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Abstract: Direction-of-arrival (DOA) estimation in a spatially isotropic white noise background has
been widely researched for decades. However, in practice, such as underwater acoustic ambient
noise in shallow water, the ambient noise can be spatially colored, which may severely degrade
the performance of DOA estimation. To solve this problem, this paper proposes a DOA estimation
method based on sparse Bayesian learning with the modified noise model using acoustic vector
hydrophone arrays. Firstly, an applicable linear noise model is established by using the prolate
spheroidal wave functions (PSWFs) to characterize spatially colored noise and exploiting the excellent
performance of the PSWFs in extrapolating band-limited signals to the space domain. Then, using the
proposed noise model, an iterative method for sparse spectrum reconstruction is developed under
a sparse Bayesian learning (SBL) framework to fit the actual noise field received by the acoustic
vector hydrophone array. Finally, a DOA estimation algorithm under the modified noise model is
also presented, which has a superior performance under spatially colored noise. Numerical results
validate the effectiveness of the proposed method.

Keywords: DOA estimation; spatially colored noise; SBL; PSWFs

1. Introduction

Array signal processing by passive sonar systems is an important topic for under-
water targets monitoring, locating and tracking [1]. Acoustic vector hydrophones have
better directional sensitivity and more measurement information than acoustic pressure
hydrophones. Therefore, in hydroacoustics, the use of an acoustic vector hydrophone
array for array signal processing often yields better results. The features and advantages
of vector hydrophone arrays in beamforming and direction of arrival (DOA) estimation
are clear from in-depth studies of their physical mechanisms. A performance evaluation
system for vector hydrophone arrays has been proposed in the literature [2], and, as a
result, some traditional beamforming and DOA estimation algorithms have been extended
to vector hydrophone arrays. The conventional beamforming algorithm (CBF) and mini-
mum variance distortionless response (MVDR) for vector hydrophone arrays have been
investigated [3]. The main difference between the assumptions in these algorithms and
acoustic pressure array signal processing is that the array steering vector contains the delay
information of the acoustic pressure hydrophone array, and also the pointing information
of the acoustic vector hydrophones themselves, which are linked by the Kronecker product.
K. T. Wong and M. D. Zoltowski [4-6] have carried out intensive research in the field of
high-resolution DOA estimation using vector hydrophone arrays. They focus on estimation
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of signal parameters via rotation invariant technique (ESPRIT) [4,5] and multiple signal
classification (MUSIC) [6] for plane wave signals and spatially white noise backgrounds,
extending them to vector hydrophone arrays of arbitrary array types.

The signal-to-noise (SNR) gain of array signal processing depends heavily on the
ocean ambient noise field. The DOA estimation methods discussed above, including most
existing high resolution DOA estimators, assume that the additive noise model is spatially
isotropic Gaussian white noise. This means that the covariance matrix of the noise can be
reduced to a diagonal array related only to the noise power. The noise is spatially white
and its covariance is a constant multiplied by a unit matrix. However, the actual noise
environment is often spatially anisotropic due to the effects of wind, waves, and noise
from distant traveling vessels [7-12]. Shchurov et al. [13] have studied the composition
structure and coherence properties of the ambient noise field in detail through a large
number of experimental observations. Their findings show that the ambient noise field
can be divided into isotropic and anisotropic components. They proposed the concept of
vector phase technique, which extends the means of vector signal processing. In the field of
vector hydrophone receiving environment noise, V. A. Shchurov [13] and M. Hawkes [14]
have done extensive research. The theoretical expression for the correlation between the
channels of a vector hydrophone in an isotropic noise field was derived. This makes the
noise in the far-field array model somewhat spatially directional. Additionally, due to
diffusion of the near-field volume noise source in a certain spatial area, the received noise
between the array elements has a certain correlation, but it is far less than the correlation
when receiving point source signals. Thus, the spatially colored noise cannot be suppressed
as point source interference. Huang [10] analyses the noise field scenario in the presence of
sea surface noise as well as volume noise.

Noise correlation will lead to significant errors [15,16], which makes the beamform-
ing [17-19], DOA estimation [15,16,20] and underwater positioning methods [21,22] based
on the assumption of spatially white noise ineffective. Current research on algorithms for
dealing with colored or correlated noise can be divided into two categories.

The idea of the first class is to solve the DOA estimation problem under spatially
colored noise by exploiting the properties of the noise or signal. The most straightfor-
ward method is to try to measure the spatial distribution of the noise and to perform an
eigendecomposition of the matrix, i.e., a pre-whitening technique [23,24]. However, in
many cases, the noise covariance may be time-varying or impossible to measure precisely.
Another type of approach is to describe noise by parameterising them using an autore-
gressive/autoregressive moving average model [25-28] (AR/ARMA), assuming that the
noise field satisfies a spatial autoregressive model. The noise is represented in [28] as a
spatial autoregressive process with unknown parameters. However, these methods require
high-dimensional search, which increases computational complexity. Another approach
is to use the fact that the signal and the noise are different by assuming that the signal
is non-Gaussian and the noise is Gaussian [29,30]. Higher order statistics can be used to
solve this problem under above assumptions. In special cases, the cyclic stationarity of
signals can be used to remove the influence of noise. However, these assumptions only
apply under certain conditions and do not always hold in practice.

The above methods impose special constraints on the noise or signal. The second class
of ideas uses additional information about the array structure. One approach is to rotate
or translate the array. As the noise structure remains unchanged, the covariance matrix
after rotation or translation is subtracted to eliminate the effect of noise [31]. Essentially,
the method sets the sub-arrays to be well separated so that the noise between different
sub-arrays is not correlated. Similar approaches have been used in multiple input multiple
output (MIMO) systems [32-36]. A spatial intercorrelation strategy was utilised to divide
the transmitting array into two or more non-overlapping sub-arrays, since the array noise
corresponding to the different transmitting arrays is not correlated and the covariance
matrix of the noise is all zero. However, both array rotation and translation pose a number
of difficulties in terms of mechanics, while the two sets of data are obtained at different
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observation times, which are not identical to the two sets of data obtained simultaneously,
thus causing errors in the data. These methods are only for certain arrays.

The above-mentioned references do not take the vector hydrophone array into con-
sideration. There is little in the literature about the DOA estimation under the spatially
colored noise using vector hydrophone arrays. In [37], a rectangular vector hydrophone
array is used to eliminate the interference of colored noise. The DOA estimate is obtained
directly by using the rotationally invariant relationship between the velocity measurement
component and the sound pressure measurement component of the vector hydrophone.
However, the estimation accuracy and resolution of this algorithm is low.

Although the estimation performance can be improved by increasing the interval
between the elements, this improvement is limited. This method cannot achieve satisfactory
performance when the signal of interest or the interference has a similar orientation.
Therefore, this paper considers introducing high-resolution DOA estimation into the vector
hydrophone array under spatially colored noise.

Sparse signal recovery (SSR) based methods have been applied to solve the problem
of DOA estimation in recent years, and the sparse Bayesian learning technique has been
introduced in a spatial isotropic white noise background and obtained good performance
both theoretically and experimentally [38-43]. By exploiting spatial sparsity, these SSR-
based methods have been shown to exhibit remarkable superiority in resolving L1 norm-
based singular value decomposition (L1-SVD). The literature [44] took the L1 norm as
the penalty function for sparse constraints and solved a convex optimization problem
to estimate the DOA of far-field incoming signals. A reweighted L1-norm minimization
subject to an error-constrained L2 norm was designed to determine the DOA estimates
under the coexistence of mutual coupling and nonuniform noise [45]. A joint non-negative
sparse Bayesian learning (SBL) procedure was developed to estimate DOA for wideband
signals [46]. However, to the best of our knowledge, the ability of SSR-based DOA methods
under spatially colored noise has not been proved yet.

