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Abstract: During the long-term service condition, the mooring line of the deep-water floating
platform may fail due to various reasons, such as overloading caused by an accidental condition
or performance deterioration. Therefore, the safety performance under the transient responses
process should be evaluated in advance, during the design phase. A series of time-domain numerical
simulations for evaluating the performance changes of a Floating Production Storage and Offloading
(FPSO) with different broken modes of mooring lines was carried out. The broken conditions
include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent
sides. The resulting transient and following steady-state responses of the vessel and the mooring
line tensions were analyzed, and the corresponding influence mechanism was investigated. The
accidental failure of a single or two mooring lines changes the watch circle of the vessel and the
tension redistribution of the remaining mooring lines. The results indicated that the failure of
mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely
related to the stiffness and symmetry of the mooring system. The simulation results could give a
profound understanding of the transient-effects influence process of mooring line failure, and the
suggestions are given to account for the transient effects in the design of the mooring system.

Keywords: FPSO; broken mooring line; failure location; dynamic response; safety factor

1. Introduction

Energy is an important fundamental for the development of a country that directly
affects the economic lifeline. With the rapid development of human society, land energy
is becoming increasingly scarce, so people are turning their attention to the sea. Various
countries have made significant efforts in the deep-water oil and gas exploitation, with
relatively mature technologies. At present, many floating platforms have been developed
and installed, such as the Floating Production Storage and Offloading (FPSO), Spar, Semi-
submersible, and Tension Leg Platform (TLP). The FPSO is the most widely adopted
floating platform in the world due to its unique advantages in the storage, navigation
ability, and low cost [1–4].

The deep-water floating platform is anchored at a specific location, using the mooring
system, to ensure its normal operation within a safe location range. When the platform
has been in service for a long time, the mooring system is at risk of breakage under
the mild or severe environmental conditions, with many uncertainties [5]. Since 2000,
there have been at least 23 incidents of mooring failure, and some of them have caused
catastrophic accidents [6]. These failures have occurred for various reasons, for example,
manufacturing defects, damage during installation, weathering, corrosion, fatigue, and
out-of-plane bending in chains. After the mooring failure, the position of the platform
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changes substantially, which increases the risk level of the platform and nearby structures.
Therefore, it is of great significance to study and evaluate the possible variations of platform
motion and mooring tension when the different failure modes of mooring lines occurs.

Some scholars have investigated the changes in global responses of platform and
mooring line tension considering the failure of tension leg based on numerical simulations.
For the TLP platform with top tension risers (TTRs), the effects of the simultaneous failure
of different numbers of tendons and the continuous failure of multiple tendons on the
platform motion and tendon tension under the extreme sea conditions are analyzed [7].
The motions of TLP with one tendon failure and the loads on the remained tendons
under different hull ballast were studied by using the commercial software HydroD and
OrcaFlex [8]. The transient motion responses of the Extended Tension Leg Platform (ETLP)
platform when the tendon disconnection occurs under harsh environmental conditions
were analyzed [9]. The dynamic stability and survivability of a four-column classic TLP
under less-than-extreme storm conditions where one or more tendon failures due to damage
or disconnect were investigated, the transient responses of the platform and tendon tensions
at the moment of disconnection are in the time domain [10,11]. The behavior of tensions
of TLP tendons under the damaged tendon condition in the wave frequency range was
analyzed [12]. The dynamic responses and tension characteristics of a TLP with one tendon
broken were investigated [13]. A time domain hull–tendon–riser coupled dynamic analysis
was developed for the transient effects of tendon disconnection of a TLP [14]. The stochastic
responses of TLP under the intact and damaged tendon conditions, considering the random
wave and current conditions, were conducted [15]. The structural safety assessment of TLP
in the hurricane environment was analyzed [16].

There are also investigations on the change in global responses of other types of float-
ing platforms in the oil and gas industry, considering the failure of mooring lines based on
numerical simulations. The effects of mooring diameters, fairlead slopes, and pretensions
on the dynamic responses of a truss spar platform under the intact and damaged mooring
line conditions were studied by Montasir et al. [17]. Feng et al. [18] presented a method
for analyzing the stability of floating platforms after the mooring line is broken, based on
the time-domain analysis. Mura et al. [19] conducted the analysis on the hydrodynamic
responses of a floating body and mooring lines in the case that a mooring line in contact
with the seabed is broken. Zhang et al. [20] investigated the progressive mooring line
failure process of a deep-water Mobile Offshore Drilling Unit (MODU) in the hurricane
conditions. Kim et al. [21] solved the platform motion and mooring line tension, using the
high-order boundary element method, convolution method, and finite element method,
in view of the single cable fracture of the Floating Storage and Regasification Unit (FSRU)
mooring system, and compared the results with the intact mooring condition. Han et al. [22]
examined the transient behavior of mooring lines and FPSO in the single mooring line
broken for some operational conditions. Giron et al. [23] analyzed the relevance of the
transient effects on the FPSO under the severe storm conditions by using two different
mooring system arrangements. Ma and Sun [24] introduced the software of FPSO Mooring
Management System to track and control the FPSO mooring situation, including the main
failures of the mooring system. Lian et al. [25,26] analyzed the effects of different levels of
damaged ropes on the dynamic responses of FPSO and its taut-wire mooring system.

In addition, there are some investigations that used the model tests method to study
the influences of mooring failure. Kurian et al. [27] conducted the model tests of a semi-
submersible platform with a scale of 1:100 and investigated the effects of single mooring
line failure on the vessel motions. Hong et al. [28] conducted the model tests of an FPSO
with broken mooring line, to investigate the characteristics of vessel motions and mooring
line tensions.

