAs), thus more energetically profitable [60]. However, the taxonomic
identification of copepods to species level could reveal a better use of the food resources
in the marine environment for avoiding competition. Nevertheless, the extremely high
abundance of planktonic copepods precludes the assumption for food competition in the
present case, which is likely only if food resources are scarce [61]. Furthermore, the different
relative importance of prey taxa (numerical abundance and frequency of occurrence) and
the low similarity of multivariate analysis of the numerical abundance data suggest a
considerable sharing of food resources, which seems to limit inter- and intra-specific
competition in Elounda bay [62]. Though more than 300 macrofaunal taxa were identified
in the study area [20,27], only 73 were used as food items by the fish species examined
(Appendix B). Their principal prey consisted mostly of small hyperbenthic crustaceans (e.g.,
amphipods such as A. spinicornis, Caprella spp., P. marina, M. stationis, Ericthonius sp. the
tanaid Leptochelia sp. and the isopod C. truncata), confirming their role as an important link
between benthos and fish [63]. The optimal foraging theory suggests that, apart from size
and relative abundance, prey characteristics such as distribution, accessibility and mobility,
energy content and handling time determine prey profitability [64]. The preference for
hyperbenthic crustaceans in the study area can be attributed to their availability, which
is also a function of their behavior and distribution [18,63]. Hyperbenthic crustaceans are
accessible to predators as they are active either at the sediment surface or a few centimeters
above the sea floor and thus can easily be encountered, caught and preyed upon. Finally,
crustaceans are, in general, an important source of prey due to their high quality of calorific
energy for predators [65].

In conclusion, the coexistence of the different fish species and their juveniles in
Elounda Bay implies their high trophic flexibility and their ability to partition available
food resources. However, the possible interconnection between prey and predators reflects
a certain degree of opportunistic feeding, which is probably fundamental for their survival
in this particular habitat. Results of the present study concerning these fish species and
their trophic structure can be used as a proxy in other areas of the Mediterranean Sea of
similar diversity covered either by seagrass or macroalgal meadows, which also comprise
nursery grounds and refuges from predators. Moreover, Elounda Bay is a particular marine
environment threatened by tourist activities, as large boats transfer tourists to and from
Spinalonga island (see Figure 1) on a daily basis during the summer period, causing resus-
pension of the sediments that most probably have a negative effect on the conservation of
the C. prolifera bed and therefore on maintenance of its marine biological resources. Flood
events also take place in the study area occasionally. Therefore, basic knowledge (e.g.,
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area cover of C. prolifera canopy, macrofaunal and fish assemblages, trophic structure) is
essential in order to regularly monitor, protect and conserve this valuable marine ecosystem
as well as further achieve implementation of a multispecies approach for decision-makers
and managers of fisheries sources of the region.
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Appendix A

Numerical abundance (%N), frequency of occurrence (%F) and number of species of the
main taxonomic prey categories found as prey in the stomachs of the fish species examined
during the different occasions in the study area. Number of individuals with empty stomachs
is shown in parentheses. Mean total length (TL) in mm and mean wet biomass in g are also
shown per individual during each sampling occasion in the study area.
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Atherina boyeri Individuals/Juveniles 5 0 42 (6) 1 30 4 30 2 11 0
Mean TL (mm)/mean wet weight (g) 64.85/1.6 64.21/1.7 64.60/0.2 64.64/1.7 67.00/1.8

Polychaeta 0.9 10.5 0.1 6.7
Crustacea (larvae) 11.8 20.0 52.9 68.4 1.6 6.9 0.3 16.7

Copepoda 18.9 10.5 96.4 96.6 93.4 100.0
Ostracoda 0.1 3.3
Isopoda 0.5 5.3
Insecta 88.2 80.0 25.2 44.7 1.9 10.3 99.5 100.0

Insecta (larvae) 1.4 13.2
Pisces 0.2 2.6 0.1 3.3
Varia 6.0 56.7 0.5 18.2

TROPH ± SE 3.19 ± 0.39 3.08 ± 0.31 3.00 ± 0.00 3.09 ± 0.24 3.20 ± 0.40

TROPH ± SE [28] 3.20 ± 0.36

TROPH [4] 3.30

Boops boops Individuals/Juveniles 2 2 30 30 30 (1) 30 30 (4) 29 30 (1) 30 30 30
Mean TL (mm)/mean wet weight (g) 78.50/3.5 67.00/1.8 87.81/6.2 103.07/9.8 100.89/9.4 94.02/6.7