Before the SSR method is introduced into DOA estimation under spatially colored
noise, we still have a key technology to study, that is, we must reconstruct the model
of spatially colored noise according to the characteristics of SSR. How to better fit the
noise is the key to the problem. In this paper, the prolate spheroidal wave functions
(PSWFs) [47-53] is used to fit the spatially colored noise. The PSWFs originated from the
separation of the Helmholtz equation variables in a spherical coordinate system; it has been
widely used to solve various physical and engineering problems such as wave scattering
and time-frequency signal processing. Typical applications in signal processing are best
known from the work of Slepian et al. [49,52], who demonstrated the excellent properties
of the PSWFs for fitting finite bandwidth signals. For the extraction of time-frequency
information from broadband signals, the most widely used means is the Fourier transform,
which essentially divides a broadband signal into a number of narrowband signals using a
series of narrowband filters, which also provides the most intuitive and convenient way
to extend narrowband signal processing algorithms to broadband signal processing. In
practical signal processing, however, broadband signals can be processed and analysed
only with limited sampling time. Using the famous Heisenberg uncertainty principle,
for a finite-length signal, its bandwidth must be infinite, and the finite-bandwidth signal
duration must be infinite, so the truncated sampling of the time-domain signal leads to
the expansion of the signal bandwidth. This brings challenges to the fitting of the finite-
bandwidth signal. Insufficient sample points can also lead to inadequate resolution of
the Fourier transform and energy leakage from adjacent frequency points, affecting the
frequency splitting performance of the narrowband filter. In Section 3 we present the
methodological derivation of the PSWFs, deriving its good performance, with emphasis on
extending it from the frequency domain to the space domain.

In response to the fact that spatially colored noise can cause degradation in the
performance of DOA estimation, this paper proposes an applicable linear noise model
by using the PSWFs to characterise spatially colored noise and exploiting the excellent
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performance of the PSWFs by extrapolating band-limited signals to the space domain.
The noise model proposed in this paper can provide a complete fit to the actual noise
field. An iterative method for noise fitting and sparse spectral reconstruction is developed
in a sparse Bayesian learning (SBL) framework. A DOA estimation algorithm under a
modified noise model is also investigated. As a result, the corresponding DOA in the
spatially colored noise environment can be obtained. The rest of this paper is structured
as follows. Section 2 introduces the signal and nose model of vector hydrophone array
in detail, Section 3 describes the method proposed in this paper in detail, Section 4 gives
property analysis, and Section 5 gives conclusion.

2. Problem Description
2.1. Signal Model

Suppose there are K narrowband signals impinging on the pressure hydrophone
array composed of M sensors. For a uniform linear array with a spacing of d, the sound
pressure received by the m-th array element and the array outputs with T snapshots can be
modelled as:

x() = Ay(0)s(t) +n(t) M

wherex(t) = [x1(t), x2(t), -+, xm(t)]', t = t1, - trand Ay(0) = [ap(61),ap(62), -+ ,ap(0k)]
is the array manifold matrix, a(fx) is the steering vector corresponding to the k-th source.
s(t) = [s1(t),- - - ,sk(t)] contains the source waveforms, and n(t) = [n1(t), - - - ,np(t)]" is
the additive ambient noise term.

Considering the velocity v(t) = [vx(t),v,(t)] from the two-dimensional vector hy-
drophone, the array manifold matrix A, () of vector hydrophone array can be expressed
as follows:

u(0)=[1 cos® sin® ]T

Ax(0) = u(0) ® A, (0) @

where u(0) represents the steering vector of the two-dimensional vector hydrophone’s
response to the signal, and the symbol ® represents the Kronecker product operation.

2.2. Noise Model

The noise model is similar to the signal model. In the signal model, we only consider
the two-dimensional plane, so only consider the horizontal angle §. However, in the noise
model, we consider isotropic noise. The isotropic noise field is composed of an infinite
number of noise sources that radiate narrow-band plane waves uniformly distributed on
the unit sphere in space. Therefore, the three-dimensional situation needs to be considered.
The literature [14] derives the difference between the channels of the vector hydrophone
array based on this model. The correlation of noise between different array elements and
different channels of array elements provides a theoretical basis for vector array signal
processing. The influence of the distribution of noise sources on the spatial spectrum
was analysed in this section. Assuming that the M-element uniform linear vector array is
located in the isotropic noise field, the noise sound pressure output of each element can be
expressed as:

mp(t) = [{ apy (0, @)soq(t)dode ©®)
(@)

where () represents the integration interval as the surface of the unit sphere, sg ,,(t) repre-
sents the plane wave radiated by the noise microunit at (6, ¢) located on the surface of the
sphere. 6 € [0,271] and ¢ € [—71/2, —7t/2] represent the azimuth and elevation angle in
the spherical coordinate system, respectively. ar, (6, ) represents the response vector of
the pressure channel to the noise element at (6, ¢), and can be written as:

27 27 T
ary(0,¢) = |1,exp ]Tdcosﬂcosqo e, EXP ]T(M—l)dcosecosq) 4)
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The output of the vibration velocity channel at the microunit (6, ¢) is given by Euler’s
equation (assumed acoustic impedance pc = 1):

1y, (t) = cos 6 cos gny(t) 5)
1y, () = sin 0 cos pnp(t)
Then the response vector generated by the vector array to the noise source at each
microunit (0, ¢) is
arp (9r (P)
ary (0, ¢) = | cosb cos (Pl?lpp(G, ®) (6)
sin 6 cos par, (6, 9)

According to the conclusions given in the literature [2], in the isotropic noise field, the
noise correlation coefficients of the channels inside the vector hydrophone and between
different vector hydrophones can be described by the spherical Bessel function:

Ryp = jo([d']) /
Ry =3[ cos
Roy0, = —j2(|d’]) cos ¢ cos ¢y m # n

i ,
Rous = M1 (41 ot %
d =2rd/)\

where d denotes the distance vector of each hydrophone. The subscript m, n = x,y,z
denotes the three orthogonal components of acoustic pressure, and ¢, is the angle between
the axial direction of the vibration channel and the vector d. j,(-) is the v order spherical
Bessel function. R, is the zero-order spherical Bessel function of the array element
spacing |d|. As shown by the solid line in Figure 1, this function obtains zero when the
array element spacing is an integer multiple of half wavelength, and decays oscillatively
with increasing array element spacing. Different from the correlation coefficient between
the sound pressure channels, Ry vx,Rp oy, Rox,0y are not only related to the array element
spacing, but also to the direction of vector d. The dotted and dotted lines in Figure 1
respectively show the spatial correlation curve between the vibration velocity channels
when the two hydrophones are located on the OX axis.

1 , , . : ‘
—DP-P
Vx-Vx
< —Vy-Vy
2
E 05} .
)
=
—
o]
O
E N\
= 0F
< N—
[o®
n
-0.5 . . . .

0 0.5 1 1.5 2 2.5 3
array element spacing(\)

Figure 1. Acoustic vector sensor correlations in ambient noise.
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From Equation (7) and Figure 1, we can see that for a uniform linear vector hydrophone
array with half wavelength spacing, the noise of each acoustic pressure channel is uncorre-
lated, so the noise covariance matrix of acoustic pressure channel R, , is a diagonal matrix.
The noise spatial spectrum obtained by using the data from the acoustic pressure channel is
the same in all azimuth angles, that is, isotropic. However, combining the acoustic pressure
channel and the acoustic vibration velocity channel, the noise covariance matrix can be
expressed in the form of a block matrix as follows.

