
Journal of

Marine Science 
and Engineering

Article

Evaluation of Different Deep-Learning Models for the
Prediction of a Ship’s Propulsion Power

Panayiotis Theodoropoulos 1, Christos C. Spandonidis 1,*, Nikos Themelis 2 , Christos Giordamlis 1

and Spilios Fassois 3

����������
�������

Citation: Theodoropoulos, P.;

Spandonidis, C.C.; Themelis, N.;

Giordamlis, C.; Fassois, S. Evaluation

of Different Deep-Learning Models

for the Prediction of a Ship’s

Propulsion Power. J. Mar. Sci. Eng.

2021, 9, 116. https://doi.org/

10.3390/jmse9020116

Academic Editor: Rosemary Norman

Received: 29 December 2020

Accepted: 21 January 2021

Published: 24 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Prisma Electronics SA, Leof. Poseidonos 42, 17675 Kallithea, Greece; rdprojects@prismael.com (P.T.);
christos@prisma.gr (C.G.)

2 School of Naval Architecture and Marine Engineering, National Technical University of Athens,
Iroon Polytechniou 9, 15780 Zografou, Greece; nthemelis@naval.ntua.gr

3 Department of Mechanical Engineering and Aeronautic, University of Patras, 26500 Patras, Greece;
fassois@otenet.gr

* Correspondence: c.spandonidis@prismael.com; Tel.: +30-69-4852-2088

Abstract: Adverse conditions within specific offshore environments magnify the challenges faced by
a vessel’s energy-efficiency optimization in the Industry 4.0 era. As the data rate and volume increase,
the analysis of big data using analytical techniques might not be efficient, or might even be infeasible
in some cases. The purpose of this study is the development of deep-learning models that can be
utilized to predict the propulsion power of a vessel. Two models are discriminated: (1) a feed-forward
neural network (FFNN) and (2) a recurrent neural network (RNN). Predictions provided by these
models were compared with values measured onboard. Comparisons between the two types of
networks were also performed. Emphasis was placed on the different data pre-processing phases,
as well as on the optimal configuration decision process for each of the developed deep-learning
models. Factors and parameters that played a significant role in the outcome, such as the number of
layers in the neural network, were also evaluated.

Keywords: propulsion power prediction; ANN; RNN; deep learning

1. Introduction

The need to integrate a ship into a wider ecosystem for the exchange of structured
information, even between ships or between long-distance ports and low-coverage areas,
is a difficult problem to solve. The aim of reducing environmental impacts, increasing
maritime safety, optimizing ship performance, and assisting with new technologies (such
as intelligent sensors, big data, the Internet of things, and cloud services) has made smart
shipping a necessity in the field of navigation. Although data have long supported decision-
making, the abundance of data streams and the migration toward a digital era tends to
be overwhelming when it comes to shipping. As a result, the data are composed of user-
generated content (e.g., traces of digital communication) and machine-generated content
(e.g., data collected by sensors), complemented by structured data from external sources
(e.g., weather/environmental data). The compilation, alignment, and integration of this
heterogeneous and multi-modal data are critical steps that precede its analysis [1]. Data
need to be transparently aligned at the schema level, but also at the level of units and for
measurement precision. The development of new methods, tools, and technical capabil-
ities for big-data analytics is highly dynamic, driven by academia and large companies.
Currently, there are only a few examples of well-established models, such as the analytics
underlying weather forecasting. While these models need to be adjusted as computational
and sensing capabilities advance and the volume of processable data increases, applications
do not have any reference models that have been proven to work reliably.

Data analysis for the development of a regression model based on artificial neural
networks was employed in [2] to accurately predict fuel-oil consumption (FOC). Since
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the available dataset was not too large, comprising 4000 samples, 7 input variables, and
1 target feature, we shall not refer to it as big data, and the data preprocessing pipeline
proposed is deemed appropriate for effectively manipulating and refining vessel-related
data with large capacity. Also, [3] concerns the development of data-driven models for the
prediction of ship main engine FOC. For this study case, two different strategies for the data
acquisition endeavor were considered and compared, namely noon-reports and automated
data logging and monitoring (ADLM) systems, each at different sampling rates. It was
concluded that even though hyperparameter tuning is a means of affecting the output of
the model and identifying the optimal configuration to yield optimal results, investigating
a diverse set of different models, evaluating the performance of each one, and selecting the
best is more significant. In [4], a data analysis was carried out on the fuel usage of vessels
to render shipping operations more efficient. For this task, the analysis of continuous data
pipelines obtained from monitoring systems must be executed. In [5], it was proposed to
exploit the preeminence of the long short-term memory (LSTM) models in sequence, to
recover or predict accurately missing information from datasets, drastically improving the
already existent imputation techniques of filling the missing data points with the mean of
each variable. This methodology was applied to predict and fill the missing values of three
variables, namely the trajectory of the vessel, the FOC, and the speed over the ground of
the vessel. The efficacy of the suggestion was evaluated against actual data acquired from
monitoring systems of inland vessels. In [6], regression models to predict a ship’s speed
were developed by utilizing high-frequency data spanning about three months. Modeling
techniques such as k-folds, cross-validation, and ensemble methods were examined. In [7]
a least absolute shrinkage and selection operator (LASSO) regression model was used to
predict the fuel-oil consumption of a containership. A comparison of the results of the
LASSO models with other typical models of machine-learning methods was presented,
demonstrating an improvement in the accuracy of the predictions.

In [8], the authors presented a calculation framework based on machine-learning
methods for handling big data. Three processes were presented: sensor-fault detection,
data classification, and data compression. Specifically, principal component analysis
and Gaussian mixture models were exploited to filter the data points and cluster them,
respectively. In the same direction, in [9], three different modeling approaches were tested:
physical or white-box, hybrid or gray-box, and black-box models. White-box models are
physics-based, black-box models correspond to data-driven models, and hybrid combines
both methods. It was found that hybrid models can incorporate the best of the two types
of models. They achieve a high level of accuracy, like that of the black-box models, but
require less data due to the transferred knowledge from the physical models. Moreover, the
feature selection phase was thoroughly examined, including random-forest feature testing.

