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Abstract: This study aimed to investigate the feasibility of using polypropylene fiber-cement-stabi-
lized coastal clay as base-course material or foundation material for city sustainable development 
by assessing its mechanical performance. The influence of the number of freeze–thaw cycles and 
curing ages on the mechanical properties of ordinary cemented clay (OCC) and polypropylene fiber-
cemented clay (PCC) was investigated by using unconfined compressive test. The experimental re-
sults show that the addition of fiber with 1% content can increase the strength as well as the ductility 
of cemented clay by 12.5% and 15.6%, respectively. The strength of PCC and OCC at 22d age was 
1.5 times than at 7d age. Under differently timed freeze–thaw cycles, the mechanical performance 
of PCC is improved, and, better than that, OCC improves by 11.8% in strength, 16.5% in strain and 
by 5% in degree of damage, indicating that fiber can improve the freeze–thaw resistance of cemented 
clay. The frost resistance of PCC and OCC increases with the increase in curing age. Finally, the 
variation of strength of OCC was explained through the change of micro-structure while the 
strength enhancing mechanism of polypropylene fiber for cemented clay was also revealed. 

Keywords: cemented clay; freeze–thaw cycle; polypropylene fiber; unconfined compressive 
strength; microscopic analysis 
 

1. Introduction 
With the rapid economic growth and continuous development of coastal cities, more 

and more projects are being built on soft coastal clay foundations. However, coastal clay 
has some disadvantages such as high natural moisture content, high compressibility and 
poor bearing capacity, restricting sustainable development of the coastal cities. At the 
same time, in cold regions, the alternation of temperature leads to the widespread distri-
bution of seasonal permafrost, which produces a strict engineering demand for coastal 
clay from a frost-resistance perspective. For example, under the action of freezing, the 
volume expansion of soft clay with high water content will be caused by the freezing of 
internal water. This kind of expansion will lead to the destruction of the internal structure 
of the foundation clay. When the temperature gradually increases, the frozen soft clay 
begins to melt, resulting in the loss of part of the strength of the soft clay; as the transfor-
mation process of solid ice to liquid water advances, part of the water in the clay is grad-
ually discharged, resulting in a large freeze–thaw settlement of the soft soil. What is more, 
the artificial freezing technology is sometimes used in the construction of underground 
engineering in the coastal soft clay area, which makes the surrounding cement clay struc-
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ture experience one or more cycles of freezing and thawing, causing damage to the un-
derground structure to a certain extent. These are serious threats to the safety of the pro-
ject. Therefore, the coastal clay usually needs proper reinforcement to meet the require-
ment of practical engineering applications. 

Cement and lime are generally adopted to promote various kinds of soil solidifica-
tion, such as dredged clay [1], seashore soft clay [2], loess [3,4], coastal clay [5], subgrade 
clay [6] and marine clay [7]. Due to the advantages of low cost and construction feasibility, 
cement-treated clay is widely used in ground improvement, pavement engineering and 
other engineering applications [8–10]. Although the incorporation of cement can improve 
the clay strength to a certain extent, poor frost resistance is one disadvantage of cement-
treated clay. The mechanical properties of this type of foundation change considerably 
under the freeze–thaw cycles with serious freeze–thaw damage, which may lead to differ-
ential settlement and instability after construction similar to nature coastal clay [11–14]. 
Application of cement stabilization in areas that undergo seasonal freezing has always 
been a major issue in engineering practice [15,16]. The freeze–thaw cycle aggravates the 
expansion of existing cracks in cemented clay and generates new cracks as well. Therefore, 
the frost resistance of different clay-based materials can be improved by delaying or de-
creasing the occurrence of macroscopic cracks, including overconsolidated clays [17], sul-
fate saline clay [18], cementitious composites [19], rubber-improved cement clay [20], and 
fiber-reinforced clay [21]. Recently, researchers have investigated some additives to im-
prove the engineering performance of cement-treated clay, such as magnesium slag [22], 
waste tire rubber fibers [23], nano-MgO [24,25], as well as Pozzolanic [26]. On the other 
hand, fiber has been widely used in clay reinforcement due to its high strength, desirable 
frost and acid resistance, and reasonable water absorption and dispersion characteristics 
[27–31]. Previous studies show that the addition of fiber, such as polypropylene fiber 
(PPF), can effectively reduce the generation and diffusion of cracks in lime-stabilized clay 
[32], lime mortar [33], fly-ash-based geopolymer composites [34], cement-stabilized clay 
[35–37], which is an effective method for improving the frost resistance. However, the 
optimal amount of fiber in the coastal cement clay, as well as the improvement range of 
strength and the modification effect of ductility in different environments, needs further 
systematic research. In order to meet the requirement of the sustainable development of 
coastal cities, it is of great importance for people to understand properly the mechanical 
performance of fiber-treated cement clay under normal and freeze–thaw curing condi-
tions. 