RP/P Rp,vx Rp vy
RN = RUX/P va/vx R'Ux/
Rvy,p Rvy,vx Rvy,vy

c C3M><3M (8)

where Ry, o,, va,vyr Rp,yx, Rp,vy, va,vy are the correlation coefficient matrices. Obviously,
Ry is no longer a diagonal matrix, that is, the received noise of different channels has a
certain correlation, which is manifested in the spatial heterogeneity of the spatial spectrum.
The isotropic noise field received by the linear array can be obtained by numerical simula-
tion. According to the model in literature [3], the process of using numerical simulation to
generate isotropic noise is as follows: first, use numerical methods to randomly generate
enough discrete spatial positions on the sphere, and meet the uniform distribution. Each
noise source radiates independent narrow-band Gaussian noise to the centre of the sphere,
which is expressed by sy, ;- Assuming that the receiving array is located in the centre of
the unit sphere and the array aperture is much smaller than the radius of the sphere, the
receiving noise model of the Equation (3) can be written in discrete form:

i=1
N, = I\; arp (0, (Pi)SQirq’i
N 9)
Nz) - Z aPU(gil q)i)sei/q’i
Nr

Using Equation (9), the estimated value of the noise covariance matrix and the noise
spectrum of the two-dimensional plane can be obtained:

Ryp = N,NJ/T

Ry = N,NI/T

Pyp(0) = “FU( )Rp paro(0)
Py(0) = afl (6)Ryary(0)

(10)

where P}, ,(68) and Py(0) denote the spatial spectral outputs of the pressure hydrophone
and vector hydrophone arrays, respectively. The covariance matrix of the noise field is
obtained using the numerical simulation method and the theoretical results of Equation (7),
respectively. Then the noise spatial spectrum of pressure hydrophone and vector hy-
drophone arrays is obtained. Comparison results are shown in Figure 2. It can be seen that
the numerical simulation results are in basic agreement with the results of the theoretical
equation. The isotropic noise spatial spectrum of pressure hydrophone array is relatively
flat, however, due to the correlation between the channels of the vector hydrophone array;,
the isotropic noise spatial spectrum of the vector hydrophone array has a certain degree of
fluctuation, which is characterized by the inhomogeneous or "colored" spatial spectrum.
When there are volume noise sources in the near field, numerical simulation can also
be used to replace the volume source with enough discrete near-field point sources. The
position of each discrete point source is (7}, 0;, ¢;), and the near-field response of the array
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to the element is an, (7}, 0, ¢;). With the combined effect of an isotropic noise field and a
near-field volume noise source, the output of the array can be written as follows:

i=1

i=1
Ny = Z ary (Gi/ §0i)591,<pi + Z ANy (1’]', 9]'/ %’)Sr]-,ei,q;i (11)
Nt Nc

aa)

o

E

£

9]

@

&

— '2 r 7
<

B

& ------------- vector hydrophone arrays numerical simulation

@ . - - - .pressure hydrophone arrays numerical simulation

|- - - -vector hydrophone arrays theoretical results
pressure hydrophone arrays theoretical results

0_ 20 40 60 80 100 120 140 160 180
angle(deg)

Figure 2. Spatial spectrum under isotropic noise.

Figure 3 gives the spatial spectrum output of the array under the combined effect of an
isotropic noise field and a near-field volume noise source. Assuming that there is a plane
baffle near the receiving array that radiates noise to the array, the location of the baffle
is {(x,y,2)|x € [A,2A],y = A,z € [-0.2A,0.2A] }. It can be seen that the spatial spectra of
both pressure hydrophone array and vector hydrophone array have obvious directivity
under the influence of a near-field volume source.

10 :

acoustic vector sensor array

81l acoustic pressure sensor array

spatial spectrum/dB

0 20 40 60 80 100 120 140 160 180
angle(deg)

Figure 3. Spatial spectrum under spatially colored noise.
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3. Proposed Technique
3.1. Time Domain Fitting of Finite Bandwidth Signals with Prolate Spheroidal Wave Functions

Slepian [44] gives the Uncertainty principles in signal time-frequency analysis. For an
arbitrary signal f(t) and its spectrum F(w), define

ftH_T’f(t)’zdt and @, & wﬁQ‘F ‘da) )
_JFO?’F w ‘dw

where ¢, w represent the time and frequency, and T, () represent the time period and
bandwidth, respectively. The time-bandwidth product satisfies QT > 27a;a3, but the
physical meaning of Equation (12) is not clear. Landau et al. build on this to give a more
applicable conclusion, defining

f_TT‘f(t)‘zdt 4gb f_QQ)F(w)‘zdw

—————and = —M—MmMm— (13)
SIS |f )|t 23 B (@) |adeo

QT > ¢(a, B), where ¢(a, B) is a function that can be displayed. It is can be seen from
the definition of Equation (13) that a? denotes the proportion of the energy of the signal f (t)
in the time period —T ~ T to the energy of the entire signal. Correspondingly ? denotes
the proportion of the energy of the signal in the frequency band to the energy of the entire
signal. Therefore, when fitting a finite bandwidth signal with a finite length signals, we
want this signal to maintain the maximum proportion of energy within the original signal
bandwidth. The problem can be formulated as: when 8 = 1 and QT is given, find a signal
or set of signals f(t),t € [—T, T| to make « maximum. According to Parseval’s theorem
and the Fourier variation pair relation, the following equation can be obtained:

F(w) = argmaxwa

F(w)
o S F) i P
= argrl-;}i))( f+oo \F )|2dw (14)
arngrEg))( R = Fw)F ( w’)dw

The spectrum of a signal satisfying Equation (14) is required to satisfy the second type
of Fredholm equation [54] as shown below:

ri 2sinT(w — w) P (w

Yw € [—w,w],/ pra—
-0

"dw' — aF(w) =0 (15)
It can be seen that in fact Equation (15) is an eigenvalue problem:

do' = —F( ) (16)

1251r1T(a; w) F* (o) -

Yw € [—w,w],/ o
-1

Transforming the frequency domain to the time domain gives the definition of the
PSWFs: for any real number ¢ > 0, the i-th order PSWFs is defined as:

1
FIASYE(E) = / et dx, Wt € [~1,1] (17)
-1

where A is the eigenvalue corresponding to the i-th order PSWFs ¢ (). The constant c
is called the bandwidth parameter and ¢ = QT. In particular, when ¢ = 0, the PSWFs
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degenerate to Legendre polynomials with eigenvalues AY = i(i + 1). The PSWFs can
therefore be viewed as a generalisation of the Legendre polynomials. In fact, PSWFs and
Legendre polynomials have many similar properties.

1) {ys(t) }ZO are smooth, real, and form a spatially normalized orthogonal basis of
L2([-1,1]), ie.

[ v =g (18)
-1
(2)  A{ are real numbers that are positive and can be ordered by the magnitude of their
values as
O<A <A < <A < -+ (19)
(3) Wheniis an odd number, {#$(t) };'io is an odd function with respect to t; when i is

[e)

an even number, {¢¢(t)}.”, is a even function with respect to .

Since PSWFs was first proposed by Slepian, it is also called the Slepian function,
corresponding to the discrete form called discrete prolate spheroidal sequences (DPSS) or
Slepian sequences, noted as ¢{(n). [48,55,56] stated that PSWFs is the optimal basis for
fitting finite bandwidth signals. In fact, DPSS is a broadband signal-sampling sequence
and is capable of maximising the ratio:

S [E G ot
s | F()|aaf

(20)

where Fs denotes the sampling rate and |W|< Fs/2. Assuming that the sampling result of
the N point broadband signal is expressed as f(n), the fitting result can be written as

fln) = fo pit (n) 1)

and the coefficients corresponding to each order Slepian sequence are p; = (¢§(n) YE f(n).
It has been shown in the literature [57] that, in general, the 2NW — 1 order Slepian sequence
causes the proportion of the Equation (18) to approximate 1. As the order continues to
increase, the proportion of the Slepian sequence in the frequency band decreases rapidly
and converges to 0. Therefore, it is possible to use a finite-order Slepian sequence to fit a
finite-bandwidth signal exactly.