Going one step further, in the present study, we investigate how different deep-
learning approaches can be employed to exploit a heterogeneous source of information
coming from data collected onboard. The main focus was given to the testing of neural-
network models that have been successfully tested in different industrial or engineering
sectors. Based on its criticality to vessel operations, the power generated for propulsion by
a ship’s main engine is the selected target feature. The paper is structured as follows: in
Section 2, the methodology used in the current work for the data collection, pre-processing,
and cleansing is presented. In Sections 3 and 4, descriptions of the FFNN and RNN
models are provided, respectively. Parameter calculation and critical decisions for the
network construction are also provided for each model. Analysis of the results and accuracy
estimation, by comparison with the measured values, are provided in Section 5, while a
comparison of the FFNN and RNN models in terms of performance and computational
cost is further provided in Section 6. Finally, the key results of the study are summarized
in Section 7.
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2. Data Collection and Preparation
2.1. Data Acquisition

The ship employed in the study is a 165,000-DWT tanker. Table 1 provides its basic
characteristics. For this work, data was collected over approximately 19 months, and the
acquisition frequency rate was set to 1 min.

Table 1. Ship’s Particulars.

Parameter Value

Length 264.00 (m)
Breadth (molded) 50.00 (m)
Depth (molded) 23.10 (m)
Engine’s MCR 18,666 (kW) @ 91 RPM

For the collection of the data, the LAROS system was used [10]. In more detail, smart
collectors set up a secure wireless network inside the vessel to transmit the processed data
to the gateway with a user-defined sampling rate and the ability to maintain and customize
them remotely. The wireless protocol was based on IEEE 802.15.4 MESH, with additional
layers and data format to cover the requirements of the vessel environment and increase
the network’s Quality of Service, while different protocols will be examined to secure the
scalability of the solution in the future. Pre-processed data from the collector network on
each of the ship floors was further delivered to the next processing level: the gateways.
Data from the gateways were further transferred to the onboard server. The onboard server
periodically produced binary files and compressed them to reduce the size of the data to be
sent via normal satellite broadband to the headquarters data center (cloud computing). The
cloud collected the processed data from a wide range of vessels (fleet wise) and handled
them for -fleet-level data analytics. For our work, parameters from the following signal
sources were collected (Table 2).

Table 2. Collected parameters.

Signal Source Parameters

Navigational parameters
GPS, speed log, gyro compass, rudder angle, echo sounder,

anemometer, inclinometer (pitching–rolling),
drafts, weather data

Main engine (ME)
Torquemeter (shaft RPM, torque, power), ME fuel rack
position %, ME FO pressure, ME scavenge air pressure,

ME T/C RPM

Fuel-oil (FO) monitoring ME FO consumption, diesel generator
(DG) FO consumption

Alarm monitoring system
Indicative: DGs’ lube oil (LO) inlet pressure, cylinders’
exhaust gas outlet temperature, turbocharger (TC) LO

pressure, TC inlet gas temperature, TC inlet gas temperature

2.2. Data Pre-Processing Pipeline

As shown in Figure 1, the first phase of this analysis is the acquisition of data, which
is an essential step for any data-driven model-development endeavor. This step was
described in the previous subsection. In this subsection, the second phase of the work
needed is demonstrated. Having acquired the data from the server, data preprocessing is
the next essential part of any data-science-related study. Data acquisition is the cornerstone
for the creation of any data-driven model; however, its real value will emerge only after it
undergoes proper refining, improving the overall performance of the deep-learning model.
The data preprocessing pipeline applied in this case comprised three steps: (i) feature
selection (or feature elimination), (ii) outlier removal, and (iii) data smoothing.
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Figure 1. Different phases and processing steps executed in the different edge of the network.

2.2.1. Feature Selection

The first part of the data preprocessing phase was the selection of the feature set that
will be fed into the models. The 180 features related to vessel conditions that were provided
by the acquisition phase were examined for their importance related to the main target,
either through the application of statistical models, or through experience and domain
insight. For this purpose, it is plausible to perform a preliminary selection, eliminating
features by sheer intuition. In that way, features, which by no means affect the target values,
are excluded from the dataset. Afterward, it is generally desirable to further refine the
features, to train the neural network only on those regarded as the most important, thus
reducing the time required for each model to train. In this context, a series of statistical
analyses to determine the final set of features the dataset will comprise were implemented
as follows:

1. At first, a significance level was selected. In most cases, a 5% significance level
is enough.

2. Secondly, the model was fitted with all the features left from the intuitive
feature exclusion.

3. The feature with the highest p-value was identified.
4. If the p-value of this feature is greater than the significance level selected in the first

step, this feature was removed from the dataset. This procedure was repeated until
the highest p-value of this specific subset was lower than the significance level. Once
the highest p-value of this subset of features was less than the significance level, the
feature-selection process ended.

Afterward, a Pearson correlation elimination was applied to remove highly intercorre-
lated features. This way, reduction in the dataset size was performed by the removal of
redundant features. Features highly correlated with the target feature were accepted, since
they contain information vital to our models, and their discarding would signify a major
loss of information. For illustrational purposes, a correlation heatmap of the remaining
features is presented in Figure 2.
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2.2.2. Outlier Removal

The next step in the pre-processing procedure was the identification and, subsequently,
the removal of outliers. Outliers are extreme values that deviate from other observations on
data. In other words, an outlier is an observation that diverges from an overall pattern in a
sample. It is an abnormal observation that lies far away from other values. An outlier is an
observation that diverges from otherwise well-structured data. In this study, three features
were considered for the elimination of outlier entries: main engine rpm, main engine
power, and speed over ground. After experimentation, we found that for specific intervals
concerning the main engine rpm values, the other two variables would approximately
follow a normal distribution, therefore main engine rpm was selected as the primary feature.
As presented in [11], if we accept the hypothesis under a certain level of significance that
the second parameter values follow a normal distribution, it can be used to eliminate values
located towards the tail of the distribution. More explicitly:

1. Select a feature of the dataset that is deemed to be of high significance to our study
(for instance, the main engine RPM was chosen as our primary feature);

2. The rest of the dataset is split into intervals based on the primary feature’s values
within a specific range. Subsequently, each sample is assigned to the respective group.
(i.e., intervals of 10 rpm are created);

3. For any other given feature, the mean and the standard deviation in each cluster of
data are calculated and let mean to be m and standard deviation to be s;
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4. The arbitrarily chosen factor k is multiplied by the standard deviation, setting an
outlier threshold (in our case, a value of 3 was selected, which corresponds to a loose
outlier-detection criterion);

5. The inequality for each data point following Equation (1) determines if the given
sample is an outlier.

|(data_point)−m| > k ∗ s′′ (1)

The following indicative histograms (Figure 3) provide a better intuitive understand-
ing of where the discarded values are (the ones located outside the range defined by the
dashed vertical lines).
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Figure 3. Left: Histogram of the speed over ground for rpm values in the range (50,60). Right: Histogram of the power
generated by the main engine for rpm values in the same range.

