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Abstract: In this paper, simulations of a ship travelling on a given oceanic route were performed by
a weather routing system to provide a large realistic navigation data set, which could represent a
collection of data obtained on board a ship in operation. This data set was employed to train a neural
network computing system in order to predict ship speed and fuel consumption. The model was
trained using the Levenberg–Marquardt backpropagation scheme to establish the relation between
the ship speed and the respective propulsion configuration for the existing sea conditions, i.e., the
output torque of the main engine, the revolutions per minute of the propulsion shaft, the significant
wave height, and the peak period of the waves, together with the relative angle of wave encounter.
Additional results were obtained by also using the model to train the relationship between the same
inputs used to determine the speed of the ship and the fuel consumption. A sensitivity analysis
was performed to analyze the artificial neural network capability to forecast the ship speed and fuel
oil consumption without information on the status of the engine (the revolutions per minute and
torque) using as inputs only the information of the sea state. The results obtained with the neural
network model show very good accuracy both in the prediction of the speed of the vessel and the
fuel consumption.

Keywords: weather routing; navigation data; artificial neural networks; ship’s speed

1. Introduction

In the past few years, great attention has been devoted to the efficiency of ship
operation in different ocean-going conditions [1,2]. To decrease the greenhouse gas effect,
enhancement of the hull shape design [3,4] and the power plant arrangement [5,6] has
been conducted in order to reduce ship emissions and fuel consumption. This has been
complemented with weather ship routing systems in order to avoid sea states in which
ships are forced to increase emissions and fuel consumption [7,8].

There are numerous research approaches on the prediction of ship speed, some ad-
dressing the physical mechanisms [9,10], while others deal with statistically based algo-
rithms [11–14]. Normally, ship performance is studied through the speed–power curve of
the specified vessel obtained from a series of sea trials. Unfortunately, until ship efficiency
is examined, the hub is on fuel consumption, in place of the engine power originated
from the speed–power curve. The single curve obtained from sea trials is not enough to
study the fuel consumption of the whole range of operating conditions, during the always
changing vessel operational schedule. In [15], the authors investigated the problem of
fuel consumption prediction and providing the best value for the trim of a vessel in real
operation based on data measured onboard. For the fuel consumption prediction, the
authors used three different approaches for comparison: white, black, and gray box models.
In fact, the influence or trim can also be determined from numerical models to be used at
the design stage [16], including the influence of biofouling on ship resistance [17], as well
as the uncertainty in predictions [18].
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All this generates unreliable estimation conditions [19]. The speed prediction plays
a fundamental role in cruise optimization, which is an operation to choose the ideal
journey for the vessel crew with regard to augmenting power efficiency and bringing down
greenhouse gas emissions in the maritime sector. A correct forecast of ship performance
in-operation is a requirement to fulfill these goals [20]. In [21], an innovative platform
was introduced to harmonize, through big data technologies, data collected from various
sensors onboard. Extreme scale processing techniques were also implemented in order to
achieve operational efficiency and performance optimization. This platform was further
benchmarked on a series of pilot demonstrations regarding fuel consumption prediction.
In [22] an accurate regression model for the fuel consumption of the main engine, using
an artificial neural network (ANN), was proposed by big data analysis including data
collection, clustering, compression, and expansion. Various numbers of hidden layers and
neurons and different types of activation functions were tested in the ANN in order to
obtain an accurate regression model, studying their effects on the accuracy and efficiency
of the regression analysis. The authors have shown that the proposed regression model
using ANN is a more accurate and efficient model to predict the fuel consumption of the
main engine than polynomial regression and support vector machines.