3.2. Establish Spatially Colored Noise Model Using Prolate Spheroidal Wave Functions

Time domain sampling and spatial sampling have many similar properties, so there
is an analogy between them. For a uniform linear array with a spacing of d, the sound
pressure received by the m-th array element can be written as:

.27td cos 0,

xpm(t) = i sk(t) exp (](m - 1)) + nmp(t) (22)
k=1 A

It can be seen from Equation (22) that the m spatial sequence data points obtained by
a snapshot sampling of m array elements at time t are superimposed by K spatial “single
frequency” discrete signals. The location of these “spatial frequency” points corresponds to
the azimuth of the far-field signal. Here the spatial frequency is defined as fy = cos 6, The
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spatial sampling rate is related to the spacing of the array elements, defined as Fsg = A/d,
so the sampling process of the spatial signal by the array can be expressed as:

X <}27Tf9k
o

xpm(t) = ) si(t)exp| j
P k; Fs

(m— 1)> + nmp (1) (23)

The spatially colored noise means that the noise has stronger energy in the spatial
frequency band of a certain area, but weaker energy in other frequency bands. That means
this kind of noise with obvious spatial directivity can be regarded as a “spatially limited
bandwidth” signal. Using the excellent performance of the PSWFs in the fitting of limited
bandwidth signals, the spatially colored noise can also be described more objectively with
a finite-order Slepian sequence, that is, the noise obtained by a single snapshot of a uniform
linear array can be expressed as

M
ny =y pivs (24)
i=1

where §f represents the i-th Slepian sequence, and the length is M. The parameter ¢ =
2Mfy = 2M cos 6 represents the "time-bandwidth product” of the space. The noise model
determined by Equation (24) is an effective fit to a signal with spatial frequencies con-
centrated in the space [— cos 6, cos 6], so it can be used to describe spatially colored noise.
For the vector hydrophone array, the number of channels becomes 3M. Since the sound
pressure channel and the vibration velocity channel sample the space sound field at the
same point, the vibration velocity channel is equivalent to adding its own dipole directivity
to the sound pressure channel. Therefore, the noise field received by the vibration velocity
channel has a different spatial distribution from the sound pressure channel. Different
coefficients should be used to express the noise of the vibration velocity channel, namely

M M
ny, = Zpixlpf/ ny, = Z Pixll]f (25)
i=1 i=1

where p;, and p;, are the weight coefficients fitting the corresponding channel noise.
Using this noise model to replace the original spatially isotropic noise model, the array
output can be written as:

I M=z

pi;
1

Pix l/JZC (26)
1

i

x(t) = Ap(0)s(t) +

™M=

1=

) piylpic

3.3. Sparse Bayesian Learning Based DOA Estimation under Spatially Colored Noise

The sparse Bayesian learning technique has been introduced to solve the DOA es-
timation problems in a spatially isotropic white noise background and obtained good
performance both theoretically and experimentally. An empirical Bayesian strategy un-
der multiple snapshots is called MSBL as a multiple response extension of the standard
SBL paradigm. After sampling the space of incident signals on a predefined grid, the
direction set @ = [0, - - - ,0;] and an overcomplete steering vector dictionary A,(®) =
[ay(01),- -+ ,a,(0L)] is formed. Let S be the extension of s(t) from © to @, with the non-zero
elements only at the true source directions. The array output can then be written as the
overcomplete form:

X=A,(0)S+N (27)

where X = [x(t1), -, x(t7)]Tand N = [n(t;), - - ,n(tr)] .



J. Mar. Sci. Eng. 2021, 9,127

11 of 22

In general, there is only one parameter used to describe the noise, namely the
noise power. Both subspace algorithms based on optimal weights and sparse Bayesian
learning algorithms require estimation of the noise parameters to ensure adequate
algorithm performance.

Let the hyperparameter y = [, .. .,7L]T represent the power spectrum on the
discrete directions and S(I,:) ~ N (0, v,I), where S(I,:) denotes the I — th row of S. Under
the assumption of spatial white Gaussian noise, N(I,:) ~ N (0, 021), with 07 is the noise
variance, the spatial power spectrum can be estimated through a maximum-likelihood
approach with respect to y and 02, which can be obtained by integrating out the source
amplitudes as follows:

A

v = argmaxp (X; v, 03)

Y%
= argmax [ p(X|S;?)p(S;v)dS (28)
.0
= argmax|ZX|7TeXP[*“’(XHZ‘}_(lX)]
.o

where Zx = AHTA,TA! + 621 and T = diag(y). Problems such as Equation (28) are
generally solved using Expectation-Maximization (EM) algorithm. The E-step requires
computation of the posteriori probability density with respect to S

C oy p(X[sie?)p(Siy)
X,00) = T (X[ p(sm)ds (29)
= |7rp5|7Texp{ftr[(S - HS)HZs_l(S - ”S)} }’

p(s

where
Hs = FAUHZX 71X/

s =T -TAfZy 1AX (30)

By maximizing Equation (28), we can obtain the update strategy of y and ¢2 in the
M-step as follows:

(old) /; 12
(new) g (i), / T
[ (old) o) T¢ (31)
- <ZS )i,i/’yi
(02>(new) _ IIX — A‘USH%/T )

N .
M—-L+ El (Zs)ii/ vi
i=

In the spatially colored noise model, the array output shown in (26) can be rewritten
as the overcomplete form:
X =Ay,(0)S+y;p (33)

where ¢ = blkdiag(y°, ¢, ¢¢) € C3M3M e = e . S| denotes the Slepian basis for
directional noise, and
p=()"(X~ 40(8)S) (34)

where p = [p(t1),...,p(tr)] and p(t) = [p1(t),..., pm(t), p1x(t),. ..,pr(t),ply(t), .,
PMy (t)]" is the weight coefficient used to describe the noise distribution.

The model described in Equation (33) is more suitable, while the increase in the
number of parameters describing the noise makes it difficult to solve for these parameters
as well. We turn to an alternate iterative denoising procedure by optimizing y and the
noise weight coefficients in turn. We rewrite the update strategy of 'y in a noiseless form

new 1 . .
W = VG 13+ (20) vie1, N (35)
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-1
ug = Al <A0FAUH ) (X —Wip) (36)

-1
Is =T —TAH (AvrA{f) Au(X — Wip) (37)

Within each iteration of the EM algorithm, a denoised coarse spatial power spectrum
of sources can be estimated by updating 'y according to Equations (35)—(37). The estimated
power spectrum is then used to reconstruct the directional noise to improve noise fitting
according to Equation (34). The process is repeated until the rate of change in 2-norm
between the former y and the new is minimized to a predefined threshold. The iterative
process that converges to the DOA estimations is shown below:

(1) Initialize the hyperparameter vector 'y and the directional noise weight coefficients
vector p.

(2) Repeat the following two steps until iteration termination conditions are satisfied:
a.  Estimate spatial power spectrum by updating v, according to Equations (35)—37);
b.  Fit the noise according to Equation (34) and estimate the noise parameter p

The procedure of the proposed algorithm is shown as Algorithm 1:

Algorithm 1 Procedure of the proposed algorithm

Initialization: y,p

Repeat:

(1) Calculate pg and Zg according to Equation (36)-(37).

(2) Update parameter y according to Equations (35)-(37);

(3) Fit the noise according to Equation (34) and estimate the noise parameter p;

(4) Repeat Steps (1), (2) and (3) steps until y and p converge to a fixed value. If convergent,
terminate the iteration and break; otherwise, return to first step;

End.