According to the procedure described above, the results of outlier detection regarding
the main engine rpm as the primary parameter, and the vessel’s speed over ground and
main engine power as the secondary parameters, are illustrated in Figure 4.
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Figure 4. Outlier removal with respect to main engine rpm; the left diagram corresponds to the power feature, and the
right one to the speed over ground feature. Samples to be removed appear in orange, and the remainder of the data points
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2.2.3. Data Smoothing

The final step of this pre-processing data scheme is the smoothing of data by applying
a simple moving average (SMA) algorithm. The SMA is an unweighted average of the
last n samples, and since the sampling frequency remains constant, the number of the
last n samples coincides with the time window of the rolling mean. The purpose of
implementing the moving average is to smooth out any short-term fluctuations while
still capturing essential patterns, or concisely, to increase the signal-to-noise ratio. In the
relevant literature, very frequent time windows of 10 to 15 min were used. In this case, to
determine the best choice for a time window, we used numerous values and examined
how well they canceled out the noise while still maintaining as much information from the
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original data as possible. It was observed that as the averaging time window increased,
the standard deviation, hence the uncertainty, increased as well. This observation should
be expected, since it is a known that a time-series analysis that increases the value of the
order in a moving average model also increases bias. The plots of change of the standard
deviation concerning the size of the averaging window for the selected feature of the
studied vessel are shown in Figure 5.
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As shown, the standard deviation increased significantly as time windows increased.
To create a balance between computational cost and precision in our work, a time window
of 5 min was selected. This way the STD remains below 1% while important information
is not lost over averaging. To ensure that this assumption is valid, extensively graphs of
selected features for 5- and 10-min time windows are shown in Figure 6.
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3. Feed-Forward Neural Networks
3.1. Model Description

Artificial neural networks (ANNs), usually simply called neural networks (NNs), are
computing systems modeled loosely after the biological neural networks that constitute
animal brains. Neural nets are designed to simulate associative memory. Such systems
“learn” to perform tasks by considering examples, generally without being programmed
with task-specific rules. They are trained by processing examples, each of which contains a
known input and result, and through this process, they learn to recognize patterns, either
numerical or categorical, and form probability-weighted associations between the inputs
and the target features. After being provided with enough examples, the model becomes
capable of establishing causal relationships and correlations between events, hence its
ability to estimate results from inputs.

Components of the ANNs

The neurons are typically organized into multiple layers. The connection is explicitly
between neurons of consecutive layers. Each artificial neuron is connected to a single input
and output. The inputs can be either the values of a sample row of external data or the
outputs of other neurons. The layer that receives external data is called the input layer. The
layer that produces the ultimate result is the output layer, while in between, there are the
hidden layers.

Additionally, the weights of each neuron’s input are internal parameters of the model
that occur through training so that the corresponding outputs emerge. Explicitly, the output
of each neuron is calculated by the sum of all the inputs, weighted by the weights of the
connections from the inputs to the neuron. This weighted sum is then passed through a
(usually nonlinear) activation function to produce the output. Ultimately, the result of the
output layer is subsequently the result of the whole model, and is compared with the actual
values from the dataset to evaluate the model’s performance. This difference between the
predicted and real values of the same parameter is the input of an error function. This part
of the optimization algorithm is critical. Our objective was the minimization of the error
function through weight update in each iteration to reduce the loss.

The choice of loss functions and evaluation metrics is a crucial part of the model-
building endeavor for the assessment of the performance of the model. The loss function
selection process is an equivocal undertaking. Following [11], both the loss function and
the metric used to evaluate the model performance is the mean absolute percentage error
(MAPE), which is defined as:

MAPE = 1/n ∗∑n
i=1 |

Yreal,i − Ypredicted,i

Yreal,i
|, (2)

The training procedure of a deep-learning model involves parameters, besides those
internal to the model, that need to be set in advance that are called hyperparameters. The
hyperparameter selection process is not a straightforward endeavor, as it requires extensive
experimentation through trial and error. Therefore, the task is to find the best configuration
of these parameters. These parameters are: (1) activation function, (2) election of loss
function, (3) weight initialization, (4) the number of epochs, (5) the batch sizes, (6) the
number of hidden layers and the number of units in each layer, (7) the learning rate of the
optimizer, and (8) the dropout rate.

The optimizer selection can also be viewed as a hyperparameter. However, weighing
the advantages and disadvantages of each of the possible choices and aiming not to
overwhelm the algorithm with additional hyperparameters further, the ADAM optimizer
was preferred over the rest. The multitude of hyperparameters implies that a manual
inquiry for the best configuration of hyperparameters is impracticable. Therefore, an
automatizing algorithm for such an endeavor was implemented. Two very widely used
algorithms were examined in this case: the grid search and the randomized search. The
tradeoff is that we sacrificed the optimal arrangement of hyperparameters, acquired from
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implementing the examination against every combination of hyperparameters, with a less
optimal, randomized selection in exchange for a less computationally costly algorithm.
The process for the finalization of the model can be summarized in the following steps:

1. Use specifically applicable: rules of thumb utilized in deep-learning models/applications
to initialize the process with abstract values for the hyperparameters and insert
these parameters to the neural network, given that tuning every hyperparameter is
overwhelming not only for the computer, but also for the human behind it trying
to interpret the results. Hyperparameters regarded as more significant than others
whose values have been defined in this step will be reviewed in the next step.