Furthermore, several studies have been conducted to investigate the influences of a
single mooring line failure on the floating wind turbines under the survival conditions. A
time-domain aero–hydroservo–elastic-mooring coupled dynamic analysis was developed
for TLP floating wind turbine, and the performance changes with broken mooring line
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were discussed [29]. A coupled dynamic analysis on the fracture of some blades of floating
wind turbine was conducted [30]. The transient response of a Spar-type floating wind
turbine with fractured mooring lines was investigated [31]. The influences of single tendon
failure on the transient responses of WindStar TLP floating wind turbine were studied in
different environmental conditions [32].

Most of the previous investigations mentioned above about the influences of mooring
failure on the offshore floating platforms and floating wind turbines only consider the
single most loaded mooring line failure under the extreme harsh sea condition with the
combination of the same direction of the wave, wind, and current, which is consistent with
the requirement of design standard [33]. However, during the actual service conditions
in the different sea states, there are various reasons for the mooring failure, such as the
design, material quality, installation and transportation, inspection and maintenance, etc.,
which could also cause the mooring failure in the normal operation sea state, and single
mooring line failure is often accompanied by another mooring line failure [6]. Therefore,
establishing the numerical model to calculate the coupled dynamic responses of vessel
motions and mooring line tensions under the sudden mooring line breakage at a certain
time, considering the possible single or two mooring lines failure conditions under the
extreme harsh or operating sea conditions, the comprehensive performance evaluation
of vessel motion responses under the different mooring line failure conditions, and the
corresponding transient responses analysis should be further investigated.

In this study, the evaluation of the transient response of FPSO with different mooring
lines failure was investigated, including the single mooring line or two mooring lines
failure under ipsilateral, opposite, and adjacent sides. This paper is organized as fol-
lows: In Section 2, the coupling model of FPSO and its mooring system is established. In
Section 3, a DEEPSTAR internal turret FPSO is presented as the research objective, and the
corresponding numerical model for calculating the motion responses is validated by the
model tests. In Section 4, the environmental conditions and mooring failure cases are pre-
sented, including four different mooring failure conditions under different environmental
sea states. In Section 5, the comprehensive safety evaluation of vessel motion responses
and mooring line tensions are conducted and analyzed, including the mooring failure
location and environmental load direction on the vessel motion responses and the tension
redistribution of the remaining mooring lines. In Section 6, the conclusions are presented.

2. Governing Equations and Formulation
2.1. Mooring Line Model

The mooring line is generally presumed to be a completely flexible component during
the motion analysis; using the governing equation of motion proposed by Berteaux [34],
the dynamic of mooring line can be solved by lumped mass method [35]:

m
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where m is the mass of mooring line per unit length;
⇀
V is the velocity vector;

⇀
T is the

mooring line tension; ∂
⇀
T

∂s′ is the mooring line tension variation;
⇀
G is the net weight;

→
F Dn,

→
F Dt,

→
F In, and

→
F It are the drag forces and inertia forces per unit length in the normal

and tangential directions, respectively; ρw is the seawater density; D is the equivalent
diameter of mooring line; Ar is the equivalent area; CDn, CDt, CIn, and CIt are the drag

coefficients and inertia coefficients in the normal and tangential directions, respectively;
→
Vn,

→
V t,

→
Un, and

→
Ut are the mooring line velocity and fluid velocity in the normal and tangential

directions, respectively.

2.2. Hydrodynamic Model of FPSO
2.2.1. Wave Force Calculation

The wave forces on the FPSO are calculated by the boundary element method based
on the diffraction theory, using the commercial software AQWA. Ignoring the interaction
effects between waves and currents, it is supposed that the first-order wave force of the
floating structure is composed of wave excitation force and radiation force, which can be
superposed linearly. The wave excitation force is composed of incident force and diffraction
force, and radiation force can be regarded as additional mass force and radiation damping
force. The potential of the first-order wave force is defined as follows:

Φ(X, Y, Z, t) = φ(X, Y, Z)e−iωt =

[
(φI + φD) +

j=1
Σ
6

φjxj

]
e−iωt (6)

where φI is the incident potential, φD is the diffraction potential, and xj represents the
amplitude of the j freedom motion of the floating structure.

The first-order velocity potential is substituted into the linear Bernoulli equation:

p(X, t) = −ρ
∂Φ
∂t

(7)

By summing the wave excitation force and radiation force, the first-order wave force
(unit amplitude) on the floating structure could be given as follows:

F = Fj + Fji (8)

Fj = −
∫

S
pIDnjdS = −

∫
S

iωρ(φI + φD)njdS (9)

Fji = −
∫

S
pinjdS = −

∫
S

iωρφinjdS = −Aji
..
xi − Bji

.
xi (10)

where Fj is the wave excitation force in the j direction; Fji is the j direction radiant force
caused by the i freedom motion of the floating platform; S is the wet surface of the floating
structure; nj is the normal vector in the j direction; Aji and Bji are the added mass and the
radiation damping coefficient, respectively, which can be expressed as follows:

Aji =
ρ

ω

∫
S

φIm
i njdS (11)

Bji = ρ
∫

S
φRe

i njdS (12)

Under the action of waves, the floating platform will not only receive the first-order
wave force consistent with the wave frequency, but also the nonlinear second-order wave
force. The components of the second-order wave force mainly include average wave drift
force, low-frequency wave drift force and high-frequency wave drift force.
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The average wave drift force and the low-frequency wave drift force are proportional
to the square of the incident wave amplitude, and the proportional relationship is defined
as the second-order wave force quadratic transfer function (QTF).

Fi
drift(t) =

n
Σ

j=1

n
Σ

k=1
Re
{

Qi
d
(
ωj, ωk

)
ajak exp

[
i
(
ωj −ωk

)
t−
(
φj − φk

)]}
(13)

where, when i = 1, . . . , 3, Fi
dri f t (t) is, respectively, the wave drift force in the x, y, and z

directions in the local coordinate system of the platform, when i = 4, . . . , 6, Fi
dri f t (t) is

respectively the wave drift moment of x, y, and z axes in the local coordinate system of the
platform; n is the number of waves that are divided into irregular waves; Qi

d represents the
n-order low-frequency QTF matrix in the direction of i degrees of freedom; Qi

d
(
ωj, ωk

)
is

the low-frequency wave force transfer function value of two regular waves with frequencies
ωj and ωk in the QTF matrix; aj and ak are the amplitudes of the jth and kth regular waves,
respectively; φj and φk are the phases of the jth and kth regular waves, respectively. In
the above formula, when j = k, a term that has nothing to do with time appears, which
represents the average wave drift force; when j 6= k, it represents the low-frequency wave
drift force.