Algae + + +
Gastropoda 0.12 3.3

Bivalvia 0.12 3.3
Polychaeta 25.0 50.0 0.9 33.3 0.3 6.9 0.1 10.3 0.12 3.3

Crustacea (larvae) 50.0 100.0 84.6 96.7 29.4 82.8 4.1 30.8 3.9 69.0 3.25 46.7
Copepoda 12.6 56.7 45.9 44.8 79.4 92.3 90.3 96.6 40.4 90.0
Ostracoda 0.3 10.0 0.1 10.3 0.35 10.0
Decapoda 25.0 50.0 <0.1 3.4 0.12 3.3
Tanaidacea 0.1 6.9 0.12 3.3

Isopoda 0.3 6.7 0.3 3.8
Amphipoda 0.1 6.7 0.1 3.4 1.28 26.7
Pycnogonida <0.1 3.4

Insecta 0.6 3.8 1.28 16.7
Insecta (larvae) 0.3 3.8 <0.1 3.4

Pisces 0.3 13.3 16.4 44.8 0.3 3.8 1.97 33.3
Varia 0.9 16.7 8.1 24.1 15.0 42.3 5.3 48.3 50.9 80.0
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

TROPH ± SE 3.17 ± 0.34 3.09 ± 0.27 3.35 ± 0.36 3.09 ± 0.12 3.05 ± 0.08 3.26 ± 0.35

TROPH ± SE [28] 2.80 ± 0.00

TROPH [4] 3.12

Diplodus annularis
Individuals/Juveniles

9 (1) 9 6 6 30 30 1 1

Mean TL (mm)/mean wet weight (g) 53.63/4.3 61.98/3.5 62.80/3.2 63.91/4.0

Bivalvia 0.3 10.0
Polychaeta 1.5 16.7 0.2 3.3

Crustacea (larvae) 3.2 100.0
Copepoda 98.3 100.0 32.4 66.7 6.9 40.0 35.5 100.0
Ostracoda 5.9 16.7 0.5 10.0
Mysidacea 0.2 3.3
Cumacea 0.1 12.5

Tanaidacea 0.4 50.0 42.6 66.7 16.4 80.0 29.0 100.0
Isopoda 0.1 12.5 2.9 33.3 0.2 3.3

Amphipoda 1.1 75.0 14.7 50.0 75.3 96.7 32.3 100.0
Varia 0.2 3.3

TROPH ± SE 3.00 ± 0.00 3.22 ± 0.44 3.26 ± 0.50 3.19 ± 0.41

TROPH ± SE [28] 3.60 ± 0.00

TROPH [4] 3.19

Pagellus acarne Individuals/Juveniles 30 30 31 (1) 31 22 (5) 22 14 14 30 30
Mean TL (mm)/mean wet weight (g) 60.07/1.8 65.01/3.3 68.89/3.8 86.18/7.3 61.77/4.4

Gastropoda 0.8 26.7 1.9 37.9
Polychaeta 0.3 7.1

Crustacea (larvae) 5.7 23.3 <0.1 3.3 1.4 21.4 0.2 6.9
Copepoda 85.2 100.0 99.5 100.0 32.7 70.6 17.5 28.6 78.2 100.0
Ostracoda 0.3 10.0 0.3 33.3 9.0 71.4 3.0 34.5
Mysidacea 0.1 3.3
Tanaidacea 3.3 56.7 0.1 20.0 16.6 100.0 4.5 51.7

Isopoda 0.5 20.0 <0.1 3.3 0.3 7.1
Amphipoda 3.1 46.7 <0.1 6.7 48.5 100.0 6.7 41.4

Insecta (larvae) 1.0 3.3 67.3 82.4 6.5 21.4 0.1 3.4
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Pisces <0.1 3.3
Varia 5.5 24.1

TROPH ± SE 3.09 ± 0.16 3.00 ± 0.00 3.14 ± 0.32 3.22 ± 0.45 3.04 ± 0.17

TROPH ± SE [28] 3.80 ± 0.00

TROPH [4] 3.61

Spicara smaris Individuals/Juveniles 30 30 31 31 30 30 30 (1) 21 30 19 29 (1) 26
Mean TL (mm)/mean wet weight (g) 64.74/2.2 44.58/1.7 77.98/4.7 86.75/7.5 88.74/5.2 82.58/4.4