The ship speed prediction problem in real sea conditions may be essential and chal-
lenging as well [9,13]. Concerning the evaluation of the ship speed in the ocean, it is
appropriate to compute added resistance in waves with precision. The added resistance
is originated by the radiating waves together with the reflection or diffraction of incident
waves. The former mostly arises out of vessel motions and is expertly foreseen with po-
tential theory (strip theory for bow waves), which involves either a far-field technique
subjected to the momentum conservation principle, or a near-field technique incorporating
the hydrodynamic pressure on the hull surface [23]. However, the forecast of the added
resistance generated mostly from a vessel forepart reveals great dispersion of outcomes
depending on the adopted approach. There are various techniques available to predict
the added resistance in waves, such as potential-based methods [24–27], experimental
methods [28,29], and computational fluid dynamics (CFD) approaches [30–34].

The methodology developed and presented here is based on a neural network trained
with suitable simulated data acquired through routing software that provides realistic
time histories of ship performance at sea [7,8]. These navigation data simulate the data
set that would be collected on board [35], and will be adopted to predict the speed of the
vessel in different operational conditions. Neural networks have been applied to a range
of problems related to ship performance, such as weather forecast [36], wind loading [37],
ship maneuvering [38,39], and ship motions and loads [40].

This learning method is very convenient, since it does not need to state the theoretical
form of the function, making the calculation procedure expeditious and adequate for
being carried out in problem-solving time. Here, the multilayer perceptron (MLP) is
adopted, which is among the frequently applied neural net configurations. Considering
the system training, the Levenberg–Marquardt backpropagation algorithm is used and
finally compared with those obtained with the resilient backpropagation method. The
inputs in use to train the ANN concerning the prediction of the ship speed are the output
torque of the main engine, the revolutions per minute (RPM) of the propulsion shaft, the
significant wave height, and the peak period of the waves, along with the relative angle of
wave encounter. The ultimate aim is to apply the approach on board vessels.

The structure of the paper is as follows: Section 2 explains the source of data associated
with the ship operation with regard to weather conditions; Section 3 presents the ANN
model adopted in this study; Section 4 reports the training procedure; Section 5 considers
the results obtained, while in Section 6 the conclusions are established.

2. Ship Operational Data

Ship performance at sea can vary appreciably from still water to steering in waves up
to the extreme design environments as shown in [7,8]. The principal prerequisites for the
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evolution of a well-planned weather routing system are accurate atmospheric condition
predictions up to the planned arrival time, as well as the ability to reproduce the vessel’s
way of behaving whatever conditions it meets in the ocean, determining the motions,
achievable speed, combustible consumption, and discharges.

At the design stage, the assessment of ship performance relies on models. These
models may be empirical or semi-empirical, numerical, or physical in the case of tests in
towing tanks [13]. Concerning the vessel’s behavior during ocean operation, model scale
ship behavior assessments based on model experiments and theoretical computations may
be compared with log book data. However, enough studies have still not been executed
through examination of the similarities with on-board monitoring information [1]. Due to
economic and time constraints, any of those models can only be verified for a relatively
limited number of cases, which are in general different from the large variety of conditions
in which a ship can be required to operate in her lifetime.

In order to make up for this limitation, and to provide proper data to validate the
proposed ANN model, realistic time histories of ship performance at sea have been simu-
lated by route planning software. The software models the ship behavior at sea, accounting
for involuntary speed reductions due to added resistance and engine overloading, and
voluntary speed reduction due to undesired ship motion and the exceedance of pre-defined
sea-keeping limits [41,42]; it performs a multi-objective optimization through a robust
evolutionary algorithm aimed at identifying a set of Pareto-optimal routes balancing voy-
age duration, fuel consumption, and navigational safety. The first version of the software
so far implemented [7,8] takes into consideration the variability of sea-state conditions
(significant wave height, peak period, and wave direction) and sailing conditions (ship
speed and course) along the route, while assuming constant loading conditions; conse-
quently the ANN developed in this work does not consider displacement and trim as input
variables. Thus, the preliminary analysis and testing of the method partially maintains the
limitation approach.