By summing the Equations (8) and (13), the wave force on the floating structure could
be obtained as Fi

wave(t) = F + Fi
drift(t).

2.2.2. Wind Force Calculation

The wind force on the FPSO is obtained by the following:

Fi
wind(t) = CWi

>
UW(t)|UW(t)|i = 1, . . . , 6 (14)

where Fi
current(t) is the current force in the x, y, and z directions and the current torque

around the x, y, and z axes in the local coordinate system of the platform; CCi is the current
force/moment coefficient corresponding to the incident angle of the current load at time, t,
which is related to the platform type (refer to the API specification [34]);

>
UC(t) represents

the real-time relative velocity of the current and the platform along the direction of current
propagation.

2.2.3. Current Force Calculation

Moreover, ignoring the interaction effects between waves and currents, the current
force on the FPSO is obtained by the following:

Fi
current(t) = CCi

>
UC(t)|UC(t)|i = 1, . . . , 6 (15)

where Fi
current(t) is the current force in the x, y, and z directions and the current torque

around the x, y, and z axes in the local coordinate system of the platform; CCi is the current
force/moment coefficient corresponding to the incident angle of the current load at time, t,
which is related to the platform type (refer to the API specification [34]);

>
UC(t) represents

the real-time relative velocity of the current and the platform along the direction of current
propagation.

2.2.4. Coupled Analysis of FPSO and Mooring Lines

Considering the wind, wave, and current load on the platform and the interaction
with the mooring system, the governing equation of the platform’s motion responses, xj(t),
in the time domain can be expressed as follows:

6
Σ

j=1
[(Mij + mij)xj(t) +

∫ t
0 Rij(t− τ)

.
xj(τ)dτ + Cij

.
xj(t) + Kijxj(t)]

= Fi
wave(t) + Fi

wind(t) + Fi
current(t) + Fi

moor(t)(t = 1, . . . , 6)
(16)
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where Mij is the mass matrix of floating structure; mij is the added mass matrix; Rij is
the hysteresis function matrix; Cij is the viscous damping matrix; Kij is the static recovery
stiffness matrix of the platform; Fi

wave (t) is the wave force vector; Fi
wind (t) is the wind force

vector; Fi
current (t) is the current force vector; Fi

moor (t) is the force vector of the instantaneous
mooring system.

According to the convolution method, the additional mass matrix, mij, and the delay
function matrix, Rij, can be obtained by the additional mass coefficient, Aij, and the
radiation damping coefficient, Bij, obtained by hydrodynamics in the frequency domain:

mij = Aij(∞) (17)

Bij(t) =
2
π

∫ ∞
0 Bij(ω) cos(ωt)dω (18)

2.2.5. Simulation of Mooring Line Breakage at a Certain Time

The simulation of mooring line breakage at a certain time is divided into the following
steps: (1) Conduct the coupled dynamic responses analysis of FPSO and intact mooring
lines in the time domain; (2) choose the certain time of mooring line breakage as the
maximum tension occurrence of the most loaded mooring line; (3) set the breakage number
and occurrence time of mooring lines, while keeping other conditions unchanged; (4)
re-conduct the coupled dynamic responses analysis of FPSO and damaged mooring lines
in the time domain.

3. FPSO and Mooring System Arrangement
3.1. Description of FPSO and Mooring System

In this study, a typical DEEPSTAR internal turret FPSO and its mooring system with
an operating water depth of 914 m were selected as the research objective. The coordinate
origin was set as the gravity center of FPSO. The mooring system consists of 4 × 3 groups,
as shown in Figure 1. Each group in the mooring system is positioned at 90◦ apart, and
the mooring lines in each group are positioned at 5◦ apart. The top of each mooring line is
connected to the turret, and the bottom is anchored to the seabed. The pretension of each
mooring line is 1200 KN. The specific parameters of the FPSO and mooring system are
shown in Tables 1 and 2, respectively.
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J. Mar. Sci. Eng. 2021, 9, 103 7 of 34

Table 1. Particulars of FPSO.

Designation Symbol Unit Value

Length Lpp m 310
Breadth B m 47.17
Depth H m 28.04
Draft T m 18.90

Displacement D kg 2.40 × 108

Center of gravity above baseline KG m 13.32
Distance between turret and bow - m 63.55

Transverse radius of gyration KXX m 14.77
Longitudinal radius of gyration KYY m 77.47

Yaw radius of gyration KZZ m 79.30

Table 2. Particulars of mooring system.

Designation Unit Value

Upper/Bottom Chain

Length (L1/L3) m 45.7/914.4
Diameter mm 88.90

Dry weight N/m 1617.10
Wet weight N/m 1406.90

Stiffness KN 794,484
Minimum breaking load KN 6512

Normal/tangential drag coefficient - 2.00/0.65
Normal/tangential inertia coefficient - 1.00/0.50

Middle Wire

Length (L2) m 1127.80
Diameter mm 88.90

Dry weight N/m 412.23
Wet weight N/m 349.75

Stiffness KN 689,858
Minimum breaking load KN 6418

Normal/tangential drag coefficient - 1.00/0.30
Normal/tangential inertia coefficient - 0.50/0.25

3.2. Motion Responses Calculation Model Verification

In order to verify the established numerical model of calculating the motion responses
of FPSO and its mooring system shown in Section 2 above, the numerical simulation results
are compared with the model tests results from MARIN [36].