Gastropoda 1.3 13.3 0.1 3.6
Polychaeta 0.1 3.4 0.1 3.6

Crustacea (larvae) 7.5 53.3 0.1 6.5 0.6 40.0 0.7 17.2 <0.1 3.3 0.1 3.6
Copepoda 57.7 96.7 99.5 100.0 99.1 100.0 97.6 96.6 99.4 100.0 50.5 71.4
Ostracoda 0.4 16.1
Decapoda < 0.1 3.2
Tanaidacea 0.1 3.6

Isopoda 0.5 10.0 0.1 3.4
Amphipoda 0.2 3.3 0.1 3.4

Insecta (larvae) 32.8 76.7 0.1 3.4 0.4 23.3
Pisces 0.3 16.7 0.1 3.6
Varia 1.2 24.1 0.2 26.7 49.1 89.3

TROPH ± SE 3.12 ± 0.26 3.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 3.19 ± 0.29

TROPH ± SE [28] 3.00 ± 0.00

TROPH [4] 3.20

Spicara maena Individuals/Juveniles 30 29 30 (4) 30 1 1
Mean TL (mm)/mean wet weight (g) 93.66/8.4 93.00/8.0 82.47/5.0

Gastropoda <0.1 7.7
Polychaeta 0.4 6.7

Crustacea (larvae) 0.8 13.3 0.3 38.5
Copepoda 93.7 100.0 99.4 100.0 62.5 100.0
Ostracoda 12.5 100.0
Tanaidacea <0.1 3.8 12.5 100.0

Isopoda 1.2 3.3
Amphipoda 0.2 3.3 <0.1 7.7 12.5 100.0
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Insecta <0.1 3.8
Insecta (larvae) 0.1 3.8

Varia 3.8 20.0 0.1 7.7

TROPH ± SE 3.00 ± 0.00 3.00 ± 0.00 3.13 ± 0.31

TROPH ± SE [28] 4.20 ± 0.60

TROPH [4] 3.25

Gobius niger Individuals 30 11–25 30 8–24 30 5–26 30 7–26 27 8–25 30 4–19
Mean TL (mm)/mean wet weight (g) 63.36/2.3 64.51/2.6 66.83/4.0 62.94/1.9 61.12/2.4 76.82/4.0

Algae + +
Sipuncula 0.6 3.4

Polyplacophora 1.4 6.9
Gastropoda 3.5 20.7 2.8 13.3 0.7 3.4 0.5 3.7 1.0 10.7

Bivalvia 3.5 20.7 4.0 23.3 2.8 16.7 3.4 13.8 3.8 28.6
Polychaeta 2.9 17.2 14.9 - 9.5 46.7 7.5 31.0 5.2 37.0 1.4 14.3

Crustacea (larvae) 0.6 3.3
Copepoda 2.3 6.9 9.2 1.4 6.9 4.6 25.9 1.0 10.7
Ostracoda 0.6 3.4
Decapoda 0.6 - 1.7 10.0 2.2 13.3 1.4 6.9 1.0 7.4 1.0 10.7
Mysidacea 0.5 3.7
Cumacea 0.6 3.3 1.4 6.9 0.7 7.1

Tanaidacea 4.6 26.7 0.6 3.3 4.1 10.3 2.6 14.8 2.4 14.3
Isopoda 1.2 6.9 2.3 13.3 1.1 6.7 1.4 6.9 1.5 11.1

Amphipoda 0.6 3.4 9.2 33.3 1.1 6.7 9.6 37.9 25.8 70.4 4.8 25.0
Insecta (larvae) 78.5 58.6 35.6 43.3 78.8 83.3 63.7 72.4 55.2 88.9 74.7 82.1

Pisces 0.6 3.4 0.6 3.3 3.4 13.8 0.5 3.7 1.0 10.7
Varia 5.2 13.8 17.8 30.0 0.7 3.4 2.6 14.8 8.0 25.0