2. After experimentation, a grid search was deemed computationally affordable, hence
it was preferred over the randomized search in the optimal configuration inquiry
process. The hyperparameters being examined through the implementation of grid
search algorithms are model-structure related, such as the number of layers, and the
number of neurons per layer, and activation functions. Assess performance on the
training and, more importantly, on the test set. Determine the network’s structure
and activation function.

3. Having determined the structure of the model and the selection of the activation
function, the value of the learning rate is reviewed. It is reduced until the loss
function ceases to fluctuate during the training process.

4. After convergence of the loss function is observed, the batch size is also a hyperpa-
rameter that could further improve overall performance.

3.2. Model Application

In this part of the study, the FFNN approach is described in detail. Following the steps
mentioned in the previous sub-section, the application of several rules of thumb from the
broader machine-learning community helps determine which parameters should not be
considered in the grid-search implementation, as well as the values assigned to these sec-
ondary hyperparameters. The secondary parameters not assessed by the hyperparameter
tuning algorithm, for each of the models presented in the subsequent paragraphs of this
study, are presented in Table 3.

Table 3. Initial selection of secondary hyperparameters.

Parameter Value

Dropout rate 0
Kernel weight initializer Uniform

Number of epochs 250

The reason behind the selection of the dropout rate’s value is that we implemented
cross-validation and shuffling of the dataset during training to address overfitting. We
will try adding dropout after the finalization of our architecture to see if it improves the
performance of our model. The kernel weight initializer is rather insignificant since, given
the small-batch relative to the number of samples on which our model was trained, in
addition to the number of epochs, it results in the updating of the weights of the neurons
numerous times before the end of the training process. Each power predictive model was
implemented a total of four times. The next step toward the finalization of the configuration
of the hyperparameters of the model was the implementation of the grid search algorithm.
The hyperparameters being inspected were the number of layers in the model, the number
of nodes per layer, and the activation function applied at each node. Table 4 presents the
selected values.
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Table 4. Hyperparameters examination grid.

Parameter Value

Number of layers (10, 12, 15, 18, 20, 22)
Network’s width (50, 100, 150, 200, 300, 400)

Activation function (ReLU, Linear)

The two most common activation functions for regression are the rectified linear
unit function (ReLU) and the linear function, which provide a linear combination of the
inputs. Experimentation led us to conclude that, given our dataset’s high dimensionality,
increasing the network’s width may play a catalytic role in improving model performance
without delaying the training process significantly, as much as increasing the number of
layers to model, and therefore explaining why we chose to inspect over such high values
of nodes per layer.

This procedure took place four times since two different shapes of the structure of the
model are scrutinized, and two different models are built being fed two different datasets.
More specifically, two types of shapes of the structure of the model were inspected: a
rectangular one and a trapezoidal one. In the case of the rectangular-shaped model, the
number of nodes per layer remained constant, whereas in the case of the trapezoidal-
shaped model, the number of nodes in each layer decreased for each layer closer to the
output layer, starting with the same number of nodes in the first hidden layer, as in the
rectangular-shaped case, and ended up with half of the nodes in the last hidden layer. This
experimentation was carried out to see whether the calculation of fewer weights in the
latter case would contribute to faster training time while yielding comparable results, or if
the rectangular-shaped models were ultimately significantly more robust. One noteworthy
comment about trapezoidal-shaped architectures is that since the number of nodes per
layer was not constant, we shall refer to the maximum number of nodes in the first hidden
layer to maintain cohesion with rectangular shaped models.

Additionally, two types of datasets were also examined. The first was the dataset as
obtained at the end of the data preprocessing phase described earlier in this study. The
second dataset was the same dataset after the application of the principal component
analysis (PCA) algorithm. Principal component analysis is a statistical technique used
widely to explain high-dimensional data in various fields in which it is mostly used as
a tool in exploratory data analysis and for making predictive models. PCA tries to find
maximum variance directions that are mutually orthogonal, and thus linearly independent
of projecting the original data points. Dimension reduction is thereby accomplished in a
smaller-dimensional subspace using a smaller number of variables, called the principal
components, before running a machine-learning algorithm on the data. Principal com-
ponents could be viewed as linear combinations of the original variables in the dataset.
However, after applying PCA, the parameters relinquish their natural meaning, so their
interpretation becomes more challenging, if not impossible. Dimensionality reduction was
examined once again to examine whether it could manage to reduce the duration of the
training process of the models while achieving comparable results to the model with the
original dataset. In the comparative charts (Figure 7), the best accuracy and time needed
for the implementation of the grid search are presented to distinguish the more-efficient
model of the four that were examined.

As shown, whereas the implementation time was almost identical across all four
examined models, with every model requiring a tuning time of approximately 4 h, the
rectangular network that was fed the original dataset was deemed to have returned the
lowest error in the test set. For the tuning procedure, each model had to be retrained
72 times with different layout structures and the results each one achieved on the test set
were subsequently compared to distinguish the best-performing model, as well as the most
efficient one. More explicitly, the fastest of the four models was the expected trapezoidal
model into which the PCA dataset was fed; however, this model also seemed to be the worst-
performing, whereas the difference in training time seemed to be marginal, as it required
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only 3 min less than the rectangular non-PCA network, which was the slowest of the four.
Conclusively, the model deemed to be more efficient was the rectangular network with
the non-PCA dataset inputted, as it was the most accurate, while requiring approximately
the same amount of time for training. It is worth noting that having determined to use
the non-PCA dataset, feature scaling to normalize the range of independent variables is
an important step to ensure the proper functioning of the objective function. The selected
scaling algorithm is min–max normalization:

x′ =
x−min(X)

max(X)−min(X)
(3)