The transatlantic route between the English Channel and Miami [43] area of a 24,600 t
container-ship has been considered in this paper. Aiming at providing a larger range of vari-
ability of the operational conditions, the simulated data include summer and spring voyages,
in both directions, westwards and eastwards, and with different mission requirements.

3. Artificial Neural Network Model

A neural network is a computer or mathematical model that attempts to imitate either
the form or functioning features attributed to living neural systems. ANNs are mostly
divided connections of adjustable arbitrary processing elements (PEs); in other words, they
are made up of a linked set of artificial neurons and transform the data making use of a
connectionist perspective for calculation. However, applied in computer equipment, a PE is
an elementary addition of multiplications succeeded by a discontinuance (McCulloch–Pitts
model). The links’ strengths, named weights, may be modified in an attempt to make the
end product of the system correspond to a desired output.

Usually, a neural network is a flexible structure that replicates the intrinsic form con-
structed upon either outer or inner data, which moves throughout the system during the
training stage. Adaptation is the capability to replace the network variables conforming to
an order (usually, minimizing an error function). Adaptation allows the network to search
for the best performance. A neural network is an arbitrary mathematical statistical mod-
elling implementation. It may be utilized for reproducing complicated interconnections
linking fed in and sent out information or to detect patterns in information. Allocated data
processing possesses the benefits of accuracy, backup, big distribution of calculations, and
collaborative computing.

The MLP is the preponderant applied neural network topology. Lippmann [44] is
classified among the most dominant recommended bibliography concerning the numerical
abilities of MLPs. Generally, for steady pattern categorization, the MLP with a pair of
hidden layers is a general pattern classifier. That is, the discriminant analysis might take
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whatever form, as needed by the fed-in information collection. After all, while the weights
and the output groups are correctly normalized, the MLP reaches the performance of the
highest analytical recipient, which is excellent from a classifying viewpoint [45]. Regarding
mapping capabilities, the MLP is thought to be capable of estimating random processes.

MLPs are usually trained using the backpropagation method and here the Levenberg–
Marquardt optimization is applied. The weights and bias are modified conforming the
optimization procedure, and the backpropagation technique is utilized for computation of
the Jacobian matrix of the performance function with respect to the weights and bias.

Actually, the renovated attentiveness regarding the neural nets has been in part
activated due to the existence of backpropagation. The least mean squares (LMS) algorithm
presented by Bernard Widrow (1960) may not be applied to hidden PEs, because the wanted
signal is unknown in that learning method. The backpropagation algorithm distributes the
errors along the system and permits adjustment of the hidden PEs.

Two of the main features of an MLP are its arbitrary Pes, which possess a discon-
tinuance that should be smooth (the logistic function and the hyperbolic tangent are
preponderant and universally adopted); and its great connectivity (in other words, a
component that belongs to a specified layer supplies every component of the following
layer). The MLP is trained using error-correction learning, which signifies that the network
required response needs to be found. In pattern identification that is usually the event,
because the fed-in information is specified (in other words, which information is part of
which test is discovered).

Here a unique-hidden-layer MLP structure is adopted for the time-domain relation
connecting outputs and inputs. A common arrangement illustration is shown in Figure 1.
A unique bias neuron b will be summed to every one of the input pj and hidden layers
that will be added to the weighted inputs wj to constitute the net input n, which can be
expressed by

n =
n

∑
j=1

wj pj + b (1)
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Figure 1. An illustration of a general elementary feedforward network.

The quantity of the hidden neurons regulates the robustness of the network design.
This quantity was attentively selected in the subsequence of several training runs performed
for confirmation through a sensitivity analysis of the results.