TROPH ± SE 3.26 ± 0.42 3.24 ± 0.40 3.22 ± 0.40 3.25 ± 0.43 3.21 ± 0.43 3.25 ± 0.41

TROPH ± SE [28] 3.30 ± 0.20

TROPH [4] 3.46

Mullus barbatus Individuals/Juveniles 30 29 30 30 30 22 30 (1) 30 30 (1) 30
Mean TL (mm)/mean wet weight (g) 93.83/8.0 72.02/2.3 98.59/7.6 70.62/3.0 72.8/4.7
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Mollusca 0.1 6.7
Gastropoda 0.8 3.3 5.7 13.8 0.7 6.9

Bivalvia 17.6 63.3 0.1 10.0 12.2 10.0 3.1 17.2 5.3 37.9
Polychaeta 4.2 16.7 1.1 56.7 22.2 60.0 4.1 44.8 2.6 20.7
Copepoda 5.9 10.0 91.2 80.0 24.9 30.0 41.5 72.4 59.3 86.2
Ostracoda 0.1 6.7 0.5 3.3
Decapoda 3.4 13.3 0.2 16.7 4.2 13.3 3.1 20.7
Mysidacea 7.6 30.0 0.1 10.0 0.3 3.4 0.6 13.8
Cumacea 6.7 20.0 0.1 10.0 4.8 23.3 8.5 51.7 7.7 69.0

Tanaidacea 5.0 20.0 0.3 30.0 2.6 16.7 1.3 13.8 1.1 24.1
Isopoda 5.9 23.3 1.8 63.3 6.3 23.3 1.8 20.7 1.0 20.7

Amphipoda 39.5 63.3 4.8 90.0 12.2 33.3 21.1 86.2 21.1 89.7
Pycnogonida < 0.1 3.3

Insecta (larvae) 0.8 3.3 0.5 3.3 0.3 3.4 0.1 3.4
Pisces 0.2 20.0 3.7 16.7
Varia 2.5 10.0 5.8 23.3 9.3 41.4 0.4 10.3

TROPH ± SE 3.23 ± 0.47 3.03 ± 0.12 3.18 ± 0.34 3.14 ± 0.29 3.08 ± 0.24

TROPH ± SE [28] 3.10 ± 0.10

TROPH [4] 3.23

Mullus surmuletus
Individuals/Juveniles

30 30 7 7 4 3

Mean TL (mm)/mean wet weight (g) 85.18/3.9 111.42/17.6 131.94/34.8

Gastropoda 0.2 10.0
Polychaeta 0.4 20.0 11.8 33.3
Copepoda 88.8 46.7 17.6 33.3
Ostracoda 0.1 3.3
Decapoda 0.4 23.3 41.2 50.0 57.1 75.0
Mysidacea 0.3 16.7
Cumacea 0.1 3.3

Tanaidacea 1.9 36.7 3.6 25.0
Isopoda 1.7 43.3

Amphipoda 4.9 80.0 23.5 50.0 21.4 75.0
Insecta (larvae) 17.9 25.0

Pisces 1.1 50.0 5.9 16.6
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

TROPH ± SE 3.03 ± 0.11 3.37 ± 0.48 3.46 ± 0.55

TROPH ± SE [28] 3.50 ± 0.30

TROPH [4] 3.34

Parablennius tentacularis Individuals 30 17–30 30 10–30 6 4–6 24 22–24 6 5–6 30 19–30
Mean TL (mm)/mean wet weight (g) 72.93/3.4 78.07/4.9 68.05/3.3 59.97/2.2 68.35/3.0 72.74/3.3

Algae + + + + + + + + + + + +
Sipuncula 2.2 3.4

Gastropoda 2.2 3.4 9.7 19.0 50.0 20.0 0.6 3.7
Bivalvia 4.4 6.9 1.8 3.7

Polychaeta 4.4 13.8 19.4 28.6 1.3 9.1 1.4 16.7
Copepoda 1.3 9.1
Ostracoda 3.2 4.8 0.7 4.5 1.4 16.7
Decapoda 1.8 11.1
Tanaidacea 6.7 10.3 9.7 14.3 6.0 22.7 6.8 33.3 8.6 37.0

Isopoda 24.4 37.9 35.5 38.1 50.0 20.0 2.7 13.6 1.2 7.4
Amphipoda 35.6 27.6 9.7 14.3 85.9 81.8 83.8 100.0 85.9 59.3