In this study, two kinds of cement clay samples are prepared to do comparative tests 
to study the mechanical modification effect of fiber and evaluate the frost resistance of 
fiber cement clay. One is the ordinary cement clay (OCC) sample—its moisture content is 
80%, the cement content is 20%. The other is polypropylene fiber-cemented clay (PCC), 
which is mixed with 1% polypropylene fiber on the basis of OCC. The unconfined com-
pressive (UCS) test was used to test the mechanical properties of two kinds of cement clay. 
Firstly, it was carried out on two kinds of cement clay at the age of 7d, 10d, 12d, 14d, 17d 
and 22d to characterize the time effect of their mechanical properties. Then, it was carried 
out on two kinds of cement clay after different freeze–thaw cycles with an initial age of 7d 
to reveal the improvement effect of fiber on the freeze–thaw characteristics of cement clay. 
Finally, SEM micro tests were carried out on the two kinds of cement clay, and the effect 
of fiber on the strength mechanical properties of the cement clay was revealed from the 
perspective of microstructure. 

2. Test Overview 
2.1. Testing Materials 

The testing materials used in this study are coastal soft clay, cement and polypropyl-
ene fiber. Coastal soft clay used throughout the experimental test was collected from a pit 
site in Zhejiang province, China. The clay was taupe in texture with an initial moisture 
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content of 58%, and its physical and mechanical properties are presented in Table 1. The 
additive, polypropylene fiber of 6 mm in length (Figure 1), was supported by Langfang 
Dekai Thermal Insulation Material Sales Co. Ltd, and its factory physical and mechanical 
parameters are shown in Table 2. The cement used belongs to class PO32.5 ordinary Port-
land cement. The basic properties of the cement and the clay are the same as those of the 
materials used in reference [5], including chemical composition, SEM picture, as well as 
XRD picture. 

 

Figure 1. Polypropylene fibers. 

Table 1. Physical and mechanical properties of coastal soft clay. 

Wet Den-
sity 

ρ /g·cm−3 

Moisture 
Content 
ω /% 

Plastic 
Limit 
ωP /% 

Liquid 
Limit 
ωL /% 

Plasticity 
Index 

IP 

Liquidity 
Index 

IL 

Compression 
Coefficient 
α /MPa 

Compression 
Modulus 
Es /MPa 

1.89 58 30 43.5 13.5 0.23 0.77 2.25 

Table 2. Physical and mechanical properties of polypropylene fiber. 

Specific 
Gravity 

Diameter 
/μm 

Length 
/mm 

Tensile 
Strength 

/MPa 

Elasticity 
Modulus 

/Mpa 

Fusing 
Point /℃ 

Ignition 
Point /℃ 

Limit Ten-
sile 

0.91 18–8 6 >358 >3500 >165 590 >150% 

2.2. Experimental Program 
According to the results of the author's previous experiment and other scholars' re-

search [38–40], the fiber content of this experiment is designed as 1%. The unconfined 
compressive (UCS) test scheme designed to investigate the effect of curing age and freeze–
thaw cycles on fiber-cemented clay are summarized in Tables 3 and 4, respectively, where 
PPF means polypropylene fiber. In the table, the content of ingredient materials is mass 
percentage. At least five samples were adopted to perform each test in order to check the 
repeatability. 