Firstly, the comparison of the static characteristics of the FPSO mooring system is
shown in Figure 2. According to the static load–displacement curve, the results shown in
the numerical simulation and model tests are in good agreement, which indicates that the
initial layout and design of the entire FPSO and its mooring system in the numerical and
experimental model are well mutually verified.

Secondly, the motion responses of FPSO and the mooring line tensions under the
100-year hurricane environment in the Gulf of Mexico were compared, as shown in Table 3.
It can be seen that the numerical simulation results of the responses of FPSO and mooring
line tensions are both in good agreement with the results of the MARIN model tests; the
maximum error is within a reasonable range, which indicates that the established numerical
simulation model could be used directly in the following study.
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Numerical analysis −34.12 26.49 4.23 15.23 3.13 1.60

MARIN tests −34.60 28.59 4.54 16.68 2.97 1.55

Min
Numerical analysis −84.84 5.79 −3.87 1.75 0.67 0.32

MARIN tests −85.10 5.27 −4.24 1.94 0.61 0.30

Mean
Numerical analysis −54.11 16.43 0.34 7.53 2.01 0.77

MARIN tests −52.50 16.60 0.37 8.12 1.82 0.75

SD
Numerical analysis 7.53 4.15 0.99 2.92 0.26 0.13

MARIN tests 6.90 4.50 1.10 2.70 0.24 0.12

4. Environmental Condition and Mooring Line Broken Cases

Due to the weathervane effect on the single point mooring system of FPSO and
the symmetry arrangement of the mooring system, as shown in Figure 1, the steady-
state motion responses of FPSO are the same when the environmental load direction is
0◦/90◦/180◦/270◦ or 45◦/135◦/225◦/315◦. Therefore, the collinear and non-collinear
environmental load directions of 100-year hurricane and operation sea states in the Gulf of
Mexico were chosen as the representative environmental conditions, as shown in Table 4.

Table 4. Parameters of environment conditions.

Description Unit Environment A Environment B Environment C Environment D

Wave

Hs m 12.19 12.19 12.19 3.96
Tp s 14 14 14 9.0

Wave spectrum - JONSWAP JONSWAP JONSWAP JONSWAP
Wave direction deg 180 180 135 180

Wind
1 h mean speed m/s 41.12 41.12 41.12 21.61
Wind spectrum - API API API API

Direction deg 180 210 135 180

Current
Speed m/s 1.07 1.07 1.07 0.9

Direction deg 180 150 135 180

The bold here to emphasize the different load angles.
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In order to analyze the mooring line broken cases as comprehensively as possible,
the single and two mooring line failures are chosen under each environmental condition.
Considering the symmetry of the mooring system arrangement and the environmental
incident directions, four representative mooring line broken conditions are chosen as the
case studies. The most loaded mooring line #2 in CaseA/D is set as the basic case of single
mooring line failure, and the ipsilateral, opposite, and adjacent sides of mooring line #2
are set as the cases of two mooring lines failure. All of the mooring lines failure cases are
listed in Table 5, and the 3 h numerical simulation of motion responses of FPSO and its
mooring system are conducted with the time step of 0.1 s. The mooring lines broken occur
at a certain time of 1600 s, which is the occurrence time of maximum tension of mooring
line #2 in the intact condition.

Table 5. Mooring line failure conditions.

Cases Mooring Line Failure Modes

CaseA

CaseA-1
(single)

CaseA-2
(ipsilateral)

CaseA-3
(opposite)

CaseA-4
(adjacent)

Mooring line
#2 broken

Mooring line
#2 and #1 broken

Mooring line
#2 and #8 broken

Mooring line
#2 and #11 broken

CaseB
CaseB-1 CaseB-2 CaseB-3 CaseB-4

Mooring line
#2 broken

Mooring line
#2 and #1 broken

Mooring line
#2 and #8 broken

Mooring line
#2 and #11 broken

CaseC
CaseC-1 CaseC-2 CaseC-3 CaseC-4

Mooring line
#2 broken

Mooring line
#2 and #1 broken

Mooring line
#2 and #8 broken

Mooring line
#2 and #11 broken

CaseD
CaseD-1 CaseD-2 CaseD-3 CaseD-4

Mooring line
#2 broken

Mooring line
#2 and #1 broken

Mooring line
#2 and #8 broken

Mooring line
#2 and #11 broken

5. Analysis of FPSO System with Broken Mooring Lines
5.1. Static Analysis

The mooring lines failure will certainly lead to the changes of mooring system stiffness
and the static equilibrium position of FPSO. The restoring force curves of different mooring
systems in the surge and sway direction, including the intact and broken conditions, are
shown in Figure 3.
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According to Figure 1, the mooring system is symmetrical about the x-axis and y-axis,
and the layout is the same. Therefore, the intact mooring system has the same stiffness
in the surge and sway directions. As shown in Figure 3a, the stiffness of the mooring
system in the surge direction is Kintact > K1 = K4 > K3 > K2, in which the Kintact, K1,
K2, K3, and K4 represent the stiffness of intact mooring system, mooring line broken
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CaseA/B/C/D-1, CaseA/B/C/D-2, CaseA/B/C/D-3, and CaseA/B/C/D-4, as shown in
Table 5. In CaseA/B/C/D-1 and CaseA/B/C/D-4, the restoring force is mainly provided
by the remaining mooring lines #1, #3, #7, #8, and #9, so the mooring stiffness in the
surge direction of these two conditions is the same, which is reduced by 6%, compared
with the intact condition. In CaseA/B/C/D-2, the number of broken mooring lines in
the surge direction is the largest, so the mooring stiffness provided by the remaining
lines is the smallest, which is reduced by 40.4%, compared with the intact condition. In
CaseA/B/C/D-3, the mooring lines broken location are on the opposite side, and the
surge stiffness are reduced by 31.8% at these conditions. It can be seen that the stiffness
of the mooring system under a certain direction is determined by the number of broken
lines in that direction and the failure location. The greater the number of mooring lines
failures, the smaller the stiffness, and the failure on the same side has a smaller stiffness
than the failure on the opposite side. As shown in Figure 3b, the stiffness of the mooring
system in the sway direction is Kintact = K1 = K3 > K2 > K4. Because the mooring lines
#2 and #8 only provide restoring force in the surge direction, the stiffness in the sway
direction in CaseA/B/C/D-1 and CaseA/B/C/D-3 remains unchanged. There is a small
5◦ apart between the mooring line #1 and the x-axis; it still provides a little restoring force
contribution in the sway direction. Therefore, in CaseA/B/C/D-2, the stiffness is reduced
by 1.8%, compared with the intact condition. In CaseA/B/C/D-4, because the failure of
mooring line #11 has a large contribution, the stiffness in the sway direction is reduced by
18.36%. The summaries of stiffness reduction under different mooring failure conditions
are listed in Table 6.