where x’ is the new value and x is the old value of the feature, and min(X) and max(X) are
the minimum and maximum value, respectively, of the particular feature.
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Results yielded by the selected model are presented more thoroughly in Figures 8 and 9.
The curves illustrate the mean absolute percentage error and the standard deviation yielded
on the test set, acquired by applying the ReLU and the linear activation function, along
with a different configuration of the hyperparameters related to the layout of the model,
namely the number of layers and the number of nodes per layer.
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when applying the linear activation function. Right: Standard deviation of the percentage error concerning the number of
nodes per layer for a different number of hidden layers when applying the linear activation function.
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We intend to examine the two activation functions with the structure of the networks
inspected as the common denominator in the context of this comparison. It seems that in the
case of the linear activation function, the results were counterintuitive, as deeper networks
yielded more erroneous results, suggesting in the case of the linear activation function that
deep structures are not required to observe the convergence of the results. In contrast, in
the case of the ReLU activation, it was evident what intuitively seems reasonable: that as
the structure was composed of more layers and more nodes, the loss between predicted and
actual values diminished. Nevertheless, the aim was not necessarily optimum accuracy at
any cost, rather than optimal efficiency. Therefore, we did not continue to further increase
either the number of layers or the number of nodes per layer. Ultimately, the results led
to the conclusion that the ReLU activation function profoundly outperformed the linear
activation function, and thus it was selected for our finalized model.

One set of hyperparameters impacting our model’s performance profoundly, into which
we have not delved yet, is related to the optimizer’s learning rate, namely the learning rate
itself and its decay parameters. Their magnitude dictated the speed of convergence of the
training procedure and, ultimately, the model’s loss on the test set. This approach reduced
the learning rate and increased the learning decay parameters of the optimizer until any
volatility to both training and validation error was removed, intending to determine the order
of magnitude of the parameters. This concept is presented in Figure 10, which shows four
curves with different learning rates; the one being trained with a greater learning rate appears
to be volatile, while the one with the smaller one seems smoother.
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It is shown that the learning-rate curve starts to smoothen for values smaller than 10−3,
leading us to claim that the optimal learning rate that should be used for this particular
model is situated between 10−3 and 10−5. Errors and standard deviation of errors obtained
from the implementation with different learning rates are illustrated in Figure 11.
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Ultimately, our task was to minimize the error between predicted and actual values
on the test set and keep the standard deviation low. Considering the points, 2.5 × 10−4

seemed to be an ideal value for our model’s learning rate. Once we determined the values
of the learning parameters, the batch size and its effect on the error on the test set was
scrutinized (Figure 12).
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Indeed, performance optimization was achieved by shrinking the batch size. In this
case, the tradeoff was that smaller batch sizes invoked more weight updates during the
training procedure; therefore, training required more time. Weighing this tradeoff, a batch
size of 128 was selected. Ultimately, we determined a predictive model that generated a
mean error of 0.608% on the test set and a standard deviation of 1.438%. Table 5 shows the
model’s main characteristics.

Table 5. Finalized configuration of the hyperparameters for the power-predicting model.

Parameter Value

Learning rate 2.5 × 10−4

Number of layers 20
Maximum number of nodes per layer 400

Batch size 128
Epochs 200

Activation function ReLU
Kernel initializer Uniform

Dropout rate 0
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4. Recurrent Neural Networks
4.1. Model Description

Recurrent neural networks (RNN) are a class of neural networks in which connections
between nodes allow better sequential data processing. Derived from feed-forward data,
RNNs utilize their internal memory to process temporal dynamic behavior and input
sequences. Given the fact that our dataset is a time sequence, RNN models were encouraged
to be examined. Specifically, in the present study, the type of recurrent neural network that
was examined was a long short-term memory neural network (LSTM). LSTM units possess
feedback connections, which are beneficial characteristics rendering them appropriate
to process and make predictions in time-series analyses. LSTM units seem to outclass
traditional RNNs regarding long memory. The problem addressed was the vanishing
gradient problem encountered when training on traditional RNNs. An RNN using LSTM
units can be trained in a supervised fashion on a set of training sequences using an
optimization algorithm, like gradient descent, combined with backpropagation through
time to compute the gradients needed during the optimization process, to change each
weight of the LSTM network in proportion to the derivative of the error concerning the
corresponding weight. The problem with using gradient descent for standard RNNs is
that error gradients vanish exponentially for increasing time lag. However, with LSTM
units, when error values are backpropagated from the output layer, the error remains in
the LSTM unit’s cell, continuously feeding the error back to each of the LSTM unit’s gates,
until they learn to cut off the value.

Components of LSTM RNNs

A common LSTM architecture is composed of a cell and three regulators, which
usually are called gates. The cell acts as the memory unit. LSTM neurons, or memory
blocks, are composed of three types of gates:

1. Forget Gate: conditionally decides what information to discard from the block.
2. Input Gate: conditionally decides which values from the input to update the

memory state.
3. Output Gate: conditionally decides what to output based on input and the memory

of the block.

The similarities of LSTM models and regression ANNs are emerging, and as we will
see in the following section of the present study, both models share the same pitfalls,
hyperparameters, and loss functions. Regarding the loss function, the error observed
between the predicted and the actual values was monitored through the same regression
loss functions mentioned above (MAPE).

Similarly, as in the case of the FFNNs, hyperparameters should be finalized before
starting the training process. The model does not learn hyperparameters during the training
process; however, they profoundly affect the model’s performance. Indicatively, in LSTM
models, the hyperparameters required to carry out the training procedure are:

1. The number of epochs: Increasing the number of epochs improves performance, since
more iterations give the model the chance to learn better. However, this eventually
results in overfitting.

2. The batch size: This defines the frequency of weight updates. Increasing the batch
size lowers the computational cost, enhances the algorithm’s efficiency, and intensifies
the error function variance.

3. The number of hidden layers and the number of units in each layer: Both of these
enhance the model’s accuracy, but eventually lead to memorizing extravagantly
intricate patterns in training, resulting in overfitting.

4. Learning rate of the optimizer: This is a critical parameter that dictates the learning
pace of the algorithm, but also entails the risk of utter learning failure if chosen to be
too large in order to expedite the process.
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5. Dropout rate: This is responsible for dealing with the problem of overfitting; never-
theless, the pitfall of underfitting is imminent if chosen to be larger than the model
would require.

6. The number of samples inputted: LSTM models need to receive n number of samples
each time to generate one outputted value. A large number of inputted samples
provides a more holistic view of our model; however, there is a risk of overfitting.