Table 3. UCS test scheme for OCC and PCC under room temperature curing. 

Test 
Sample 

Cement 
Content 

/% 

Moisture 
Content 

/% 

Modified Ma-
terial Content 

/% 
Curing Age /d 

OCC 
20 80 

0 7, 10, 12, 14, 17, 

22 PCC PPF-1% 
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Table 4. UCS test scheme for OCC and PCC under freeze–thaw cycle. 

Test 
Sample 

Cement 
Content 

/% 

Moisture 
Content 

/% 

Modified 
Material 

Content /% 

Curing 
Age /d 

Cycles of Freeze–
Thaw Cycles 

/Number 
OCC 

20 80 
0 

7 3, 5, 7, 10, 15 
PCC PPF-1% 

2.3. Sample Preparation and Testing 
The sample-making method was designed according to the literature reports [5] 

and [41]. The steps of sample preparation are stated as below: 
1) The clay sample was prepared by sieving through a sieve with an aperture of 1 mm. 

Raw materials (cement, fiber, clay and water) were weighed based on the proposed 
test scheme. The initial moisture content was measured, and the water needed was 
calculated based on designed mix ratios. The cement content, fiber content, and water 
content used in preparing the sample was 20%, 1% and 80%, respectively, by percent-
age of dry clay weight. 

2) The weighed materials were well mixed in an automatic mixing bowl and sealed with 
a plastic bag. In the PCC preparation, water was added two times in order to ensure 
the uniformity of the mix. After cement was poured into the mixing tank, half a por-
tion of the water was then added and well mixed. The final step of mixing was fol-
lowed by adding the fiber into the mix; the remaining portion of water was then 
added and evenly mixed to ensure homogeneity of the mixing. 

3) The mixture, which was evenly mixed and then placed in a plastic bag, was then care-
fully squeezed into the cylindrical mold with a diameter of 39.1 mm and height of 80 
mm in four layers. Manual compaction was required for each layer of clay placed into 
the mold by vibrating the mold twenty times by hand to ensure no trapped air was in 
the cement clay. This step is repeated until the mold is fully filled. 

4) After flattening the excessive clay sample with an aluminum scraper, the sample was 
left vertically in position for approximately 30 minutes. Then, both ends of the sample 
were wrapped with filter paper and marked. In addition, the prepared samples were 
placed horizontally into a water tank for curing at room temperature and subjected to 
an unconfined compressive strength test on the scheduled curing day. 

2.4. Freeze–Thaw Cycle Test 
The test is conducted mainly according to the Chinese National Geotechnical Test 

Standard (GB/T 50123-1999) [42]. After curing at room temperature for 7 days, the samples 
were removed and wrapped with thin plastic sheet and placed in a freeze–thaw box that 
was subjected to 3, 5, 7, 10, and 15 freeze–thaw cycles. The freeze–thaw temperature is 
mainly set according to the sample material and local climate temperature. According to 
the literature [43], it is appropriate to set the thawing temperature of earth rock mixture 
as 15 °C. In reference [44], the thawing temperature of concrete is set as 20 °C. Combined 
with the high winter temperature of about 9 °C in Zhejiang Province, China, where the 
author is located, we chose positive 10 °C as the thawing temperature. The single freeze–
thaw cycle was configured such that the freezing temperature and freezing time was kept 
constant at −10 °C and 12 h, respectively, whereas the melting temperature and melting 
time was also kept constant at 10 °C and 12 h, respectively. The freeze–thaw equipment is 
shown as Figure 2. The reference name of the sample is denoted by 7d+n, where d and n 
represent days and the number of freeze–thaw cycles, respectively. The samples subjected 
to a predetermined number of freeze–thaw cycles will then be used for the unconfined 
compressive strength test. 
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Figure 2. The freeze–thaw equipment. 