3.4. Complexity Analysis

For each iteration of the proposed algorithm, the computational complexity of the
algorithm is dominated by evaluating the posterior probability density function in the
E-step, computing the derivatives and updating the number of sources and noise power in
the M-step. To obtain mean and variance of multivariate normal distribution expressed
in Equation (36), it is required for computing the inversion of L x L matrix, which leads
to the complexity of O(L3). The calculation of ug presented in Equation (36) requires
another (M? + M)L + MLT complex multiplications. The computing the derivatives of the
objective function requires O(ML?), which leads to the complexity of O(M?). Considering
the spatial sparsity constraint and the limited number of snapshots, K < M < L, T < L,
the computational complexity is O(L3 + MLz). For L1-SVD, CBF, MVDR, and MUSIC, the
computational cost is O(L?), O(M?), O(M?), and O(M?3).

It is worth mentioning that the superiority of the proposed algorithm comes at the
cost of the increased computational complexity. It is a compromise between the perfor-
mance of computational complexity when other state-of-the-art algorithms fail to provide
satisfactory results.

4. Property Analysis

Simulation experiments are used to evaluate and analyse the performance of the
algorithm proposed in this paper. It compares existing methods in terms of spatial spectrum,
resolution probability and DOA estimation accuracy. In the simulation experiment, an
8-element vector uniform linear array is selected, and the distance between the array
elements is half wavelength of signal. Since the algorithm in this paper can be regarded as
an extension of the sparse Bayesian learning DOA algorithm under spatially colored noise,
the proposed algorithm is called spatially colored noise field sparse Bayesian learning for
multiple vectors (SCN-MSBL). The comparison methods CBF and MUSIC are used in the
vector hydrophone array, named as V-CBF and V-MUSIC. In the spatially colored noise
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field, the definition €, () represents the power of noise in a direction 6, and the SNR is

defined as
E t)sE(t
SNR; = 10lg [Sk( )Sk( )]

— (38)
L [T, (0)d6

Since the noise model in this paper is obtained by using the similarity of time domain
sampling and spatial sampling, the DOA estimation is actually a search process for spatial
frequency fy = cos6. Therefore, in the simulation experiment of this paper, the angle
interval is 1° as the space is divided into 361 parts and used as the spectrum search range
of the comparison method.

4.1. Simulation Results of Spatial Spectrum Estimates

Firstly, we discuss the effect of spatially colored noise on different algorithms from
the perspective of spatial spectral estimation. It is assumed that two spatially uncorrelated
far-field narrowband signals are incident on the vector hydrophone array from 65° and 80°
with equal power. The number of snapshots is 200. The noise field is constructed using
the numerical simulation method introduced in Section 2. Figure 4 shows the probability
density functions of the spatial distribution of noise sources in an isotropic noise field as
well as in a spatially inhomogeneous noise field. In the simulated isotropic noise field, the
numerically constructed noise sources are uniformly distributed in all directions in space,
as shown by the solid line in the figure. The spatially colored noise field shown by the
dashed line has obvious spatial directionality, with the noise intensity significantly higher
in a larger range near 60° than in other directions.
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Figure 4. Spatial probability density distribution of numerical noise sources.

Figure 5 shows the spatial spectrum estimation results of the V-CBE, V-MUSIC,
MSBL and SCN-MSBL, when two sources are incident on the array with SNR = —7dB.
Figure 5b,d are partial enlarged views. As can be seen in Figure 5a,b, several algorithms
are able to obtain accurate DOA estimates in an isotropic noise environment, and the noise
spectrum far away from the signal is flatter. Among them, the CBF algorithm has the
weakest resolving ability and the highest noise spectral level. The V-MUSIC algorithm
has a sharper spectral peak because it exploits the orthogonality between the signal and
noise subspaces, but not as sharp as the MSBL algorithm and the proposed algorithm.
The reason is that the latter two take into account the potential sparsity properties in the
signal model. Comparing Figure 5a,c, it can be seen that the V-CBE, V-MUSIC, and MSBL
algorithms are all affected by the spatially colored noise to different degrees. Specifically,
the noise spectrum of the V-CBF algorithm in the colored noise field is jittered and the
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spectral level is raised, which is not conducive to distinguishing the real signal. Meanwhile
the noise spectrum obtained by the V-MUSIC algorithm is still flat, but the spectral level is
also raised, and the spectral peak corresponding to the real signal position is wider. The
MSBL algorithm is still able to output sharper spectral peaks at the true position of the
signal, but it outputs more pseudo-peaks under the influence of colored noise fields; these
performance degradations are caused by the noise model mismatch, while the SCN-MSBL
algorithm proposed in this paper is able to adapt to the negative effects of the spatial
directionality of the noise because it constructs a new linear model for spatially colored
noise fields. As can be seen in Figure 5, the SCN-MSBL algorithm takes into account the
noise model and the sparse characteristics of the signal in the space domain, so the accuracy
and resolution of the DOA estimation are guaranteed.

0 0
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5 % 5
g £ 201
E _40 E
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g _—1S\/éS£LMSBL g 40; Nyl
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(a) Isotropic noise field (b) Partial enlarged view
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Figure 5. Influence of directional noise on spatial spectrum. (a) Isotropic noise field, (b) Partial enlarged view, (c) Spatially
colored noise field, (d) Partial enlarged view.

Next, we change the SNR of the two spatial sources and observe the spatial spectrum
estimation results of the algorithms when the target strength is obvious. The environmental
noise is the spatially colored noise field shown by the dotted line in Figure 4, and the
other simulation conditions remain unchanged. Figure 6 shows the spatial spectrum of
the four algorithms for DOA estimation. The SNRs of the two sources in Figure 6a are
both 7 dB, and Figure 6b is a partial enlarged view. In Figure 6¢, the SNR of the source at
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65° is 7dB, and the SNR at 80° is —7 dB. Similarly, Figure 6d is the partial enlarged view.
Comparing Figure 5¢,d with Figure 6a,b, it can be seen that, as the input SNR increases, the
performance of each algorithm improves to a certain extent. Although the MSBL algorithm
is still affected by some false peaks, their height is relatively low, so it can find the real
target location correctly. When two spatial targets, one strong and one weak, are incident
on the array (as shown in Figure 6¢,d), it is difficult to find the position of the weak target
in the spatial spectrum obtained by the V-CBF algorithm. The MSBL algorithm cannot
eliminate the influence of false peaks because the height of the false peak is close to the
peak value of the weak target. However, the proposed algorithm uses a more extensive
noise model and has stronger adaptability to the spatial distribution of noise. Therefore,
the performance is very robust under various SNRs and noise background types, bring the
sharpest peaks. It is worth noting that although the V-MUSIC algorithm can output the
true position relatively stably under various simulation conditions. However, the accurate
distinction between signal and noise subspaces is based on the premise that the number of
independent sources is known a priori. The algorithm in this paper does not require the
number of sources as a priori input, and the sharpness of the spectral peak is much better
than other algorithms.
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Figure 6. Spatial spectrum under directional noise field. (a) SNR; = 7 dB, SNR; = 7 dB, (b) SNR; = 7 dB,SNR; = 7 dB, (c)
SNR; = —7 dB,SNR; = 7 dB, (d) SNR; = —7 dB,SNR; = 7 dB.
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spatial spectrum(dB)

Continue to reduce the interval between the incident angles of the sources, and the two
sources are incident from 65° and 70° respectively. The SNR and the number of snapshots
is 0dB and 200, respectively. The spatial spectrum result is shown in Figure 7.
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angle(deg) angle(deg)
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Figure 7. Spatial spectrum of two closed sources. (a) Spatial spectrum results, (b) Partial enlarged view.