The futility of manual searching for the best configuration of the hyperparameters due
to their plenteousness is again underlined. A similar approach is followed for the LSTM
models. Specifically, the steps for the consummation of the model are summarized in the
following steps:

1. Use specific applicable rules of thumb known in the deep-learning community to
initialize the process with abstract values for the hyperparameters.

2. Implement the grid or the randomized search repeatedly until hypermeters converge
to a specific configuration.

3. Insert these parameters into the neural network.
4. Assess performance on the training, and more importantly, on the evaluation data.
5. Manually carry out further refinements to the hyperparameters if deemed necessary.

4.2. Model Application

In this part of the study, in the same manner of implementation for the ANN models,
an LSTM model was created to predict of the power of the main engine. After experimen-
tation, it was discovered that profoundly better performance was achieved by creating a
time-series model that only received the past values of the target parameters upon which
the model aspired to predict. Models receiving as input all features of the dataset would
fail to generalize, thus indicating overfitting patterns. This selection of a sole input feature
to the model was enabled by two factors:

1. The large inertia characterizing a tanker ship, resulting in slow rates of change among
most features, and

2. A large amount of data for both training and testing our algorithm.

The dataset was again split into two equal parts: the training and validation subsets.
The concept behind the training set remained the same as in the FFNN case, and the valida-
tion set was used for evaluating the performance of each configuration of hyperparameters.
We tracked the minimum validation error for each implementation below and the average
mean absolute percentage error over the 10 best validation errors observed. The main dif-
ference, compared to the ANN implementation described in Section 3, was the utilization
of the time-sequence trait of our initial dataset; hence, it was not plausible to shuffle the
dataset, since this would disturb the sequential trait needed for the RNN. The values of the
hyperparameters not tested in the grid search are listed in Table 6, while Table 7 presents
the plausible values of the hyperparameters that underwent the tuning procedure.

Table 6. Values of secondary less-significant hyperparameters.

Parameter Value

Epochs 200
Dropout rate 0

Number of features inserted 1
Number of LSTM cells 1

For the values of the number of input samples that the LSTM units received each time,
the emphasis was placed on testing smaller windows. Because of the slow dynamics that
characterize a vessel, it was deemed that larger windows would not provide anything
valuable, but instead would increase the risk of overfitting. Moreover, the number of layers
units in the model was selected equal to 1, since adding more layers would have delayed
the training process significantly, and decreased our model’s ability to generalize. The
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default function of LSTM models was the sigmoid function, regardless of the nature of
the problem, and this was the reason behind our choice to test it. The ReLU function was
selected due to its outstanding performance in the ANN models presented in Section 3.
Our initial chosen values for the learning rate and the batch size were 2 × 10−4 and 256,
respectively. However, those two values were reviewed for each model to determine the
learning-rate and batch-size values that would optimize our models’ performance.

Table 7. Hyperparameter tuning values.

Parameter Value

Number of LSTM units in LSTM cell (100, 200, 500, 1000)
Window of inserted data into the cell (3, 5, 7, 10, 15, 20)

Activation function ReLU, Sigmoid

Application of the ReLU activation function returned the results illustrated in Figure 13,
which entails the minimum error on the validation set observed out of all the epochs during
the training of the tuning phase, along with the average of the epochs with the 10 lowest
errors returned on the validation set.
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Execution of the same algorithm with the application of the sigmoid activation
function on the LSTM units yielded significantly lower accuracy. Experimentation with
the learning rate and other hyperparameters did not ameliorate anything. Indicatively,
Figure 14 illustrates this exact underperformance.
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selection of an LSTM cell with 1000 cells and an input window of 15 samples. Next, the
order of magnitude of the optimizer’s learning rate was examined, in which the intention
was to eliminate the volatility of the validation error curve. Figure 15 suggests that the
range of values of the learning rate that accomplish the task was from 10−4 to 10−3, and
despite the mild volatility in this range of values, convergence can be observed. Observing
Figure 16, a learning rate of 5 × 10−4 was selected.
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main engine delivered power (the target feature). Two fundamentally different ap-
proaches were presented, each implemented with a different deep-learning model type. 
First, the creation of ANN models was presented to tackle the feature estimation problem 
as a regression problem. RNN models, and more specifically, LSTM models were imple-
mented, exploiting our dataset’s time-sequential behavior. It was found that both deep-
learning model genres yielded comparable results, with both achieving both target fea-
tures with accuracies greater than 99%. This fact satisfied one of this study’s aims: to pro-
vide trustworthy and reliable results for a vessel’s performance. In this part of the study, 
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Finally, in a similar fashion to the approach followed in the FFNN models, an inspec-
tion of the batch size took place. Observation of Figure 17 shows minimization of the
yielded error for a batch size of 128, thus finalizing the power-predicting LSTM model, as
shown in Table 8.
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Table 8. Finalized values of hyperparameters defining the LSTM power-predicting network.

Parameter Value

Learning rate 5 × 10−4

Number of inputted samples 15
Number of units in LSTM cell 1000

Batch size 128
Epochs 200

Activation function ReLU
Features inserted 1

Dropout rate 0

5. Application of the Ship Power Prediction

Based on the same dataset as in the previous section, this part of the study focused on
creating performance-optimized deep-learning models to estimate and predict the main
engine delivered power (the target feature). Two fundamentally different approaches were
presented, each implemented with a different deep-learning model type. First, the creation
of ANN models was presented to tackle the feature estimation problem as a regression
problem. RNN models, and more specifically, LSTM models were implemented, exploiting
our dataset’s time-sequential behavior. It was found that both deep-learning model genres
yielded comparable results, with both achieving both target features with accuracies
greater than 99%. This fact satisfied one of this study’s aims: to provide trustworthy
and reliable results for a vessel’s performance. In this part of the study, we present our
efforts to simulate realistic conditions and the evaluation of our model’s performance
under unseen data, incoming in real time. The model was trained using the inner part
(80%—270,000 samples) of the dataset, while the remaining part (20%—74,600 samples)
was kept for the out-of-sample predictions phase.