3. Test Results and Analysis 
Unconfined compressive strength is an important mechanical parameter in practical 

engineering construction. When determining the unconfined compressive strength, the 
axial stress at the peak point is taken as the value of the peak value occurs in a stress–
strain curve; meanwhile the axial stress is taken at an axial strain of 15% when the peak 
reaches plateau with a less obvious peak being observed. 

3.1. The Influence of Curing Age 
Figure 3 reflects the stress–strain relationship of OCC and PCC after curing at room 

temperature for 7, 10, 12, 14, 17, and 22 days. It can be seen from Fig. 3 that the shape of 
the stress–strain curves at each age are quite similar, and the development of the trend for 
each individual curve before and after the peak point is basically the same for all the sam-
ples. This specific behavior is observed by considering that (1) all the curves passed the 
coordinates of the origin; (2) with the increase in strain, the stress increases continuously 
in a convex manner before reaching the peak point; after the peak point, the stress first 
decreases convexly, then concavely, and finally becomes flat or constant. 

  
(a) (b) 

Figure 3. Stress–strain curves of OCC and PCC at room temperature. (a) Ordinary coastal cement clay (OCC); (b) poly-
propylene fiber-cemented clay (PCC). 

The peak value of the stress–strain curve is taken as the UCS of the corresponding 
sample. It can be seen from Tables 5 and 6 that the UCS of OCC and PCC gradually in-
creases with the increase in curing age. Generally, the strength of PCC and OCC at 22d 
age is 1.5 times that at 7d age. For OCC, the strength increases by 39 kPa from 7 days to 
10 days, 157 kPa from 10 days to 17 days, while 45 kPa from 17 days to 22 days. Similarly, 
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for PCC: the strength increases by 96 kPa from 7 days to 10 days, 142 kPa from 10d to 17d, 
while 43 kPa from 17 days to 22 days. It can be seen that the equivalent increment amount 
in unconfined compressive strength for both OCC and PCC is almost consistent with the 
curing age. It can also be found that the unconfined compressive strength of PCC is about 
12.5% higher than that of OCC, which means the addition of fiber increases the strength 
of cemented clay. 

At the same time, Tables 5 and 6 demonstrate that the axial strain corresponding to 
OCC failure is approximately 2.1%, while that of PCC is approximately 2.4% with an av-
erage increase of about 15.6. This indicates that the presence of PPF in the cemented clay 
not only can improve its unconfined compressive strength but also have the potential in 
increasing the ductility of the cemented clay. From the above phenomenon observed, it is 
obvious that the mechanical performance of PCC is much better than that of OCC. This 
can be attributed to the physical properties of fiber: when stress is being applied on PCC, 
the fiber is pulled due to the displacement of clay and cement mineral particles, which can 
increase the sample’s ductility. 

Table 5. UCS and strain of OCC at failure point. 

Curing Age /d 7 10 12 14 17 22 

UCS /kPa 425 464 509 565 621 666 

Strain /% 2.06 2.07 2.11 2.06 2.07 2.18 

Table 6. Peak UCS and strain of PCC at failure point. 

Curing Age/d 7 10 12 14 17 22 

UCS /kPa 450 546 592 646 688 731 

Strain /% 2.31 2.44 2.44 2.44 2.44 2.44 

3.2. The Influence of Freeze–Thaw Cycles 
In order to study the influence of freeze–thaw cycles on the strength properties of 

OCC and PCC, the stress–strain curves of samples with 7d curing age subjected under 
various freeze–thaw cycles were shown in Figure 4. In Figure 4, 7d refers to the curing age 
of the specimen at the beginning of freeze–thaw, and the number after the plus sign refers 
to the number of freeze–thaw cycles of the specimen after 7d curing. For example, 7d+3 
means that the specimen is cured for 7d and then subjected to three freeze–thaw cycles. 