Insecta (larvae) 3.2 4.8 0.7 4.5
Varia 20.0 27.6 9.7 14.3 1.3 9.1 6.8 16.7

TROPH ± SE 3.34 ± 0.51 3.27 ± 0.48 3.33 ± 0.56 3.29 ± 0.53 3.31 ± 0.52 3.29 ± 0.53

TROPH ± SE [28] 3.30 ± 0.30

TROPH [4] 3.11

Serranus hepatus
Individuals/Juveniles

30 (1) 30 17 (4) 16 30 (2) 29 30 (3) 28 30 30 30 (5) 30

Mean TL (mm)/mean wet weight (g) 64.42/3.9 69.32/5.4 53.50/2.2 55.57/1.9 51.86/2.0 64.09/3.4

Polychaeta 1.3 3.4 2.0 7.7 5.1 10.7 0.6 3.7 0.8 4.0
Crustacea (larvae) 1.3 3.4 0.8 4.0

Copepoda 8.8 10.3 56.0 7.7 3.4 3.6 14.6 33.3 4.3 20.0 1.5 4.0
Ostracoda 0.6 3.7
Decapoda 25.0 55.2 20.0 69.2 35.6 64.3 5.1 29.6 6.4 50.0 16.9 64.0
Mysidacea 2.5 6.9 15.3 28.6 0.6 3.7 1.1 10.0 0.8 4.0
Cumacea 0.4 3.3 0.8 4.0

Tanaidacea 1.3 7.4 1.1 6.7 3.8 20.0
Isopoda 30.0 55.2 13.6 25.0 2.5 11.1 2.1 13.3 1.5 8.0

Amphipoda 17.5 27.6 14.0 23.1 23.7 39.3 71.5 81.5 82.9 100.0 58.5 52.0
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Insecta (larvae) 1.5 4.0
Varia 12.5 27.6 8.0 30.8 3.4 7.1 1.3 7.4 13.1 20.0

TROPH ± SE 3.43 ± 0.52 3.22 ± 0.34 3.44 ± 0.54 3.26 ± 0.50 3.31 ± 0.54 3.35 ± 0.54

TROPH ± SE [28] 3.50 ± 0.40

TROPH [4] 3.63

Symphodus cinereus
Individuals/Juveniles

21 0 31 (3) 0 39 (1) 0 11 0

Mean TL (mm)/mean wet weight (g) 70.11/5.6 70.90/5.0 78.11/6.3 82.17/7.6

Gastropoda 0.7 3.6 1.2 2.6 0.4 9.1
Bivalvia 2.0 3.6 0.6 5.3 2.2 27.3

Polychaeta 1.8 19.0 2.7 10.7 0.2 2.6
Copepoda 41.8 52.4 1.4 7.1 0.6 2.6 0.7 9.1
Ostracoda 0.4 4.8 2.0 7.1
Decapoda 1.8 23.8 5.4 14.3 1.2 7.9
Cumacea 0.2 2.6

Tanaidacea 16.8 76.2 29.7 60.7 17.9 71.1 10.1 81.8
Isopoda 3.7 28.6 7.4 35.7 1.6 21.1 0.4 9.1

Amphipoda 31.9 90.5 48.0 82.1 76.5 94.7 83.8 100.0
Pisces 0.7 3.6
Varia 1.8 14.3 0.2 2.6 2.5 36.4

TROPH ± SE 3.18 ± 0.41 3.30 ± 0.52 3.30 ± 0.53 3.30 ± 0.53

TROPH ± SE [28] 3.50 ± 0.10

TROPH [4] 3.23

Pagrus pagrus Individuals/Juveniles 2 2 22 (1) 22 17 (2) 17 4 4 1 1
Mean TL (mm)/mean wet weight (g) 104.29/3.9 90.27/15.8 107.53/33.6 78.11/16.5 142.48/49
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Taxonomic Prey Categories May ‘06 July ‘06 Sept ‘06 Nov ‘06 Feb ‘07 Apr ‘07
%N %F %N %F %N %F %N %F %N %F %N %F

Sipuncula 9.4 14.3 1.5 13.3
Polyplacophora 1.5 13.3

Polychaeta 9.1 50.0 6.3 9.5 2.2 20.0
Crustacea larvae 67.4 6.7

Copepoda 7.4 6.7
Decapoda 18.2 100.0 56.3 76.2 15.6 66.7 40.0 50.0 20.0 100.0
Mysidacea 3.1 4.8 20.0 25.0
Tanaidacea 1.5 6.7