Table 6. Stiffness of different mooring line failure conditions.

Intact CaseA/B/C/D-1 CaseA/B/C/D-2 CaseA/B/C/D-3 CaseA/B/C/D-4

Surge direction (kN/m) 54.59 45 32.55 37.23 44.57
Reduction (%) / 17.57 40.37 31.80 18.36

Sway direction (kN/m) 54.59 54.17 53.60 54.09 44.57
Reduction (%) / 0.77 1.80 0.92 18.36

When the mooring lines are broken, the FPSO will be re-moved to the new equilibrium
position under the action of the remaining mooring lines, which is considered to be the
initial position in the following dynamic analysis of FPSO motion responses and mooring
lines tensions. The static equilibrium positions are shown in Table 7. It can be seen that
there is almost no change of the static equilibrium position when the opposite side of
mooring lines #2 and #8 are broken (CaseA/B/C/D-3), which is basically the same as the
intact condition. The yaw responses occur when the ipsilateral mooring line #2 and #1
are broken (CaseA/B/C/D-2), which means the bow of FPSO will turn to the new static
equilibrium position. The significant sway responses occur when the ipsilateral mooring
line #2 and #11 are broken (CaseA/B/C/D-4), which means that the FPSO will laterally
move to the new static equilibrium position.

Table 7. Static equilibrium position of FPSO under different mooring line failure conditions.

Intact CaseA/B/C/D-1 CaseA/B/C/D-2 CaseA/B/C/D-3 CaseA/B/C/D-4

Surge (m) 0 −16.99 −44.94 0 −17.19
Sway (m) 0 0 2.01 0 17.18
Heave (m) 0 0 0.01 0.01 0.01
Roll (deg) 0 0 0 0 0
Pitch (deg) 0 0 0 0 0
Yaw (deg) 0 0 0.34 0 0
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The failure of mooring lines will lead to change in the stiffness of mooring system and
the motion responses of FPSO; thus, the tensions of the remaining mooring lines will also
be affected. The requirements of the minimum safety factor of mooring line tension under
different states are listed in Table 8 [34], which could be considered as the safety evaluation
criteria in the following analysis.

Table 8. Requirements of the minimum safety factor of mooring line tension.

Analysis Method Limitation of Maximum Mooring Line Tension
(Percentage of Minimum Breaking Load) Safety Factor

Intact Quasi-static 50 2.0
Intact Dynamic 60 1.67

Mooring lines broken Quasi-static 70 1.43
Mooring lines broken Dynamic 80 1.25

This bold is intended to emphasize the criteria for judging whether a mooring line is safe or not as follows.

5.2. Results of CaseA

In this section, the motion responses of FPSO and the mooring line tensions are
analyzed where the collinear environmental load directions of the 100-year hurricane in
the Gulf of Mexico are considered. The directions of the wave, wind, and current are all
along 180◦ in CaseA.

5.2.1. Motion Responses of FPSO

The traces of FPSO are shown in Figure 4, the time series of FPSO motions are shown
in Figure 5, and the comparisons of FPSO motions statistics are shown in Figure 6.

Based on the simulation results of the surge motions of FPSO, the average surge
motions are −83.52 and −81.87 m in CaseA-1 and CaseA-4, and they increase by 39.36%
and 36.61%, respectively, compared with the intact condition. The values of the surge
motions are almost the same, as the stiffness of the mooring system is the same in these
two conditions. The average surge motion is −116.18 m in CaseA-2, and it increases by
93.87%, compared with the intact condition, due to the smallest stiffness of the mooring
system in this condition. Although the stiffness of the mooring system is Kintact > K1 =
K4 > K3 > K2 in the surge direction, the average surge motion in CaseA-3 is −79.42 m,
and it only increases by 32.52%, compared with the intact condition, which is smaller than
CaseA-1 and CaseA-4. The reason is that the mooring line break occurs on the opposite
side, along the surge direction, and a new asymmetry about the y-axis is formed in the
mooring system. The static equilibrium position of FPSO after the mooring lines’ failure
in CaseA-3 is the same as the intact condition, while the static equilibrium positions of
FPSO in CaseA-1 and CaseA-4 both move along the negative direction of the x-axis. The
maximum, minimum, and standard deviation have similar change laws with the average
surge motion. In general, the mooring lines’ failure will lead to the changes of static
equilibrium position and stiffness of the mooring system, which together determine the
motion responses of FPSO under a certain environmental load condition. Under the same
static equilibrium position, the greater the stiffness, the smaller the FPSO motion responses.
With the same stiffness, the smaller the static equilibrium position changes, the smaller the
FPSO motion responses.
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Based on the results of the sway motions of FPSO, a significant increase of sway
motion occurs in CaseA-2 and CaseA-4, and the simulation results show almost no impact
in CaseA-1 and CaseA-3. Due to the largest reduction of stiffness of the mooring system in
CaseA-4, the average sway motion response reaches 16.38 m, which may also introduce a
significant increase in the mooring line tension.