Here two different structures of MLP systems (feedforward ANNs) were developed
in MatLab and trained employing the Levenberg–Marquardt method, and then compared
with the resilient backpropagation optimization algorithm. The first MLP consists of three
layers of nodes: an input layer, a hidden layer, and an output layer; the second one has an
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input layer, three hidden layers, and an output layer. Except for the input nodes, each node
is a neuron that uses a nonlinear activation function, in this case a log sigmoid function.
In the first part of the study, the training procedure used five input nodes and one output
node as indicated before. For this first set of results it used only the first MLP structure
(one hidden layer) and a formulation of two hidden neurons was chosen in the subsequent
study of the system convergence and generalization ability. The training was performed
only using the Levenberg–Marquardt method and the adopted input variables were:

HS—significant wave height;
TP—peak period of wave;
Torque—main engine output;
RPM—revolutions of the shaft;
Alpha—relative angle of wave encounter.

The relative angle of wave encounter was reduced to the range <0,180> degrees due
to the assumed symmetry of the wave impact on the resultant ship speed regardless of the
wave approaching from port side or starboard side.

4. Neural Network Training

A log-sigmoid activation function is employed to all neurons belonging to the hidden
layer, producing a system with the capability to produce smooth choices. The function is
described as follows

f (xi) =
1

1 + e−xi
(2)

The error correction learning performs as follows: deriving out of the network re-
sponse at PE i at iteration n, yi(n), and the wanted response di(n) for a stated fed-in sample
an instantaneous error ei(n) can be established through

ei(n) = di(n)− yi(n) (3)

Backpropagation calculates the sensitivity of a cost function with reference to every
weight in the system, and refreshes all weights in proportion to the sensitivity [46]. The
benefit of the method is that it may be applied with local data and needs only small
products per weight, which is extremely effective. The disadvantage is that since this is a
gradient descent method, it exclusively makes use of the local data so it may lay in relative
minima. Furthermore, the method is naturally noisy because a deficient approximation of
the gradient is adopted, producing slow convergence.

At the same time as backpropagation, a steepest-descent method, the Levenberg–
Marquardt algorithm, is carried out, which originated from the Newton–Raphson method
that was outlined for minimizing functions that are sums of squares of nonlinear func-
tions [47], of the form

E =
1
2∑ k(ek)

2
=

1
2
‖e‖2 (4)

where ek is the error in the kth pattern and e is the array of the components ek. As long as
the divergence between the prior weight array and the actual one is small, the error array
may be approached to 1st-order through a Taylor series:

e(j + 1) = e(j) +
∂ek
∂wi

(w(j + 1)− w(j)) (5)

Consequently, the error function might be given by

E =
1
2
‖e(j) +

∂ek
∂wi

(w(j + 1)− w(j))‖
2

(6)
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Through minimization of the error function with reference to the actual weight array:

w(j + 1) = w(j)−
(

JT J
)−1

JTe(j) (7)

where (J)ki =
∂ek
∂wi

is the Jacobian matrix.
The Hessian for the sum-of-square error function is stated by

(H)ij =
∂2E

∂wi∂wj
= ∑

{(
∂ek
∂wi

)(
∂ek
∂wi

)
+ ek

∂2ek
∂wi∂wj

}
(8)

Ignoring the 2nd term in (8), the Hessian may be rewritten in the following way:

H = JTJ (9)

The refreshing of the weights requires the inverse Hessian. The Hessian is moderately
simple to calculate, because it is formulated on 1st-order derivatives with respect to the
network weights, which are effortlessly adjusted through backpropagation. Despite the
fact that the refreshing procedure may be employed iteratively for the minimization of the
error function, this can result in a big step size that can cancel the linear estimation where
the method is established. In the Levenberg–Marquardt technique, the error function is
minimized, while the step size is preserved as small in spite of making sure of the linear
estimation viability. This is achieved through adoption of a reformulated error function
as follows:

E =
1
2
‖e(j) +

∂ek
∂wi

(w(j + 1)− w(j))‖
2
+ λ‖w(j + 1)− w(j)‖2 (10)

where λ is a variable controlling the step size. Minimizing the modified error with respect
to w(j + 1):

w(j + 1) = w(j)−
(

JT J + λI
)−1

JTe(j) (11)

When the scalar λ is zero, Equation (11) expresses precisely Newton’s method, em-
ploying the approximate Hessian matrix. When λ is large, the formulation changes into
gradient descent with a small step size. Newton’s method is expeditious and more pre-
cise near an error minimum, so the objective is to move in the direction of Newton’s
method expeditiously. Consequently, λ is reduced after all favorable steps (performance
function reduction) and is augmented only when a preliminary step will increment the
performance function. Thus, the performance function is decreased every time at every
algorithm iteration.