As can be seen from Figure 7, when the two targets differ by only 5°, V-CBF and
V-MUSIC can no longer distinguish the two targets at all. MSBL can barely distinguish the
two targets although it has the highest resolution capability of the sparse reconstruction
algorithm, but the DOA estimation results deviate to some extent from the true results
and are seriously affected by the pseudo-peak problem. Only the proposed algorithm can
accurately estimate the true angles of two adjacent targets. The above simulations show
that the accuracy and resolving ability of the SCN-MSBL algorithm in DOA estimation
under spatially colored noise are higher than those of other algorithms.

4.2. Statistical Performance Analysis of Simulation Results

In order to obtain this statistical performance more accurately, the two far-field signals
used in this simulation were oriented at 70.1° and 90.9°, to ensure that all algorithms were
able to distinguish between the two sources and thus obtain more accurate statistical results.
The SNR was varied from —8dB to 20dB, and 200 Monte Carlo trials were performed
in each SNR case with a snapshot number of 200 and the same spatially colored noise
distribution as in Experiment 1.

The statistical results are given in Figure 8. It can be seen that, at low SNRs, the
SCN-MSBL algorithm has the highest accuracy and the V-MUSIC algorithm has the lowest
estimation accuracy. As the SNR increases, all methods maintain the high estimation
accuracy. The DOA estimates obtained by the sparse reconstruction method still fall on the
nearest raster point to the true DOA, even if the spatial grid division does not pick up the
true position of the signal. Due to the effect of quantization error, the root mean square error
(RMSE) of the DOA estimate does not continue to decrease as the SNR increases, but rather
plateaus. In the practical application of the algorithm, a strategy of grid refinement or a
strategy of discrete grids [44] can be used to further reduce the effect of quantization error.

Next, fixing the SNR as 0dB, the variation of the RMSE with the number of snapshots
was analysed. The results are shown in Figure 9. It can be seen that the RMSE of DOA
estimation gradually decreases as the number of snapshots increases. The estimation
accuracy tends to smooth out when the number of snapshots is large enough for the
quantization error to play a dominant role. In addition, when the azimuth of the space
target is far apart, except for the poor estimation accuracy of the V-CBF algorithm in small
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snapshots, the DOA estimation performance of the other algorithms is relatively close, and
the performance of the DN-MSBL algorithm is slightly better than the other algorithms.
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Figure 8. RMSE of direction-of-arrival (DOA) estimation versus signal-to-noise (SNR).
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Figure 9. The variation of the RMSE with the number of snapshots.

The ability of each algorithm to discriminate between adjacent targets was examined
by means of Monte Carlo tests. Firstly, the two targets in space are made to be incident on
the array from 70° and 75° respectively. The SNR is varied from —8 dB to 20 dB. 200 Monte
Carlo trials were performed in each SNR case with a snapshot number of 200. The results to
determine whether the algorithms could successfully discriminate between the two targets
are shown in Figure 10.

As can be seen from the Figure 10, in the range of SNRs of the simulation, the V-
CBF algorithm is always unable to resolve two targets with an angle interval of 5°. The
probability of successful resolution of the remaining methods increases with the increase
of the SNR. When SNR is higher than 8 dB, all the algorithms except the V-CBF algorithm
are able to resolve the dual targets with 100% probability. Besides, the MSBL and the
SCN-MSBL algorithm have a higher resolution capability than the classical high-resolution
algorithm (V-MUSIC) due to the constraint on the sparsity of the spatial domain of the
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signal. The SCN-MSBL algorithm has the lowest SNR threshold required to successfully
resolve the dual targets with 100% probability, which is about —4 dB.
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-8 -4 0 4 8 12 16 20
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Figure 10. RMSE of DOA estimation versus snapshots.

Finally, we fix the incidence angle of source 1 at 70° and make the incidence angle of
source 2 vary from 72° to 90° to gives the variation of the successful resolution probability
for the four algorithms. Figure 11 shows the results when the SNR is 0 dB and the number
of snapshots is 200. It can be seen that the resolution capability of the V-CBF algorithm is the
worst, and the resolution ability of the SCN-MSBL and the MSBL algorithm is the strongest,
while the SCN-MSBL algorithm has a smaller angle interval threshold. Therefore, using
the noise model described in this paper, combined with the spatial sparsity constraint, we
can distinguish adjacent targets better, which also verifies the conclusions of the resolution
ability of each algorithm in Experiment 1.

100 #r 2 2 e = £
V-CBF
—a— V-MUSIC
80 —e—MSBL 1
—A—SCN-MSBL

resolution probability(%)

20

2 4 6 8 10 12 14 16 18 20
angle interval (deg)

Figure 11. Resolution probabilities of different methods versus SNR.

We provide a comparison table which clearly states the differences of the proposed
algorithm and other algorithms mentioned in this paper. The table is as Table 1:
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Table 1. Comparison Table.

Approach Advantages Disadvantages
V-CBE Noise robustness Poor resolution
) Faster and low complexity Not suitable for spatially colored noise
V-MUSIC Ability to super-resolve Not suitable for spatially colored noise
Higher resolution capability High computational cost
MSBL Higher estimation accuracy Results are prior dependent which is
needed to select
Not suitable for spatially colored noise
Higher resolution capability High computational cost
SCN-MSBL Higher estimation accuracy Results are prior dependent which is

needed to select
Suitable for spatially colored noise

5. Conclusions

Many high-resolution DOA estimation algorithms achieve very good performance
under the isotropic Gaussian noise background. However, the presence of wind and waves,
distant travelling vessels and local platform noise often makes the noise received by the
array directional. This paper first introduces the volume noise model and the numerical
simulation method, then analyses the effect of near-field volume noise on the spatial
spectrum. It has been found that the noise spatial spectrum of the vector hydrophone array
has certain directivity under the influence of near-field volume noise. To solve this problem,
we present the excellent characteristics of the PSWFs for fitting finite bandwidth signals,
and extends this feature to the spatial domain. A linear model of spatially colored noise
is constructed based on the analogous properties of time domain sampling and spatial
sampling. Using the sparsity of the proposed noise model and the signal in the spatial
domain, the overcomplete model of the array output is established. As a result, the sparse
Bayesian learning technique is introduced in the DOA estimation process. It makes full use
of the multi-level probability model of the sparse Bayesian learning method to jointly and
iteratively obtain the noise parameters and the signal reconstruction. The reconstruction
accuracy of the algorithm is improved under spatially colored noise field. Simulation
experiments demonstrate the effectiveness of this method in different noise environments.

The theoretical and simulation analyses show that the SCN-MSBL algorithm proposed
in this paper has the following features and advantages.

(1) When the spatial noise is highly directional, the proposed algorithms effectively
suppress the significant increase in pseudo-peaks and noise spectral levels, while
ensuring the high resolution of the sparse reconstruction class algorithm.

(2) The proposed algorithms require lower SNR thresholds and angle interval thresholds
to successfully distinguish adjacent targets, compared to beamforming algorithms
and subspace-like algorithms.

(3) As for the accuracy of the DOA estimation, the RMSE of the DOA estimation of the
SCN-MSBL algorithm is slightly smaller than that of the V-MUSIC algorithm, and
comparable to that of the MSBL algorithm, provided that all methods can accurately
distinguish the adjacent targets.

The sparse reconstruction-type DOA estimation algorithm exploits the sparse spatial
characteristics of the source. It transforms the DOA estimation problem into a sparse
reconstruction problem by building an overcomplete model of the array output signal,
achieving a very high resolution. However, in the spatially colored noise environment,
the sparse reconstruction algorithm is prone to pseudo-peaks and even failure. The al-
gorithm proposed in this paper not only makes full use of the advantages of the sparse
reconstruction class algorithm, but also refines the spatially colored noise model. Besides,
the proposed algorithm obtains higher resolution, estimation accuracy, and better noise
robustness, laying the foundation for subsequent research on array signal processing using
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the framework of sparse reconstruction. The main disadvantage of the proposed method is
the large amount of computation, so our next objective is to develop a fast algorithm to
facilitate the real-time operation of this method.