  
(a) (b) 

Figure 4. Stress–strain curves of OCC and PCC under freeze–thaw cycles. (a) Ordinary coastal cement clay (OCC); (b) 
polypropylene fiber coastal cement clay (PCC). 
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It can be seen from Fig. 4 that the stress–strain curves of OCC and PCC show obvious 
strain-softening behavior. For OCC, the stress–strain curve reaches its peak strength when 
the axial strain is approximately 2%; while for PCC, it reaches peak strength at the axial 
strain between 2% and 3%. In the first few freeze–thaw cycles, the stress–strain curves 
show a drastic downward shift, especially for the third cycle. The possible reason is that 
during the freeze–thaw cycle, frost heaving and thawing in the clay will create larger 
pores between the clay particles. 

It is evident in Figure 5 that the unconfined compressive strength of PCC is about 
11.8% higher than that of OCC after undergoing several freeze–thaw cycles. This indicates 
that fiber can increase the clay strength under freeze–thaw cycle as well as improving the 
frost resistance of OCC unreservedly. There is a drastic decrease in the unconfined com-
pressive strength from 0 to 3 cycles, and a decrease gradually as the number of freeze–
thaw cycles increases. This implies that the initial three freeze–thaw cycles contribute the 
most to the damage of the clay. The unconfined compressive strengths of the OCC sam-
ples subjected under 3, 5, 7, 10, and 15 freeze–thaw cycles were 275 kPa, 290 kPa, 305 kPa, 
322 kPa, and 355 kPa, respectively. The strength reached the peak when the axial strain 
was about 2.08%, whereas the unconfined compressive strengths of PCC samples were 
315 kPa, 330 kPa, 345 kPa, 366 kPa, and 389 kPa, respectively; the strengths reached their 
peak when the axial strain was averaging at 2.42% with almost 16.5% increase. 

As the sample went through the process of freeze–thaw cycles, its curing age also 
increased which led to an increase in the hydration products. It is noted that as the sam-
ples were subjected to 15 freeze–thaw cycles, the cement hydration reaction lasted for 22 
days, leading to an increase in both the compressive strength and frost resistance. There-
fore, Figure 5 illustrates a trend of slight growth in the later stage and finally reaches plat-
eau at the end of the freeze–thaw cycles. It was also observed that a sharp declination of 
the strength of cemented clay in the early stage as the samples were subjugated by the 
damage incurred when the samples were subjected to freeze–thaw cycle ahead of the hy-
dration reaction by the cement. 

 

Figure 5. Influence of freeze–thaw cycles on unconfined compressive strength. 

3.3. The Degree of Damage 
In order to analyze the influence of freeze–thaw cycles on the unconfined compres-

sive strength of OCC and PCC, the degree of damage due to freeze–thaw, D is suggested 
[45] as formula (1): 

D = (1−୯౤୯బ)× 100% (1)
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where D = degree of damage; 
qn = unconfined compressive strength after n cycles of freeze–thaw; 
q0 = unconfined compressive strength without subjecting to freeze–thaw cycle. 

Based on the above formula, the degree of damage under various freeze–thaw cycles 
for PCC and OCC was calculated and presented in Figure 6. It can be observed that the 
degree of damage of PCC is significantly lower than that of OCC, indicating that the 
greater the degree of damage, the lower the compressive strength of the clay. The freeze–
thaw damage of PCC with fiber addition was about 5% lower than that of OCC, indicating 
that PCC has the ability to resist freeze–thaw cycles. During the zeroth to third freeze–
thaw cycle, the sample damaged very quickly, which led to a steep increase in the degree 
of damage, signifying consequential degradation of the clay within this cycle. Right after 
the third freeze–thaw cycle, a decreasing trend was observed to be quite linearly over the 
time as the corresponding compressive strength rises progressively. This is because there 
are more pores developed at the beginning of the freeze–thaw cycles, which then gradu-
ally become more stable over the freeze–thaw cycles. Meanwhile, as the number of freeze–
thaw cycles increases over time, the process of hydration in cement continues to take place 
while improving the clay strength, which assists in resisting some degree of damage [46]. 