Based on the results of the heave motions of FPSO, there are no significant change
when the mooring lines failure occur. The reason is that the stiffness of the mooring system
mainly influences the motion responses of FPSO in the horizontal plane, including the
surge, sway, and yaw. The motion responses of FPSO in the vertical plane, including the
heave, roll, and pitch, are mainly determined by the stiffness of the waterline. Therefore,
the mooring lines failure has very limited influence on the heave motion responses of FPSO.
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Based on the results of the roll motions of FPSO, there is little increase in CaseA-2 and
CaseA-4, while the results show almost no impact in CaseA-1 and CaseA-3. The reason is
that the mooring lines’ failure in CaseA-2 and CaseA-4 causes the asymmetric stiffness of
the mooring system, and the extent of asymmetry on the roll direction is larger in CaseA-4.

Based on the results of the pitch motions of FPSO, there are also no significant change
when the mooring lines’ failure occurs, with the similar reason of heave motion.

Based on the results of the yaw motions of FPSO, there is also some increase in
CaseA-2 and CaseA-4, with the reason of asymmetric stiffness of mooring system, and the
simulation results show almost no impact in CaseA-1 and CaseA-3.

5.2.2. Mooring Line Tension

Considering the environmental load direction and the mooring lines layout, the
mooring lines #1, #3, #5, and #12 were chosen as the representative mooring lines in
CaseA. The time series of mooring line tensions under the intact and mooring lines’ failure
conditions are shown in Figure 7, the comparisons of mooring line tensions statistics are
shown in Figure 8, and the safety factor of mooring lines in CaseA are shown in Figure 9.
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Based on the results of the tensions of mooring line #1, the average tensions in CaseA-1
and CaseA-4 are similar, which increases by 23.7% compared with the intact condition.
The reason is that the surge motions in these two cases are similar. In CaseA-3, the surge
motion is a little smaller than CaseA-1 and CaseA-4, so the tension is also slightly smaller,
which increases by 19%, as compared with the intact condition.

When the mooring lines #1 and #2 fail together, only the mooring line #3 remains
in the head wave direction, and the surge motion of FPSO is the largest. As a result, the
tension of mooring line #3 increases to 7.574 MN within 160 s, which is 2.12 times the
maximum tension and 3.62 times the average tension compared with the intact condition.
The instantaneous tension of mooring line #3 will exceed the minimum breaking load, and
the safety factor cannot meet the specification requirements.

In CaseA-1 and CaseA-3, the sway motion of FPSO is the same compared with the
intact condition, and a significant increase occurs in CaseA-2 and CaseA-4. As a result, the
tension of mooring line #5 decreases by 1% and 9.3%, respectively, in these two cases, while
the tension of mooring line #12 increases by 9.67% and 15.2%, compared with the intact
condition.

In summary, when a certain mooring line failure occurs, the stiffness of the mooring
system changes, and the FPSO will re-move to the new equilibrium position under the
effect of the remaining mooring lines. The increase in the FPSO motion responses will lead
to the corresponding increase in the mooring line tension, and the change of mooring line
tension is therefore closely related to the FPSO motion responses.

5.3. Results of CaseB

In this section, the motion responses of FPSO and the mooring line tensions are
analyzed where the non-collinear environmental load directions of the 100-year hurricane
in the Gulf of Mexico are considered. The direction of the wave is 180◦, the direction of the
wind is 210◦, and the direction of current is 150◦ in CaseB.

5.3.1. Motion Responses of FPSO

The traces of FPSO are shown in Figure 10, the time series of FPSO motions are shown
in Figure 11, and the comparisons of FPSO motions statistics are shown in Figure 12.
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Based on the results of the surge motions of FPSO, the smallest surge motion still
occurs in CaseB-3, and the average surge motion is −74.993 m, increased by 33.19%,
compared with the intact condition. Meanwhile, it is 5.57% smaller than that in case
A-3, when the wind, wave, and current are collinear. The surge motions are −79.98 and
−78.56 m in CaseB-1 and CaseB-4, which still increase similarly by 15.25% and 14.82%,
compared with the intact condition, and decrease by 4.14% and 4.04%, compared with
the collinear environmental condition in CaseA. The largest surge motion still occurs in
CaseB-2, and the average surge motion is −14.69 m; it increases by 103.7%, compared with
the intact condition; and it decreases by 1.28%, compared with the collinear environmental
condition in CaseA. Comparing the results of CaseB and CaseA, it can be seen that the
motion responses of FPSO are similar when the dominated wave loads are the same. When
the wind, wave, and current directions are collinear, the motion responses under the
same broken cases are about 3.8% larger than that under the condition of non-collinear
environmental load directions with 30◦ between the wind, wave, and current.

Based on the results of the sway motions of FPSO, similar to CaseA, there is also
an increase in sway motion in CaseB-2 and CaseB-4, but the increasing level is weaker
compared with CaseA, because of the additional contribution from wind load along the
negative sway direction. The largest sway motion also occurs in CaseB-4, with the same
reason of the largest stiffness reduction of the mooring system. However, there are minor
decreases of 11.76% and 20.74% in sway motion, as compared with the intact condition in
CaseB-1 and CaseB-3, respectively. The reason is that the wind load is along the negative
sway direction, while the current load is along the positive sway direction, and the wind
load is larger than the current load; thus, the combination of wind and current load causes
the decrease in sway motion when the stiffness of mooring system in the positive sway
direction decreases slightly in CaseB-1 and CaseB-3.
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Based on the results of the heave and pitch motions of FPSO, there are also no signifi-
cant change when the mooring lines failure occur, with a similar reason in CaseA.

Based on the results of the roll motions of FPSO, similar to CaseA, there are also slight
increases in CaseB-2 and CaseB-4, and the increasing level is weaker when compared with
CaseA, because of the additional combination contribution of wind and current load. The
results also show almost no impact on CaseA-1 and CaseA-3, similar to CaseA.