Isopoda 12.5 14.3
Amphipoda 72.7 50.0

Fish 3.1 4.8 1.5 13.3
Varia 9.4 14.3 1.5 13.3 40.0 50.0 80.0 100.0

TROPH ± SE 3.33 ± 0.52 3.46 ± 0.52 3.47 ± 0.49 3.45 ± 0.43 3.50 ± 0.40

TROPH ± SE [28] 3.90 ± 0.20

TROPH [4] 3.71

Appendix B

Averaged percentage numerical abundance (%N) of all the taxa found as prey in the stomachs of fish species examined, also found in the macrobenthic and zooplanktonic
samples (MB: macrobenthos; MZ: macrozooplankton), during the six sampling occasions in the study area.

Taxa MB MZ Dipan Gobnig Mulbar Mulsur Pagacar Pagpag Parten Serhep Symcin Athboy Bopbop Spicsmar Spicmaen

Phascolosoma sp. 0.06 0.1 2.17 0.37
Sipuncula 0.36 0.1 2.17 0.37

Acanthochitona crinita Pennant, 1777 0.09 0.15
Chiton (Rhyssoplax) phaseolinus

Monterosato, 1879
<0.01 0.23 0.15

Polyplacophora 0.10 0.23 0.30
Bittium sp. 0.09 0.17 0.54
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Taxa MB MZ Dipan Gobnig Mulbar Mulsur Pagacar Pagpag Parten Serhep Symcin Athboy Bopbop Spicsmar Spicmaen

Gastropoda (unidentified) 0.54 0.14 0.06 0.55 1.45 0.55 0.02 0.24 0.02
Gibbula sp. 0.19

Naticidae spp. 0.39
Pyramidellidae spp. 0.05

Raphitoma philberti (Michaud, 1829) <0.01 8.44
Retusa umbilicata (Montagu, 1803) 1.60 0.09

Rissoidea spp. 0.11 1.08
Gastropoda 14.89 1.27 1.41 1.44 0.06 0.55 10.43 0.55 0.02 0.24 0.02

Abra alba (W. Wood, 1802) 7.87 0.04 2.39 7.66 0.37 0.02
Bivalvia (unidentified) 0.04

Glans trapezia (Linnaeus, 1767) 0.05 1.19
Limaria hians (Gmelin, 1791) 0.04 0.37

Limaria sp. 0.09 0.31
Mimachlamys varia (Linnaeus, 1758) 0.08 0.34
Modiolus barbatus (Linnaeus, 1758) 0.17 0.09

Bivalvia 12.21 0.03 0.08 2.91 7.66 1.05 1.19 0.02
Mollusca (unidentified) 0.01

Amphinomidae spp. 1.25
Capitellidae spp. 0.15

Ceratonereis (Composetia) vittata
Langerhans, 1884

0.16 0.48 0.15 0.54 0.21 0.18 0.19 4.39

Dorvileidae spp. 0.10 0.38
Euclimene sp. 1.13 0.16
Eunicidae spp. 1.64 3.91 0.02 0.69 0.02

Glycera alba (O.F. Müller, 1776) 0.22 0.77 0.58
Hesionidae spp. 0.83 0.11 0.06 0.15 0.13

Lumbrineridae spp. 0.23 0.28
Nephthydae spp. 1.82
Pectinaridae spp. 0.48 0.55

Polychaeta (unidentified) 1.15 0.32 0.85 0.31
Pontogenia chrysocoma (Baird, 1865) 0.02 4.03 0.74 0.03

Potamilla sp. 0.39
Syllidae spp. 0.09 0.82

Vermiliopsis infundibulum (Philippi,
1844)

0.01 0.41 3.03
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Taxa MB MZ Dipan Gobnig Mulbar Mulsur Pagacar Pagpag Parten Serhep Symcin Athboy Bopbop Spicsmar Spicmaen

Polychaeta 6.72 0.43 0.41 6.90 6.83 4.05 0.06 3.52 4.42 1.62 1.18 0.21 4.39 0.03 0.13
Crustacea (larvae) 0.02 0.63 0.81 0.09 1.45 13.48 0.34 13.33 29.20 1.51 0.36