Author Contributions: Conceptualization, Z.S., G.L., and L.Q.; methodology and experiments, Z.S.,
L.Q.; writing—original draft preparation, Z.S., L.Q.; writing—review and editing, Z.S., S.S. and T.L.;
supervision, L.Q., T.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
2016YFC1400101, Provincial Funding Projects of National Key R&D Program of China under Grant
GX18C019, National Defense Basic Scientific Research Program of China under JCKY2019604B001.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, Z,; Liang, G.; Qiu, L.; Wan, G.; Zhao, L. Vector Hydrophone Array Design Based on Off-Grid Compressed Sensing. Sensors
2020, 20, 6949. [CrossRef]

2. Nehorai, A.; Paldi, E. Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 1994, 42, 2481-2491. [CrossRef]

3. Chen, H.-W,; Zhao, ].-W. Wideband MVDR beamforming for acoustic vector sensor linear array. IEEE Proc. Radar. Sonar Navig.
2004, 151, 158. [CrossRef]

4. Wong, K.; Zoltowski, M. ESPRIT-based extended-aperture source localization using velocity-hydrophones. In OCEANS 96
MTS/IEEE Conference, Proceedings of the Coastal Ocean Prospects for the 21st Century, Fort Lauderdale, FL, USA, 23-26 September 1996;
IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 1427-1432.

5. Wong, K.; Zoltowski, M. Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uni-
formly but sparsely spaced vector hydrophones. IEEE |. Ocean. Eng. 1997, 22, 659-672. [CrossRef]

6.  Wong, K.T.; Zoltowski, M.D. Polarization-beamspace self-initiating MUSIC for azimuth/elevation angle estimation. In Proceed-
ings of the Radar Systems (RADAR 97), Edinburgh, UK, 14-16 October 1997; pp. 328-333.

7.  Hamson, R. The modelling of ambient noise due to shipping and wind sources in complex environments. Appl. Acoust. 1997, 51,
251-287. [CrossRef]

8.  Sabra, K; Roux, P; Thode, A.; D’Spain, G.; Hodgkiss, W.; Kuperman, W. Using Ocean Ambient Noise for Array Self-Localization
and Self-Synchronization. IEEE ]. Ocean. Eng. 2005, 30, 338-347. [CrossRef]

9. Shi, Y, Yang, Y;; Tian, J.; Sun, C.; Zhao, W,; Li, Z.; Ma, Y. Long-term ambient noise statistics in the northeast South China Sea. J.
Acoust. Soc. Am. 2019, 145, EL501-EL507. [CrossRef]

10. Huang, Y.;; Guo, J. Spatial correlation of the acoustic vector field of the surface noise in three-dimensional ocean environments. J.
Acoust. Soc. Am. 2014, 135, 2397. [CrossRef]

11.  Cron, B.E,; Sherman, C.H. Spatial-Correlation Functions for Various Noise Models. ]. Acoust. Soc. Am. 1962, 34, 1732-1736.
[CrossRef]

12. Wang, Y;; Yang, Y,; He, Z.; Ma, Y,; Li, B. Robust Superdirective Frequency-Invariant Beamforming for Circular Sensor Arrays.
IEEE Signal Process. Lett. 2017, 24, 1193-1197. [CrossRef]

13.  Shchurov, V.A. Coherent and diffusive fields of underwater acoustic ambient noise. |. Acoust. Soc. Am. 1991, 90, 991-1001.
[CrossRef]

14. Hawkes, M.; Nehorai, A. Acoustic vector-sensor correlations in ambient noise. IEEE ]. Ocean. Eng. 2001, 26, 337-347. [CrossRef]

15. Viberg, M. Sensitivity of parametric direction finding to colored noise fields and undermodeling. Signal Process. 1993, 34, 207-222.
[CrossRef]

16. Li, M.; Lu, Y. Dimension reduction for array processing with robust interference cancellation. IEEE Trans. Aerosp. Electron. Syst.
2006, 42, 103-112. [CrossRef]

17. Meng, Z.; Shen, E; Zhou, W. Adaptive beamforming using the cyclostationarity of the source signals. Electron. Lett. 2017, 53,
858-860. [CrossRef]

18. Meng, Z.; Shen, F.; Zhou, W. Iterative adaptive approach to interference covariance matrix reconstruction for robust adaptive
beamforming. IET Microwaves Antennas Propag. 2018, 12, 1704-1708. [CrossRef]

19. Meng, Z.; Zhou, W. Robust adaptive beamforming using iterative adaptive approach. J. Electromagn. Waves Appl. 2018, 33,
504-519. [CrossRef]

20. Meng, Z.; Zhou, W. Direction-of-Arrival Estimation in Coprime Array Using the ESPRIT-Based Method. Sensors 2019, 19, 707.

[CrossRef]


http://doi.org/10.3390/s20236949
http://doi.org/10.1109/78.317869
http://doi.org/10.1049/ip-rsn:20040651
http://doi.org/10.1109/48.650832
http://doi.org/10.1016/S0003-682X(97)00003-0
http://doi.org/10.1109/JOE.2005.850908
http://doi.org/10.1121/1.5110740
http://doi.org/10.1121/1.4877935
http://doi.org/10.1121/1.1909110
http://doi.org/10.1109/LSP.2017.2712151
http://doi.org/10.1121/1.401913
http://doi.org/10.1109/48.946508
http://doi.org/10.1016/0165-1684(93)90163-5
http://doi.org/10.1109/taes.2006.1603408
http://doi.org/10.1049/el.2017.1190
http://doi.org/10.1049/iet-map.2017.1125
http://doi.org/10.1080/09205071.2018.1560366
http://doi.org/10.3390/s19030707

J. Mar. Sci. Eng. 2021, 9, 127 21 of 22

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Sun, S.; Zhang, X.; Zheng, C.; Fu, J.; Zhao, C. Underwater Acoustical Localization of the Black Box Utilizing Single Autonomous
Underwater Vehicle Based on the Second-Order Time Difference of Arrival. IEEE |. Ocean. Eng. 2020, 45, 1268-1279. [CrossRef]
Sun, S.; Qin, S.; Hao, Y.; Zhang, G.; Zhao, C. Underwater Acoustic Localization of the Black Box Based on Generalized Second-
Order Time Difference of Arrival (GSTDOA). IEEE Trans. Geosci. Remote. Sens. 2020, 1-11. [CrossRef]

Xie, J.; Yuan, Y.; Liu, Y. Super-resolution processing for HF surface wave radar based on pre-whitened MUSIC. IEEE ]. Ocean. Eng.
1998, 23, 313-321. [CrossRef]

Wu, Y,; Hou, C; Liao, G.; Guo, Q. Direction-of-Arrival Estimation in the Presence of Unknown Nonuniform Noise Fields. IEEE |.
Ocean. Eng. 2006, 31, 504-510. [CrossRef]

Le Cadre, J. Parametric methods for spatial signal processing in the presence of unknown colored noise fields. IEEE Trans. Acoust.
Speech Signal Process. 1989, 37, 965-983. [CrossRef]

Tewfik, A. Direction finding in the presence of colored noise by candidate identification. IEEE Trans. Signal Process. 1991, 39,
1933-1942. [CrossRef]

Ye, H.; DeGroat, D. Maximum likelihood DOA estimation and asymptotic Cramer-Rao bounds for additive unknown colored
noise. IEEE Trans. Signal Process. 1995, 43, 938-949. [CrossRef]

Nagesha, V.; Kay, S. Maximum likelihood estimation for array processing in colored noise. IEEE Trans. Signal Process. 1996, 44,
169-180. [CrossRef]

Tugnait, J. Time delay estimation with unknown spatially correlated Gaussian noise. IEEE Trans. Signal Process. 1993, 41, 549-558.
[CrossRef]