5.1. Power Prediction Using ANN

First, we present the performance of the regression-based feed-forward deep-learning
model in feature prediction. Interestingly, FFNNs seemed to fail to handle many out-
of-sample predictions, as they cannot predict with a high level of accuracy the steep
fluctuations of the power signal, as shown in Figure 18. It appears that until the 20,000 sam-
ple, the model was performing satisfactorily, as the predicted values of the target feature
matched real ones. However, for subset sizes larger than that, the divergence between
predicted and real ones started to emerge. Additionally, the model could still estimate
maintaining a constant error percentage when the signal of the target feature did not
significantly vary in time. However, the FFNN model inadequacy was displayed by the
steep error increase induced by data points that reflected the signal variation. Another
illustration of the same observation is given in Figure 19 by the constant increase in the
error mean.
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Figure 20 illustrates the steep error standard deviation increase around the 20,000 data
point, expressing that the model certainty in its predicted values was significantly deterio-
rating; thus the error increase and the divergence between estimated and measured values
when needed to predict more data points.
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Figure 21 presents the measured values concerning the sample size of the subset sur-
rounded by the 95% confidence interval. A pronounced expansion of the interval as the sam-
ple size grew is obvious; this is a natural consequence of the standard deviation increase.
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5.2. Power Prediction Using RNN

Time sequential models undertaking the same task seemed to perform significantly
better. It is illustrated in Figure 22 that the LSTM power-predicting model could capture
fluctuations and volatility appearing in the power signal with significant accuracy. We
would expect that toward the end of a large sample size, the LSTM would find it trouble-
some to predict with such high levels of accuracy. However, it kept both the error and
its standard deviation below 0.5% and 2%, respectively, across the whole out-of-sample
subset (Figure 23).
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Similar to the FFNN model, the LSTM model demonstrated similar behavioral pat-
terns; namely, the mean error propagation in this case was continuously increasing along
with a steep rise of the error standard deviation (Figure 24). However, compared to the
respective values yielded by the FFNNs, the profound performance change is evident.

In contrast to the ANN models, the LSTM models predicted the real values of the
generated power more accurately. This is shown in Figure 25, in which the 95% confidence
interval remained relatively narrow around the measured values across the whole out-of-
sample subset, with the corollary of the standard deviation of the error being kept in the
moderate range.
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6. Model Comparison

In the previous section, it was concretely shown that the RNNs’ innate attribute of
processing sequential data did manage to significantly outperform the FFNN counterparts,
yielding more accurate predictions across the whole predictions subset.

In this section, the comparison between the two different types of neural networks
shall be taken a step further, delving deeper into the statistical meaning behind the more
accurate predictions of the RNN (Table 9). Implementation of the neural networks was exe-
cuted with fuel-oil consumption considered as a target feature, along with the shaft power.

Table 9. Performance comparison of the two types of networks (mean error–percentage error).

Parameter FFNN RNN

Power 7 0.58
Fuel Oil Consumption * 5.8 0.58

* A second target feature (fuel-oil consumption) was also examined to verify results.

The gap in the performance between the two types of networks is evident. To analyze
this significant difference more thoroughly, it was deemed worthwhile to divide the subset,
where previously sample predictions were carried out, into segments of 10,000 samples.
As demonstrated in Figure 26, in the case of the FFNN, the estimated and the actual values
of the power seemed to agree more in the first portion of the out-of-sample predictions
subset, but as the number of samples estimated increased, predicted values appeared to
diverge from the measured ones, whereas the RNN seemed to be accurate throughout the
whole subset. For the first 10,000 samples, predicted values stemming from each network
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were plotted against measured ones, forming two scatter plots, and linear regression
subsequently was carried out in each one, returning the “best-fit” line, also called the
trend line of the specific subset. Ideally, that line should approach the identity line, which
expresses the theoretical instance of having perfectly accurate predictions across the whole
subset, namely Pmeas = Ppr, for every sample.
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Figure 27 demonstrates explicitly that the RNN models were consistently and explicitly
more accurate than the FNNs, even when the latter seemed to be at their peak performance;
namely, what appeared to be the case at the beginning of the out-of-sample predictions
phase. Similarly, the process described above was implemented for the other segments
consisting of 10,000 samples. In Figure 27 (right), the optimal-fit lines of each segment are
presented, along with the identity line, to compare the acquired lines with the theoretically
perfect predictive model.
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RNN model.

A comparison of the two legs of Figure 27 verifies the supremacy of the RNNs, as they
converge with the identity line to the point that they almost coincide, verifying the claim
that the accuracy was held throughout the whole subset. In Figure 27 (left), it is apparent
that, except for the second segment, for the first four sectors of the subset, approximately
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up to the 40,000 sample, predictions seemed to be relatively good; however, lines referring
to the next section appear to diverge more from the identity line. However, the goodness
of the fit as described above is not always an objective means of comparison and can easily
be misleading, especially when the results are more ambiguous. To quantify these results,
the coefficient of determination, denoted as R2, was employed.

Supposedly, a dataset consisting of n samples forming a vector y = [ y1, . . . , yn] and
the model’s predicted values are denoted with ŷ = [ŷ1 , . . . , ŷn].

Subsequently, the following quantities are defined:

(i) The mean of the observed data:

y =
1
n ∑n

i=1 yi , (4)

(ii) The sum of the squared difference of every sample to the mean (proportional to
the variance):

SS = ∑n
i=1(yi − y) 2 (5)

(iii) The sum of squares of residuals:

SSres = ∑n
i=1(yi − ŷi)

2 (6)

Having defined the above quantities, it is plausible to define the coefficient of determi-
nation as follows:

R2 = 1 − SS
SSres

, (7)

Figure 28 presents the R2 metric scores from both network types across all segments.
The slope deviation from 1 of each line is also depicted. We defined slope deviation as:

Slope Deviation(SD) =
|1− m |

m
(8)

where m is the slope of the respective line.
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Finally, observation of the two graphs further solidifies the original claims made
regarding the performance edge the RNNs possessed over the respective FFNNs.