Copepoda (calanoids, cyclopoids,
cladocerans)

46.87 43.25 3.09 44.55 35.49 62.61 1.48 0.22 15.14 11.10 41.75 44.76 83.96 84.83

Ostracoda 0.10 0.04 1.59 0.10 0.12 0.04 2.51 0.87 0.11 0.60 0.01 0.12 0.06 4.17
Achaeus gracilis (Costa, 1839) 0.01 0.01 1.96
Alpheus dentipes Guérin, 1832 0.10 0.21 0.21

Athanas nitescens (Leach, 1813 [in
Leach, 18131814])

0.18 0.21 3.94 1.21

Clibanarius erythropus (Latreille, 1818) 0.03 0.10
Decapoda (unidentified) 0.10 0.11 4.00 1.67 0.01 0.01

Eualus cranchii (Leach, 1817 [in
Leach, 18151875])

0.25 21.03 1.16

Galathea bolivari Zariquiey Álvarez,
1950

0.03 0.01 1.04 0.56

Hippolyte leptocerus (Heller, 1863) 0.27 0.11 5.88 1.83 4.17
Hippolyte spp. 0.22 0.02 0.67

Liocarcinus navigator (Herbst, 1794) 0.03 0.21 7.64 0.68 0.18
Paguridae spp. 0.17 0.02

Paguristes syrtensis de Saint Laurent,
1971

0.14 0.83 17.03 0.31 6.71 1.92

Palaemon serratus (Pennant, 1777) 0.01 0.30 2.06
Pillumnus hirtellus (Linnaeus, 1761) 0.01 0.09 0.01
Processa macrophthalma Nouvel &

Holthuis, 1957
0.02 0.80 0.06 1.06 0.02

Upogebia pusilla (Petagna, 1792) <0.01 0.33 0.33
Decapoda 1.21 1.33 2.19 32.91 30.01 18.15 2.1 4.2 0.04

Anchialina agilis (Sars G.O., 1877) 0.16 0.04
Diamysis sp. 1.45 0.09 0.06 0.11 4.63 2.95 0.39

Haplostylus lobatus (Nouvel, 1951) 0.12 0.04 1.60 0.02 0.42
Mysida 1.87 0.04 0.09 1.70 0.11 0.02 4.63 3.37 0.39

Cumella (Cumella) limicola Sars, 1879 0.83 0.45
Iphinoe serrata Norman, 1867 0.70 0.02 0.27 3.45 0.02 0.06 0.05

Iphinoe sp. 1.50 0.17 1.66 0.13
Cumacea 3.08 0.02 0.44 5.56 0.02 0.19 0.05
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Taxa MB MZ Dipan Gobnig Mulbar Mulsur Pagacar Pagpag Parten Serhep Symcin Athboy Bopbop Spicsmar Spicmaen

Apseudoidea spp. 0.02 1.24 0.26 0.37
Leptochelia sp. 11.02 22.12 2.38 0.84 1.55 4.90 0.30 6.29 1.03 18.27 0.03 0.01 4.17

Tanaidacea 11.55 22.12 2.38 2.08 1.81 4.90 0.30 6.29 1.03 18.64 0.03 0.01 4.17
Anthuridea spp. 0.34 0.03

Astacilla sp. 0.09 0.04 0.11 1.82 1.46 0.34 0.05
Cymodoce truncata Leach, 1814 0.31 0.74 0.83 1.28 0.13 0.02 2.50 16.68 6.10 1.88

Eurydice spp. <0.01 0.06 0.16 0.22 0.08 0.02 0.39
Gnathia dentata (Sars G.O., 1872) 0.91 0.02 0.30 1.96 0.45 0.09 0.37 0.81 0.05 0.08
Ianiropsis breviremis (Sars, 1883) 0.67 0.13 0.10 0.56

Isopoda 2.35 0.8 1.24 3.37 0.58 0.17 2.50 18.97 8.28 3.25 0.10 0.11 0.10 0.39
Ampelisca spp. <0.01 0.10

Amphipoda (unidentified) 0.05 0.03 0.01
Amphithoe ramondi Audouin, 1826 0.05 0.11