Based on the results of the yaw motions of FPSO, similar to CaseA, there are also
slight increases in CaseB-4, and the increasing level is also weaker when compared with
CaseA. The reason is that the additional combination contribution of wind and current
load restrain the effects of asymmetric stiffness of mooring system. As a result, there is
almost no increase of yaw motion in CaseB-2, which is different from CaseA-2.

5.3.2. Mooring Line Tension

Similar to CaseA, the time series of tensions of representative mooring lines #1, #3,
#5, and #12 under the intact and mooring lines’ failure conditions are shown in Figure 13;
the comparisons of mooring line tensions statistics are shown in Figure 14; and the safety
factor of mooring lines in CaseB are shown in Figure 15.
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The maximum tension still occurs when only mooring line #3 remains in the head
waves in CaseB-2. The maximum tension of mooring line #3 increases to 8.31 MN within
160 s, which is 2.6 times, compared with the intact condition. The increasing range is
significant when compared with CaseA, and the reason is that the increased sway motion
further increases the mooring line tension. The instantaneous tension of mooring line #3
will also exceed the minimum breaking load, and the safety factor also cannot meet the
specification requirements. In general, when one or two mooring lines failure occur, the
remaining mooring lines on the same side will bear the whole environmental load, and
this will cause an instantaneous increase in the remaining mooring line tension, which is
the most dangerous condition for the mooring system and FPSO.

The mooring line tension of #1 in CaseA and CaseB remains unchanged, except that
the maximum tension in CaseB-4 is slightly larger than that in CaseA-4 when the mooring
lines #2 and #11 are broken together. The reason is that the increased sway motion in
CaseB-4 causes additional mooring line tension than that of CaseA-4.

The mooring line tension of #5 in CaseB is smaller than that in CaseA, while the
mooring line tension of #12 in CaseB is larger than that in CaseA. The reason is that the
increased sway motion in CaseB causes the counterbalanced mooring line tension for the
unloaded mooring line #5 and causes the additional mooring line tension for the unloaded
mooring line #12.

In general, when the non-collinear environmental load directions are considered,
the wave load is also dominant, and the wind load is larger than the current load. The
wind load has a contribution to the negative sway direction, while the current load has
a contribution to the positive direction of sway direction. Under the combination of non-
collinear wave, wind, and current load, the motion responses of FPSO and corresponding
mooring line tensions are changed, as compared with the collinear environmental load
condition.

5.4. Results of CaseC

In this section, the motion responses of FPSO and the mooring line tensions are
analyzed where the other collinear environmental load directions of the 100-year hurricane
in the Gulf of Mexico are considered. The directions of the wave, wind, and current are all
135◦ in CaseC.

5.4.1. Motion Responses of FPSO

The traces of FPSO are shown in Figure 16, the time series of FPSO motions are shown
in Figure 17, and the comparisons of FPSO motions statistics are shown in Figure 18.
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Comparing the surge motions responses of CaseC and CaseA, it can be seen that the
manner of change in surge motions responses of FPSO is very similar. The smallest surge
motion still occurs in caseC-3, and the increasing level is weaker compared with CaseA-3
due to the force in the surge motion decomposed from the total environmental load. The
surge motions in CaseC-1 and CaseC-4 are still similar compared with the intact condition.
The largest surge motion still occurs in CaseB-2, and the maximum surge motion is −79.26
m, increased by 3.4 times when compared with the intact condition.

Comparing the sway motions responses of CaseC and CaseA, it can be seen that the
manner of change in sway motions responses of FPSO are also very similar. The increase in
sway motion occurs in CaseC-2 and CaseC-4, and the increasing level is weaker compared
with CaseA, for the same reason as the surge motion changes. However, there are minor
decreases of 1.23% and 2.29% in the sway motion, compared with the intact condition in
CaseC-1 and CaseC-3, respectively. The reason is that the tension of mooring line #1 is
along the negative sway motion, while the tensions of mooring line #2 and #8 are both
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along the positive sway motion under the collinear environmental load direction of 135◦.
The tension contribution from the mooring line along the positive sway motion decreases
when the mooring line #2 fails in CaseC-1 and mooring lines #2 and #8 both fail in CaseC-3.

Similar to CaseA, there is also no significant change in heave and pitch motions of
FPSO when the mooring lines failure occurs.

The roll motions of FPSO in CaseC are significantly larger than those in CaseA, and
the reason is that the environmental load decomposition is much larger in CaseC. Due to
the symmetric failure of mooring lines #2 and #11 in CaseC-4, the roll motions are almost
the same as the intact condition. The failure of mooring line #2 in CaseC-1 induces further
asymmetry than the failure of mooring lines #2 and #8 in CaseC-3; thus, the roll motions in
CaseC-1 are slightly larger than that in CaseC-3.

Based on the results of the yaw motions of FPSO, similar to the roll motions, the yaw
motions are mainly determined by the symmetry reduction of mooring lines failure.

5.4.2. Mooring Line Tension

Similar to CaseA and CaseB, the time series of tensions in representative mooring
lines #1, #3, #5, and #12 under the intact and mooring lines’ failure conditions are shown in
Figure 19; the comparisons of mooring line tensions statistics are shown in Figure 20; and
the safety factor of mooring lines in CaseC are shown in Figure 21.
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Similar to CaseA, the maximum tension still occurs when only mooring line #3 remains
in CaseC-2. The maximum tension of mooring line #3 increases to 5.49 MN within 160 s,
which is 1.84 times of that under the intact condition. The increasing level is weaker than
that in CaseA-2 and CaseB-2, and the reason is that the surge motions’ responses are smaller
in CaseC-2.

The manners of change are almost the same in CaseC and CaseA, except that the
tension of mooring line #1 in CaseC is smaller than that in CaseA. The reason is that the
surge motion in CaseC is smaller, as shown in Section 5.4.1.

The tension of mooring line #5 in CaseC is also smaller than that in CaseA, and the
reason is that the environmental load in CaseC is decomposed from that in CaseA and the
increased positive sway motion decreases the tension of mooring line #5.