The sigmoid transfer functions typically used by the multilayer networks in the hidden
layers are often called “squashing” functions, because they compress an infinite input range
into a finite output range. Sigmoid functions are characterized by the fact that their slopes
must approach zero as the input gets large. This causes a problem when the steepest
descent is used to train a multilayer network with sigmoid functions, because the gradient
can have a very small magnitude and, therefore, cause small changes in the weights and
biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation training algorithm is to eliminate these
harmful effects of the magnitudes of the partial derivatives. Only the sign of the derivative
can determine the direction of the weight update; the magnitude of the derivative has no
effect on the weight update. The size of the weight change is determined by a separate
update value. The update value for each weight and bias is increased by a factor whenever
the derivative of the performance function with respect to that weight has the same sign for
two successive iterations. The update value is decreased by a factor whenever the derivative
with respect to that weight changes sign from the previous iteration. If the derivative is
zero, the update value remains the same. Whenever the weights are oscillating, the weight
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change is reduced. If the weight continues to change in the same direction for several
iterations, the magnitude of the weight change increases. A complete description of the
resilient backpropagation algorithm is given in [48]. This learning algorithm is used for
comparison of the results obtained with the Levenberg–Marquardt method.

5. Results of Speed Prediction

The simulated data obtained with the weather routing code utilized to verify the
neural net approach were divided into four sets, representing four voyages in the North
Atlantic: westward and eastward, in April and July 2001, respectively.

In each simulation run the values of the ship speed, the output torque of the main
engine, the RPM of the propulsion shaft, the significant wave height, the peak period
of the waves, and the relative angle of wave encounter were estimated at consecutive
control-points along the route located at a distance of about 30 nautical miles, roughly
corresponding to one hour and a half at the considered ship speeds; however, the sampling
rate was not kept constant. To better understand the characteristics of each voyage the
respective maximum, minimum, mean, and standard deviation values of the significant
wave height, peak period, and ship’s speed are listed in Table 1.

Table 1. Maximum, minimum, and average values of Hs and Tp in each voyage.

Set Hs (m) Tp (s) Speed (knots)

01042001_east

Min 0.8 5.3 17.5

Max 4.9 14.2 20

Mean 2.4 10.4 19.1

StDev 0.8 1.5 0.5

01042001_west

Min 0.8 4.9 15.2

Max 5 13.5 20

Mean 2.7 10.5 18.7

StDev 1 1.6 0.9

01072001_east

Min 0.7 4.5 18.1

Max 1.9 9.9 20

Mean 1.2 8.7 19.2

StDev 0.2 0.9 0.5

01072001_west

Min 1 5.8 17.3

Max 3.3 11.2 20

Mean 1.7 9 19.1

StDev 0.5 0.9 0.6

When training multiple-layer networks, the common procedure is to initially split the
information into three subsets:

1. The training set, which is utilized both to calculate the gradient and to refresh the
network weights and biases;

2. The error on the validation set is observed throughout the training procedure. The
validation error usually drops in the course of the beginning of the procedure, as
well as the training set error. Nevertheless, when the model starts to over-fit the
information, the error on this set generally increases. The system weights and biases
are saved when the validation set error is at a minimum;

3. The last set is the test set. This set error is not employed throughout the training
procedure, but it is utilized to measure the differences between distinct models. It is
also convenient to outline the test-set error throughout the procedure. If the error on
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this set reaches a minimum at a substantially dissimilar iteration number than the
validation set error, this may denote a deficient split of the information set.