Aora spinicornis Afonso, 1976 2.08 6.74 3.81 1.19 2.44 26.99 3.56 31.56
Aoridae spp. 8.37 0.77 0.18 0.86 2.47 0.42 2.14

Apherusa bispinosa (Bate, 1857) 0.58 0.01 1.19 0.14
Autonoe spiniventris Della Valle, 1893 0.12 0.06
Caprella acanthifera discrepans Mayer,

1890
3.26 0.30 1.88 0.67 0.06 4.46 5.62 4.37

Caprella acanthifera acanthifera Leach,
1814

6.86 3.36 0.35 0.06 0.67 5.45 7.95 4.24 0.64 0.05 4.17

Caprella rapax Mayer, 1890 0.98 0.43 0.13 0.26 7.27 1.45 7.08 0.43
Caprellidae spp. 0.06 0.09 0.15 0.30 0.60 0.99 0.24

Dexamine spinosa (Montagu, 1813) 0.27 0.01
Ericthonius punctatus (Bate, 1857) 0.72 0.08

Ericthonius sp. 3.91 0.29 0.05 4.50 2.13 1.37 2.94
Guernea (Guernea) coalita (Norman.

1868)
0.07 0.03

Leptocheirus bispinosus Norman, 1908 1.99 0.06 0.81 0.02 0.10 0.11 1.37
Leptocheirus pectinatus (Norman,

1869)
1.06 0.22

Leptocheirus sp. 1.63 0.02 1.46
Leucothoe spinicarpa (Abildgaard,

1789)
0.39 0.04 0.74 0.13

Lysianassa caesarea Ruffo, 1987 0.35 0.04 0.56
Lysianassa pilicornis (Heller, 1866) 0.60 3.30 1.04
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Taxa MB MZ Dipan Gobnig Mulbar Mulsur Pagacar Pagpag Parten Serhep Symcin Athboy Bopbop Spicsmar Spicmaen

Lysianassa spp. 0.68 0.37
Lysianassidae spp. 0.09 0.26 0.17 0.17

Lysianassina longicornis (Lucas, 1846) 0.06 0.11
Megaluropus massiliensis Ledoyer,

1976
0.69 0.19

Microdeutopus anomalus (Rathke,
1843)

1.95 0.36 0.09 0.71

Microdeutopus bifidus Myers, 1977 3.51 1.18 1.85 0.06 0.85 0.95 1.86
Microdeutopus sp. 0.21 1.24 0.04 0.11 0.49 1.10

Microdeutopus stationis Della Valle,
1893

5.35 4.36 0.12 4.45 7.96 1.19 1.82 0.45 3.12 6.93 0.04 0.05 0.07

Microdeutopus versiculatus (Bate,
1856)

3.00 0.53 0.42 2.38 2.09 0.09 0.34 0.39 3.55 0.04

Oedicoretidae spp. 0.06 0.06
Orchomene grimaldii Chevreux, 1890 0.13 0.21

Orchomene sp. 0.06
Perioculodes longimanus longimanus

(Bate & Westwood, 1868)
0.79 0.12 3.30 0.23 0.06 0.02

Phtisica marina Slabber, 1769 1.90 0.94 0.12 0.30 1.29 1.02 12.09 0.60 0.07
Pseudolirius kroyeri (Haller, 1897) 0.82 0.51
Quadrimaera inaequipes (A. Costa,

1851)
2.67 0.02 0.10 0.85 0.52

Amphipoda 44.07 0.07 30.85 8.55 19.75 16.61 11.66 14.54 50.13 44.34 60.02 0.25 0.05 4.25
Pycnogonida <0.01 0.01 0.01
Larvae insects 64.41 0.35 5.95 14.98 0.65 0.26 0.28 0.06 5.55 0.02

Insects 42.96 0.31 0.01
Pisces 0.07 0.08 1.02 0.78 2.34 <0.01 0.92 6.37 0.17 0.06 3.16 0.06
Varia 0.09 0.04 5.71 3.61 1.10 26.17 6.30 0.82 1.14 1.31 13.37 8.41 1.26

Total % percentage
(number of taxa)

98.60
(71)

49.51
(9)

100
(26)

100
(56)

100
(69)

100
(36)

100
(23)

100
(23)

100
(36)

100
(51)

100
(35)

100
(11)

100
(23)

100
(13)

100
(14)
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