 
Figure 6. The influence of number of freeze–thaw cycles on the degree of damage. 

3.4. Failure Mode of Cemented Clay 
Figure 7 shows the failure pattern of the OCC sample subjected to axial load under 

different freeze–thaw cycles. When the number of freeze–thaw cycle increases, the dam-
age of the sample is more significant based on the visual observation. As shown in Figure 
7a for the zero freeze–thaw cycle, some small visible vertical cracks at the bottom of the 
sample can be seen, while the development of the crack does not run through the whole 
sample. With the increase in freeze–thaw cycles (three or five cycles), the damage of the 
sample is more obvious and many evident cracks appear through the sample, as shown 
in Figure 7b. After being subjected to more freeze–thaw cycles (7, 10 or 15 cycles), some 
huge cracks can be easily identified when the sample fails, as presented in Figure 7c. 
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(a) 

 

(b) 

 

(c) 

Figure 7. Failure pattern of OCC after UCS test under various freeze–thaw cycles. (a) 0 cycle; (b) 5 cycles; (c) 15 cycles. 

The failure patterns of PCC corresponding to different freeze–thaw cycles are shown 
in Figure 8. It can be seen that the addition of polypropylene fiber leads to obvious slant-
wise cracks in the sample. For the zero freeze–thaw cycle, it is illustrated in Figure 8a that 
there is only one gentle inclined crack. After being subjected to more freeze–thaw cycles, 
it can be clearly seen from Figure 8b that there is chap appearing on the sample surface, 
and an obvious diagonal crack when the sample fails. For the sample subjected to 10 and 
15 (Figure 8c) freeze–thaw cycles, some fibers are exposed as the sample fails. However, 
there is still some connection between the fiber and cemented clay lump. 

 

(a) 

 

(b) 

 

(c) 

Figure 8. Failure pattern of PCC after UCC test under various freeze–thaw cycles. (a) 0 cycle; (b) 5 cycles; (c) 15 cycles. 

Comparing the failure pattern of OCC and PCC, it can be seen that the bonding of 
OCC sample is not as desirable as that of PCC. For OCC, the samples tend to break into 
pieces after destruction, with no significant adherence observed. For PCC, the addition of 
fiber is able to form a spatial network structure since PPFs are randomly distributed inside 
the sample. When PCC is under a static vertical load, the fiber could effectively prevent 
further development of cracks, and the occurrence of the brittle fracture of the sample. In 
addition, the fiber also absorbs part of the energy, delaying the expansion of cracks and 
avoiding spalling of sample after destruction. This phenomenon can be clearly observed 
from the sectional view of the sample after failure shown in Figure 9. Overall, the above 
findings indicate that the addition of polypropylene fiber could improve the internal con-
nection of the sample, which is beneficial to the freeze–thaw resistance. 
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Figure 9. Sectional view of PCC after failure. 

4. Microscopic Analysis 
Scanning electron microscope (SEM) is conducted to investigate the micro-structure 

of OCC and PCC under various freeze–thaw cycles, as shown in Figure 10. In this figure, 
the square denotes the pores; the oval denotes hydration products with flake or needle. 

(a-1) (a-2) 

(b-1) (b-2) 
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(c-1) (c-2) 
  

Figure 10. SEM image. (a-1) OCC; (a-2) PCC; (b-1) OCC under 3 freeze–thaw cycles; (b-2) PCC under 3 freeze–thaw cycles; 
(c-1) OCC under 15 freeze–thaw cycles; (c-2) PCC under 15 freeze–thaw cycles. 