The tension of mooring line #12 in CaseC is larger than that in CaseA, and the reason
is that the increased positive sway motion increases the tension of mooring line #12.

In summary, when the collinear environmental load directions change from 180◦

to 135◦, the decreased positive surge motion and the increased positive sway motion
collectively influence the changes of mooring line tensions.

5.5. Comparison of Different Sea States

In this section, the motion responses of FPSO and the mooring line tensions are
analyzed where the collinear environmental load directions of operation sea state in the
Gulf of Mexico are considered. The directions of the wave, wind, and current are all 180◦

in CaseD.

5.5.1. Motion Responses of FPSO

The traces of FPSO are shown in Figure 22, the time series of FPSO motions are shown
in Figure 23, and the comparisons of FPSO motions statistics is shown in Figure 24.

Comparing the motion results of CaseA, we see that all values of the surge, sway,
heave, roll, and pitch are much smaller in CaseD, with the reason that the environmental
loads of operation condition are smaller than that of 100-year hurricane condition. Mean-
while, compared with the intact condition, the increase rate considering the mooring lines
failure in CaseD is much larger than that of CaseA. Besides this, the yaw motion in CaseD-4
is slightly larger than that in CaseA-4. When the mooring lines #2 and #11 are broken
in CaseA/D-4, the asymmetry of the mooring system will cause the yaw motion, and
the change in yaw motion is determined by the environmental loads and stiffness of the
mooring system. Compared with CaseA-4, the decrease rate of stiffness is larger than that
of the environmental loads in CaseD-4.
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Figure 23. Time series of FPSO motions in CaseD: (a) surge, (b) sway, (c) heave, (d) roll, (e) pitch, and (f) yaw.
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5.5.2. Mooring Line Tension

The time series of mooring line tensions under the intact and mooring lines failure
conditions are shown in Figure 25, the comparisons of mooring line tensions statistics are
shown in Figure 26, and the safety factor of mooring lines in CaseD are shown in Figure 27.
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Comparing the mooring line tension results of CaseA, similar to the manner of change
in the motion responses results, all of the values of mooring line tension are much smaller
in CaseD. Besides, the change of tension of mooring lines #5 and #12 in CaseD-4 is larger
than that in CaseA-4, with the reason of that the average sway motion is slightly smaller
and the stiffness is much smaller in CaseD-4.

5.6. Comparisons of Different Random Seeds of Wave

In this section, the influences of different random seeds on the mooring line tensions
are analyzed, and the collinear environmental load directions of the 100-year hurricane sea
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state in the Gulf of Mexico are considered, in which the directions of the wave, wind, and
current are all 180◦. Based on CaseA-1, four different random seeds of wave were selected
for calculation and analysis, and they generated different time histories of wave height.
The time series of mooring line tensions are shown in Figure 28, and the comparisons of
mooring line tensions statistics are shown in Figure 29.
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According to Figures 28 and 29, considering the randomness of irregular waves, the
four different random seeds of wave have minor effect on the mean mooring tension and
its standard deviation. As shown in Table 9, the randomness time histories of wave height
cause the peak tension of mooring line vary under the same wave period and wave height.
Using the results of Seed-1 as the reference, the peak mooring line tension has about 2–8%
variation, which indicates that the peak tension of mooring line should consider about
conservative 10% variable uncertainty if applying only one certain irregular wave condition
in the random sea state analysis.

Table 9. Peak tension of mooring line under different wave seeds.

Peak Tension (MN)

Seed-1 Seed-2 Seed-3 Seed-4

Mooring Line #1 4.29 4.123 4.212 4.12
Mooring Line #3 4.29 4.123 4.217 4.12
Mooring Line #5 2.496 2.729 2.674 2.394
Mooring Line #12 2.607 2.808 2.772 2.484

6. Conclusions

In this paper, the evaluation of the transient responses of a typical DEEPSTAR internal
turret FPSO with different failure scenarios of mooring lines was conducted. The coupled
numerical analyses were carried out to simulate the dynamic responses of vessel motion
and mooring line tension under the sudden mooring line breakage at a certain time in
which the coupled numerical simulation model was validated by the model tests. Four
representative mooring line broken conditions, including the single mooring line or two
mooring lines failure under ipsilateral, opposite, and adjacent sides, were considered as
the case studies. The main conclusions are as follows:

(1) The global assessment of motion responses of the floating platform and mooring line
tensions should consider the different numbers and locations of mooring line failure,
especially when the two ipsilateral mooring lines fail together, which may result in
the mooring line tensions cannot meet the recommended safety factor and indicate a
potential risk to the long-term reliability of the system. For instance, the results shown
in Figure 15b indicate that the safety factor of CaseB-2 drops below the recommended
factor of 1.25 for mooring line #3.

(2) The mooring lines failure mainly affect the motion responses of the FPSO in the
horizontal plane, and the yaw motion has the largest changes due to the loss of
symmetry of mooring tensions caused by failed lines. When a certain mooring line
failure occurs, the FPSO re-moves to a new equilibrium position under the effect of
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the remaining mooring lines, and then it reaches the steady motion responses under
the environmental loads.

(3) The transient responses evaluation of FPSO with different failure scenarios of mooring
lines should also consider the selection of design sea states. Under different sea
states, the manner changes in motion responses and mooring line tensions are also
different considering the same mooring line failure mode and environmental incident
directions.

(4) The average peak tension of the mooring line should consider about conservative
10% variable uncertainty if applying only one certain irregular wave condition in the
random sea state analysis, based on the simulation results in this paper.

In additional to the presented work in this paper, future efforts may involve studies
such as the interaction between wave and current loads, progressive rather than the two
mooring lines failure simultaneously, model tests methods, more sea states’ conditions,
various mooring line configurations and their sensitivity to line breakage, etc. Together
with the presented work, these studies would greatly help inform the industrial design,
as it is critical to have comprehensive evaluations of the global responses of the floating
platform due to mooring lines’ failure.
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