Here, the function employed to execute the division of the data is automatically
obtained when the model is trained, and is utilized to split the information into training,
validation, and testing subsets. Afterwards, the data is randomly divided into the three
subsets. The fractions of information that are placed in the training, testing, and validation
sets are 0.7, 0.15, and 0.15, respectively. The sets have different numbers of training points
varying between 12,754 and 15,618 in total for each set.

The correlation analysis is performed using the Pearson correlation coefficient r, which
is calculated to measure the linear dependence between the model and desired outputs.
According to the definition, the Pearson correlation coefficient between an output x and a
desired output d is stated by

r =

∑
i
(xi−x)(di−d)

N√
∑
i
(di−d)

2

N

√
∑
i
(xi−x)2

N

(12)

The r values acquired for the evaluation of the vessel speed and fuel oil consumption (FOC)
over the training, test, and validation data sets are recorded in Tables 2 and 3, respectively.

Table 2. r results of the neural network training for the speed estimation.

Set Training Test Validation

01042001_east 0.99998 0.99998 0.99998
01042001_west 0.99999 0.99999 0.99999
01072001_east 0.99998 0.99998 0.99998
01072001_west 0.99999 0.99999 0.99999

Table 3. r results of the neural network training for the fuel oil consumption (FOC) estimation.

Set Training Test Validation

01042001_east 0.9997 0.99971 0.99971
01042001_west 0.99979 0.99981 0.9998
01072001_east 0.99963 0.99962 0.99962
01072001_west 0.99961 0.99959 0.99961

It can be seen that very good agreement is achieved for each one of the tested sets
utilizing only two hidden neurons. Figures 2 and 3 show the respective regression plots,
illustrating the fitness between the outputs and targets for the ship speed estimation.

The labels of the y-axes of Figures 2 and 3 indicate equations between the predicted
value and the target value, with output as the dependent variable and target as the indepen-
dent variable. These equations were employed to express how well the ANN performed.
The coefficient of the target reveals the correlation between the output and the targets,
consequently for a satisfactory performance of the MLP it should be as close to unity as
possible. The second term, which is a constant, is the error or the residue that should
be summed to the scaled target to force it as close as possible to the predicted output;
preferably it would be zero or as small as possible.
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Figure 2. Regression plot of ship speed estimation for 01042001_east voyage.
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Figure 3. Regression plot of ship speed estimation for 01042001_west voyage.

The results obtained in the regression plots for 01072001_east and 01072001_west
voyages for the ship speed estimation are similar to the ones presented in Figures 2 and 3,
as well as the regression plots for the FOC estimation, and for this reason these figures are
omitted here.

Figures 4 and 5 show comparisons between the neural net prediction and the results
derived from the simulations. A total of 1000 data points are exhibited for each data set.
The plots show the very good correspondence between the neural net approximations and
the results achieved throughout simulations.
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Tables 4 and 5 present the results of the sensitivity analysis performed to analyze
the ANN prediction capability to predict the ship speed and FOC, respectively, without
information of the engine state (RPM and torque), using as inputs only the sea conditions.
This analysis was made for two different neural network structures: using just one hidden
layer vs. three hidden layers.

Table 4. r results of the neural network training for the speed estimation without engine data (revolutions per minute (RPM)
and torque).