As illustrated in Figure 10a-1, there are some obvious pores inside the OCC sample. 
This is primarily due to the incomplete hydration of cement. When the sample undergoes 
the third freeze–thaw cycle, as its corresponding age is also increased by three days, the 
hydration reaction tends to be more complete than that of 7d. It can be seen from the SEM 
image in Figure 10b-1 that some acicular hydration products are distributed in the clay. 
After 15 freeze–thaw cycles, as shown in Figure 10c-1, the hydration reaction is seen to be 
almost complete, and the hydration products with flake and needle shapes fill the pores 
in the clay sample. Moreover, these hydrated crystals have high strength and cohesiveness, 
forming a flocculated network structure, which firmly binds the clay particles together. 
At the same time, during the freeze–thaw cycle, the sample was first left above 0 °C for a 
period of time, thus making the frost on the clay surface melt into water droplets. The 
water then permeated into the structure along the pores or capillary pores on the struc-
ture’s surface. When the temperature drops below 0 °C, crack formation occurs as a result 
of the freezing and expansion of water. 

Figure 10a-2, b-2 and c-2 show the micro-structure for PCC. A similar observation 
could be achieved that can be compared with that of OCC. The needle-like crystals of the 
hydrates are bound into a network structure, which greatly improves the bonding 
strength between the fibers and cemented clay. This restricts the relative sliding of fibers. 
It can also be seen from Figure 11 that PPF is distributed in a disorderly manner in ce-
mented clay. When subjected to an external force, it will produce high friction between 
the fiber and the cemented clay. As the cracks occurred when the sample was subjected 
to an axial static load, it required a certain amount of effort for the fiber to be pulled out, 
which is the strength enhancing mechanism. 



J. Mar. Sci. Eng. 2021, 9, 143 12 of 14 
 

 

 

Figure 11. Shape of fiber in the clay. 

5. Conclusions and Discussions 
5.1. Conclusions 

In this study, unconfined compressive strength tests were carried out on OCC and 
PCC samples to investigate the effect of freeze–thaw cycles. Based on the test data, the 
stress–strain relationship is analyzed, and the mechanical properties of the cemented clays 
are investigated. Finally, a SEM test was also carried out to analyze the micro-structure of 
cemented clay. The following conclusions could be drawn: The strength of both OCC and 
PCC increases with the curing age, and the growth rate is roughly equivalent. The com-
pressive strength of PCC is always greater than that of OCC under both normal curing 
condition and freeze–thaw cycles, while the addition of fiber also increases the failure 
strain of cemented clay. Freeze–thaw cycle has an adverse effect on the strength of ce-
mented clay, which is obvious in the early stage. As the number of freeze–thaw cycles 
increases, the degradation effect of freeze–thaw cycle begins to reduce due to the genera-
tion of hydration products. Under freeze–thaw cycles, the strength of two kinds of cement 
samples first decreases and then increases slowly. The hydration product covers the fiber 
surface, which effectively limits the relative sliding of the fiber in the cemented clay and 
improves the ability to resist frost damage. The results of this study may provide a foun-
dation for coastal clay-treated engineering design for sustainable planning of cities expe-
riencing freeze–thaw seasons. 

5.2. Discussions 
The test results of this paper are similar to those of Wang [6] and Orakoglu [13], both 

of which show that the fiber has a better improvement effect on cement clay, both in terms 
of unconfined compressive strength and tensile properties. This paper emphasizes the 
time effect and freeze–thaw effect of fiber on the modification effect of cement clay. 

It should be noted that, although the polypropylene fiber is conducive to improving 
the unconfined compressive properties of cement stabilized coastal clay, there are two 
limitations in this study. First, the mechanical test method is relatively simple, only con-
sidering the unconfined compression test. Other methods such as conventional triaxial 
test, splitting tensile test, small strain test, dynamic triaxial test and consolidation test need 
to be further studied. The second is that the starting freezing and thawing age of samples 
is single, only 7 days are considered. In order to meet the needs of practical engineering, 
it is necessary to further test the samples with starting freezing and thawing of 28d and 
60d age. 

Fiber-modified cement clay is a special material mixed with fiber, cement, coastal soft 
clay and water, which has complex chemical composition. Under complex conditions, 
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such as normal maintenance and freeze–thaw cycle, the process of strength development 
and internal structure change may be accompanied by complex phase transformation 
[47,48]. It is a new idea to study the mechanical properties of fiber-reinforced cement clay 
with phase transformation theory. 
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