Cardoso, ].-F.; Moulines, E. Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants.
IEEE Trans. Signal Process. 1995, 43, 214-224. [CrossRef]

Paulraj, A.; Kailath, T. Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields. IEEE
Trans. Acoust. Speech Signal Process. 1986, 34, 13-20. [CrossRef]

Jin, M,; Liao, G.; Li, J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Process. 2009, 89, 244-251. [CrossRef]
Chen, J.; Gu, H.; Su, W. A new method for joint DOD and DOA estimation in bistatic MIMO radar. Signal Process. 2010, 90,
714-718. [CrossRef]

Wen, F; Xiong, X.; Su, J.; Zhang, Z. Angle estimation for bistatic MIMO radar in the presence of spatial colored noise. Signal
Process. 2017, 134, 261-267. [CrossRef]

Wen, F; Zhang, Z.; Zhang, G. Joint DOD and DOA Estimation for Bistatic MIMO Radar: A Covariance Trilinear Decomposition
Perspective. IEEE Access 2019, 7, 53273-53283. [CrossRef]

Hong, S.; Wan, X.; Cheng, E.; Ke, H. Covariance differencing-based matrix decomposition for coherent sources localisation in
bi-static multiple-input-multiple-output radar. IET Radar Sonar Navig. 2015, 9, 540-549. [CrossRef]

He, J.; Liu, Z. Two-dimensional direction finding of acoustic sources by a vector sensor array using the propagator method. Signal
Process. 2008, 88, 2492-2499. [CrossRef]

Qiu, L.; Lan, T.; Wang, Y. A Sparse Perspective for Direction-of-Arrival Estimation Under Strong Near-Field Interference
Environment. Sensors 2019, 20, 163. [CrossRef]

Wang, L.; Zhao, L.; Bi, G.; Wan, C.; Zhang, L.; Zhang, H. Novel Wideband DOA Estimation Based on Sparse Bayesian Learning
with Dirichlet Process Priors. IEEE Trans. Signal Process. 2015, 64, 275-289. [CrossRef]

Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process.
2013, 61, 38-43. [CrossRef]

Liu, H,; Zhao, L.; Li, Y;; Jing, X.; Truong, T.-K. A Sparse-Based Approach for DOA Estimation and Array Calibration in Uniform
Linear Array. IEEE Sens. ]. 2016, 16, 6018-6027. [CrossRef]

Xu, X.; Wei, X.; Ye, Z. DOA Estimation Based on Sparse Signal Recovery Utilizing Weighted I1-Norm Penalty. IEEE Signal Process.
Lett. 2012, 19, 155-158. [CrossRef]

Zhang, Z.; Rao, B.D. Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE .
Sel. Top. Signal Process. 2011, 5, 912-926. [CrossRef]

Malioutov, D.; Cetin, M.; Willsky, A. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE
Trans. Signal Process. 2005, 53, 3010-3022. [CrossRef]

Wang, Y.; Yang, X,; Xie, J.; Wanga, L.; Ng, B.W.-H. Sparsity-Inducing DOA Estimation of Coherent Signals Under the Coexistence
of Mutual Coupling and Nonuniform Noise. IEEE Access 2019, 7, 40271-40278. [CrossRef]

Hu, N,; Sun, B.; Zhang, Y,; Dai, J.; Wang, J.; Chang, C. Underdetermined DOA Estimation Method for Wideband Signals Using
Joint Nonnegative Sparse Bayesian Learning. IEEE Signal Process. Lett. 2017, 24, 535-539. [CrossRef]

Friedlander, B.; Weiss, A. Direction finding using noise covariance modeling. IEEE Trans. Signal Process. 1995, 43, 1557-1567.
[CrossRef]

Landau, H.J.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty principle II. Bell System Tech. .
1961, 40, 65-84. [CrossRef]

Slepian, D.; Pollak, H.O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty I. Bell Syst. Tech. ]. 1961, 40, 43-63.
[CrossRef]

Xiao, H.; Rokhlin, V.; Yarvin, N. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 2001, 17, 805-838.
[CrossRef]


http://doi.org/10.1109/JOE.2019.2950954
http://doi.org/10.1109/TGRS.2020.3032982
http://doi.org/10.1109/48.725227
http://doi.org/10.1109/JOE.2006.875270
http://doi.org/10.1109/29.32275
http://doi.org/10.1109/78.134426
http://doi.org/10.1109/78.376846
http://doi.org/10.1109/78.485914
http://doi.org/10.1109/78.193197
http://doi.org/10.1109/78.365301
http://doi.org/10.1109/TASSP.1986.1164776
http://doi.org/10.1016/j.sigpro.2008.08.003
http://doi.org/10.1016/j.sigpro.2009.08.003
http://doi.org/10.1016/j.sigpro.2016.12.017
http://doi.org/10.1109/ACCESS.2019.2912842
http://doi.org/10.1049/iet-rsn.2014.0193
http://doi.org/10.1016/j.sigpro.2008.04.010
http://doi.org/10.3390/s20010163
http://doi.org/10.1109/TSP.2015.2481790
http://doi.org/10.1109/TSP.2012.2222378
http://doi.org/10.1109/JSEN.2016.2577712
http://doi.org/10.1109/LSP.2012.2183592
http://doi.org/10.1109/JSTSP.2011.2159773
http://doi.org/10.1109/TSP.2005.850882
http://doi.org/10.1109/ACCESS.2019.2904208
http://doi.org/10.1109/LSP.2017.2673850
http://doi.org/10.1109/78.398717
http://doi.org/10.1002/j.1538-7305.1961.tb03977.x
http://doi.org/10.1002/j.1538-7305.1961.tb03976.x
http://doi.org/10.1088/0266-5611/17/4/315

J. Mar. Sci. Eng. 2021, 9, 127 22 of 22

51.

52.

53.
54.

55.

56.

57.

Chen, C.-Y,; Vaidyanathan, P.P. MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions. IEEE
Trans. Signal Process. 2008, 56, 623—635. [CrossRef]

Slepian, D. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case. Bell Syst. Tech. ]. 1978, 57,
1371-1430. [CrossRef]

Scheinman, A.H. A Method for Simplifying Boolean Functions. Bell Syst. Tech. ]. 1962, 41, 1337-1346. [CrossRef]

Gosse, L. Effective band-limited extrapolation relying on Slepian series and /1 regularization. Comput. Math. Appl. 2010, 60,
1259-1279. [CrossRef]

Shkolnisky, Y.; Tygert, M.; Rokhlin, V. Approximation of bandlimited functions. Appl. Comput. Harmon. Anal. 2006, 21, 413—420.
[CrossRef]

Wang, L.-L. Analysis of spectral approximations using prolate spheroidal wave functions. Math. Comput. 2009, 79, 807-827.
[CrossRef]

Walden, A.T. Spectral Analysis for Physical Applications; Cambridge University Press: Cambridge, UK, 1993.


http://doi.org/10.1109/TSP.2007.907917
http://doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://doi.org/10.1002/j.1538-7305.1962.tb03280.x
http://doi.org/10.1016/j.camwa.2010.06.006
http://doi.org/10.1016/j.acha.2006.05.001
http://doi.org/10.1090/S0025-5718-09-02268-6

	Introduction 
	Problem Description 
	Signal Model 
	Noise Model 

	Proposed Technique 
	Time Domain Fitting of Finite Bandwidth Signals with Prolate Spheroidal Wave Functions 
	Establish Spatially Colored Noise Model Using Prolate Spheroidal Wave Functions 
	Sparse Bayesian Learning Based DOA Estimation under Spatially Colored Noise 
	Complexity Analysis 

	Property Analysis 
	Simulation Results of Spatial Spectrum Estimates 
	Statistical Performance Analysis of Simulation Results 

	Conclusions 
	References