Set # Neurons Training Test Validation # Neurons Training Test Validation

1 Hidden Layer 3 Hidden Layers

01042001_east

500 0.83305 0.79923 0.79979 (10,8,5) 0.73607 0.71825 0.72408
1500 0.87335 0.79837 0.797 (30,24,15) 0.8711 0.81634 0.81815
2500 0.89448 0.72459 0.70962 (50,40,25) 0.87359 0.82242 0.82525
3500 0.90464 0.70748 0.76544 (70,56,35) 0.89292 0.82786 0.82972

01042001_west

500 0.89963 0.867 0.86298 (10,8,5) 0.86514 0.84379 0.82868
1500 0.93114 0.81858 0.80992 (30,24,15) 0.92734 0.89429 0.90309
2500 0.94916 0.74497 0.71868 (50,40,25) 0.92925 0.91167 0.91289
3500 0.96477 0.68316 0.75009 (70,56,35) 0.95202 0.9107 0.93457

01072001_east

500 0.75559 0.64495 0.70445 (10,8,5) 0.72377 0.68608 0.72475
1500 0.7737 0.67893 0.62169 (30,24,15) 0.79231 0.76462 0.74681
2500 0.78536 0.48162 0.66675 (50,40,25) 0.81213 0.77395 0.78152
3500 0.81119 0.47694 0.53975 (70,56,35) 0.84178 0.73745 0.79112

01072001_west

500 0.94481 0.93012 0.93948 (10,8,5) 0.89636 0.90164 0.88516
1500 0.94767 0.91549 0.88025 (30,24,15) 0.93673 0.93222 0.92256
2500 0.95184 0.69684 0.84094 (50,40,25) 0.94539 0.91793 0.93351
3500 0.95679 0.83816 0.80804 (70,56,35) 0.94611 0.94309 0.93069
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Table 5. r results of the neural network training for the FOC estimation without engine data (RPM and torque).

Set # Neurons Training Test Validation # Neurons Training Test Validation

1 Hidden Layer 3 Hidden Layers

01042001_east

500 0.86868 0.81374 0.80524 (10,8,5) 0.72752 0.70458 0.71658
1500 0.90968 0.65906 0.7396 (30,24,15) 0.86467 0.84008 0.82613
2500 0.92912 0.69925 0.63298 (50,40,25) 0.90323 0.831 0.87054
3500 0.93531 0.68073 0.52335 (70,56,35) 0.91192 0.8493 0.86787

01042001_west

500 0.8921 0.84335 0.83737 (10,8,5) 0.81616 0.79053 0.80964
1500 0.9186 0.67158 0.67754 (30,24,15) 0.91636 0.88548 0.87724
2500 0.9341 0.65872 0.53965 (50,40,25) 0.93256 0.88269 0.89747
3500 0.94808 0.47342 0.49402 (70,56,35) 0.93965 0.91198 0.89295

01072001_east

500 0.76349 0.74112 0.72334 (10,8,5) 0.73169 0.71298 0.71492
1500 0.79443 0.70283 0.59887 (30,24,15) 0.78155 0.7394 0.75511
2500 0.81774 0.51816 0.59301 (50,40,25) 0.81687 0.77622 0.77101
3500 0.81933 0.44761 0.5555 (70,56,35) 0.82196 0.78277 0.79427

01072001_west

500 0.93414 0.82817 0.89365 (10,8,5) 0.87304 0.86794 0.8789
1500 0.94678 0.8893 0.79715 (30,24,15) 0.93989 0.9094 0.93275
2500 0.9524 0.69815 0.80717 (50,40,25) 0.94133 0.92397 0.93407
3500 0.95553 0.52913 0.69541 (70,56,35) 0.94481 0.9311 0.91889

From the obtained results presented in Tables 4 and 5 it can be seen that it is possible
to predict the ship speed and the FOC with satisfactory accuracy using as input data only
the information about the sea conditions and disregarding the input of the RPM and torque
from the engine. A loss of accuracy can be noted in the voyages where the bandwidths of
Hs and Tp are smaller (lower standard deviation). It is also noted that the model with just
one hidden layer is less efficient for more neurons in the test and validation datasets, while
the opposite is reported for the training dataset. With the neural network structure with
three hidden layers, this problem is solved and the efficiency for the test and validation
datasets are almost the same as the one obtained for the training set.