This drastic drop in the accuracy percentage is justified by the fact that when power
prediction was approached as a regression problem, the time sequence was discarded
and data was shuffled to avoid overfitting, and there was an isolated portion of the
data devoted to simulating out-of-sample predictions. Subsequently, that means that the
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training data points were spread throughout the whole dataset, thus enabling our model to
predict against trends and fluctuations with a significantly smaller error. As demonstrated
above, FFNNs can still estimate target feature values with an error smaller than 1% for
a small number of predicted data points. The uncertainty, thus the error, grows as the
number of samples asked to estimate increases. One way to counteract this phenomenon
is by retraining the model, including new data points that occur. However, by doing
so, this methodology renders the choice of artificial neural networks inefficient, as their
computational cost and accumulated training time is dramatically increasing.

On the other hand, the LSTM models are trained for this exact purpose: to predict
based on past values of the target feature, exploiting the time dependency of the data.
Therefore, when asked to carry sequential out of sample predictions, they inherently
perform significantly better.

Besides the performance-wise edge of the RNN-based models over the equivalent
ANN ones, other significant advantages can be distinguished. For instance, as stated
in Section 4, in the implementation of the RNNs, to predict either power or fuel-oil con-
sumption values, no other feature was used other than the target feature itself, as they are
solely based and trained on each respective target feature, which they attempt to estimate.
Therefore, the monitoring of data gathering of other values is deemed redundant. That
means that our data gathering was dependent on fewer monitoring devices, reducing the
probability of measurement error situated in the data fed into our model, thus increasing
the fidelity and reliability of both the data and the results.

However, this great accuracy comes at a cost. One drawback that can be spotted
in the RNN model selection is the fact that they required more time to generate results
than the FFNNs. More explicitly, when training all models on a cloud-computing instance
comprised of a 2-core CPU and a 1-core GPU, recurrent neural networks required almost
three more times to complete the training of a model over 200 epochs. The difference is
even greater when prediction times are compared, as FFNNs required only a few seconds
to complete more than 70,000 predictions, while the RNNs required approximately 40 min
for the same task (Table 10).

Table 10. Comparison of the training duration and the time * required for each network type
to complete.

Parameter FFNN RNN

Training duration (min) 16.67 57
Time required for predictions (min) 0.4 36

* 70,000 predictions were considered.

7. Discussion of Use-Case Applications

While the focus of the current work was the description of the pre-and post-processing
techniques, as well as the comparison of the two models, in this section, we briefly discuss
indicative applications of the results in a real situation. The aim is to provide a short glimpse
of the applicability of the methodology through two real case studies from the maritime
industry, mainly as working examples of the capabilities of the proposed methodology.

In the first example, the methodology was used for the construction of a key perfor-
mance indicator (KPI), which was defined as the % difference between the measured and
the predicted (RNN) power for a specific ship’s speed. This KPI (m-K3) was derived as a
modified version of the K3 indicator presented in [1], which was defined as the % deviation
of the difference between the measured and the designed (sea-trial) power for a specific
ship’s speed. Both indicators target energy efficiency, as they entail hull and propeller
degradation in time, which could result in a substantial increase in fuel consumption.
Well-functioning ship behavior would be expressed by the power increase deviation with a
constant value of 0. In Figure 29, the evolution in time for the two KPIs is presented. As
shown the m-K3 indicator, a precipitous change of the curve indicates an anomaly that was
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artificially inserted in the dataset as an ME power-degradation factor. The analytical K3
indicator failed to detect the anomaly.
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Figure 29. Detecting the anomaly of degradation of the ship through the power increase deviation indicator.

By setting an alert condition of abnormality detection of 75%, we were able to provide
an enhanced energy-efficiency monitoring tool. Additional oscillation around 0 was also
observed as well; nevertheless, as depicted, their magnitude was satisfyingly below the
threshold line. These oscillations were caused by slightly inaccurate predictions, and they
were present in both states of the vessel’s functioning state. Results were presented in [12].

Going one step further, in [13], the same methodology was introduced as a data-
processing tool in a hybrid multilayered data-acquisition technique demonstrated onboard
an oil tanker. More specifically, in that occasion, data were collected and pre-processed in
different computing levels ranging from the mist (very close to the sensor) to fog (onboard
server) and cloud (headquarters). The RNN model was applied at the fog level, with an
aim to fill data gaps.

8. Conclusions

The evolution of Industry 4.0 brought to the surface the necessity of the development
of efficient data-analysis frameworks that are capable of handling an enormous amount
of heterogeneous data, and thus provide enhanced decision support in terms of energy-
efficiency optimization and optimal maintenance scheduling. As a result, the utilization
of neural networks in marine engineering has been an emerging topic in the last decade.
The specific genre of neural networks that are most studied and documented in this field is
the ANNs, which are employed in the estimation of parameters such as power or fuel-oil
consumption, approaching the problem in a regressive fashion in which the values of the
other parameters in each moment enable the model to estimate the value of the target
feature. Realizing, however, that the problem could be addressed as a time-series analysis,
in the current work, RNNs with LSTM cells were suggested as an alternative method.
Therefore, a comparative study between not only the two types of neural networks, but
also between the two substantial approaching methods, was performed. Our main focus
was on the identification of the different data pre-processing phases, as well as on the
optimal-configuration decision process for each of the developed deep-learning models.
The models were further compared to obtain their accuracy in predicting target features. We
conclusively deduced that the time-series analysis course (RNN) produced more accurate
predictions. This accuracy came at a cost of computational resources.

The main findings of this work are as follows:

(1) LSTM models appeared to be suitable for propulsion power prediction, providing
both great sensitivity and precision.

(2) One of the main reasons of the accuracy decline of the FFNNs in the out-of-sample
predictions was the stochasticity of the signal; namely, the sudden and steep changes.
Therefore, applying more filters could smoothen the signal, resulting in performance
and accuracy enhancement.
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(3) The method was tested through real case applications onboard, with an aim to
determine the performance degradation of the vessel. It was shown that the suggested
methodology incorporates diagnostic and prognostic features in a flexible framework,
enabling technical and economic monitoring of past, current, and forecasted states.

The same endeavor could be undertaken by implementing other machine-learning
algorithms as well, like support vector machines (SVM) or random forests, which are
currently under development.
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