Table 6 presents the results of the sensitivity analysis performed to analyze the ANN
prediction capability to predict the ship speed using the resilient backpropagation learning
algorithm instead of the Levenberg–Marquardt algorithm, again without information of
the engine state (RPM and torque), using as inputs just the sea conditions. This analysis
was made for two different neural network structures: using just one hidden layer vs. three
hidden layers, as presented in Tables 4 and 5.

Table 6. r results of the neural network training for the speed estimation without engine data (RPM and torque) using the
resilient backpropagation learning algorithm.

Set # Neurons Training Test Validation # Neurons Training Test Validation

1 Hidden Layer 3 Hidden Layers

01042001_east

500 0.847751 0.80008 0.78189 (10,8,5) 0.74209 0.70515 0.72117
1500 0.87451 0.8062 0.77896 (30,24,15) 0.84231 0.8144 0.80016
2500 0.8808 0.74577 0.76869 (50,40,25) 0.88351 0.77954 0.80395
3500 0.88936 0.74783 0.70206 (70,56,35) 0.8866 0.8161 0.82104

01042001_west

500 0.90911 0.85626 0.87917 (10,8,5) 0.88662 0.87458 0.87339
1500 0.93746 0.8745 0.8623 (30,24,15) 0.93107 0.89077 0.90269
2500 0.95700 0.76202 0.81459 (50,40,25) 0.93183 0.9013 0.91107
3500 0.96479 0.68641 0.59637 (70,56,35) 0.93974 0.90997 0.89098

01072001_east

500 0.75737 0.72569 0.70828 (10,8,5) 0.74846 0.73983 0.74871
1500 0.77205 0.67415 0.70032 (30,24,15) 0.79078 0.7329 0.74000
2500 0.80292 0.63342 0.6793 (50,40,25) 0.79492 0.74307 0.77971
3500 0.80849 0.54946 0.44425 (70,56,35) 0.80905 0.76011 0.76813

01072001_west

500 0.94447 0.92248 0.9266 (10,8,5) 0.91051 0.9216 0.89416
1500 0.94771 0.88309 0.90539 (30,24,15) 0.93932 0.92596 0.93173
2500 0.9515 0.84724 0.88683 (50,40,25) 0.94703 0.93701 0.93741
3500 0.95317 0.74362 0.88727 (70,56,35) 0.94752 0.92143 0.91997
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The results obtained with the Levenberg method were compared with another training
method, in this case the resilient backpropagation learning algorithm, in order to analyze
its significance. From the obtained results presented in Table 6 and comparing with the
ones presented in Table 4, it can be seen that the magnitudes of the results are similar as
well as the behavior of the models when the inner structure is changed.

6. Conclusions

A procedure based on artificial neural networks has been implemented to provide
estimations of ship speed and FOC from the output torque of the main engine, the RPM
of the propulsion shaft, the significant wave height, the peak period of the waves, and
the relative angle of wave encounter measurements. The obtained neural network system
is suitable for producing precise approximations of both variables, indicating that it is
feasible to achieve acceptable results with an ANN trained using only two hidden neurons.
Additionally, it was demonstrated that it is possible to predict the ship speed and the FOC
using as input data only information about the sea conditions. The main purpose of the
presented approach is for it to be integrated into a hull monitoring system. The ANN
can been used as a redundant system in case of failure of a sensor providing the foreseen
information for the controllers, and can help in anticipating some ship speed deviation
from predefined target conditions, reducing action delays optimizing the ship operation.

The information utilized to adjust and confirm the validity of the neural net system
was acquired through simulations of ship operations executed with a routing program
providing a large set of practical navigation data to copy the data set collected on board.
Thus the neural network can be used as an alternative to the more complex system used
in [7,8], or any other weather routing system [49,50]. It is also a good option to be used in
decision support systems onboard, like the ones described in [35,51].
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