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Abstract: Significant wave height (SWH) prediction plays an important role in marine engineering
areas such as fishery, exploration, power generation, and ocean transportation. For long-term
forecasting of a specific location, classical numerical model wave height forecasting methods often
require detailed climatic data and incur considerable calculation costs, which are often impractical
in emergencies. In addition, how to capture and use the dynamic correlation between multiple
variables is also a major research challenge for multivariate SWH prediction. To explore a new
method for predicting SWH, this paper proposes a deep neural network model for multivariate time
series SWH prediction—namely, CLTS-Net. In this study, the sea surface wind and wave height
in the ERA5 dataset of the relevant points P1, P2, and P3 from 2011 to 2018 were used as input
information to train the model and evaluate the model’s SWH prediction performance. The results
show that the correlation coefficients (R) of CLTS-Net are 0.99 and 0.99, respectively, in the 24 h and
48 h SWH forecasts at point P1 along the coast. Compared with the current mainstream artificial
intelligence-based SWH solutions, it is much higher than ANN (0.79, 0.70), RNN (0.82, 0.83), LSTM
(0.93, 0.91), and Bi-LSTM (0.95, 0.94). Point P3 is located in the deep sea. In the 24 h and 48 h SWH
forecasts, the R of CLTS-Net is 0.97 and 0.98, respectively, which are much higher than ANN (0.71,
0.72), RNN (0.85, 0.78), LSTM (0.85, 0.78), and Bi-LSTM (0.93, 0.93). Especially in the 72 h SWH
forecast, when other methods have too large errors and have lost their practical application value,
the R of CLTS-Net at P1, P2, and P3 can still reach 0.81, 0.71, and 0.98. The results also show that
CLTS-Net can capture the short-term and long-term dependencies of data, so as to accurately predict
long-term SWH, and has wide applicability in different sea areas.

Keywords: CLTS-Net; significant wave height prediction; deep neural networks

1. Introduction

Wave disasters are the most common marine disasters in the world. Accurate SWH
prediction can effectively improve the safety of marine activities and the efficiency of marine
operations, reduce the occurrence of marine accidents, and is of great significance to na-
tional security and the development of the marine economy [1–5]. Therefore, the prediction
of SWH has always been a matter of special concern. Under normal circumstances, the pre-
diction can be completed by numerical models such as WAM [6–8], WAVEWATCH [9–11],
SWAN [12–14]. However, because the strong nonlinear physical process and mechanism of
ocean waves are still unclear, the numerical model is still unable to obtain high accuracy
to a large extent [15]. In addition, the numerical model also consumes a lot of computing
resources, needs to run for a long time, and is often impractical in emergency situations
such as floods or unforeseen storms that may require the transfer of personnel [16].

With the development of artificial intelligence technology, artificial neural network
(ANN) models are being applied to SWH prediction [17–19]. Deo et al. [20] proposed a feed-
forward network for real-time SWH prediction. Compared with traditional methods, this
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method shows the advantages of versatility, flexibility, and adaptability. London et al. [21]
used ANN based on existing wave datasets to predict the wave heights of six geographi-
cally separated buoy positions and found that this method has a better prediction effect in
the future short-term time range. Peres et al. [22] proposed and verified an SWH prediction
method based on artificial neural networks and reanalysis of wind data. This method has
computational advantages. It only uses an ordinary workstation for calculation, and the
calculation time is only a few hours. However, the above method can only be applied to
forecasts in a relatively short period of time under normal conditions, while the forecasts
under extreme conditions are not ideal. In addition, with the increase in the number of
inputs and the increase in complexity, the accuracy of the ANN may drop sharply because
the model cannot extract enough features [23].

Deep neural networks have received extensive attention in the marine field, and have
had an extraordinary impact on solving the SWH prediction problem. The recurrent neural
network (RNN) [24] model has become a more popular model in recent SWH forecasting
research. Mandal et al. [25] introduced an artificial neural network RNN with a rprop
update algorithm and applied it to SWH forecasting. Sadeghifar et al. [26] used RNN to
predict the correlation coefficients of SWH at 3 h, 6 h, 12 h, and 24 h to be 0.96, 0.90, 0.87, and
0.73, respectively. Miky et al. [27] integrated neural network-based nonlinear autoregressive
network and RNN network for SWH prediction. The experimental results show that the
use of RNN for SWH prediction has better results than previous ANN methods. However,
the optimization algorithm faces a significant problem during RNN training, that is, the
problem of long-term dependence—due to the deepening of the network structure, the
model loses the ability to learn previous information.

In response to the above problems, researchers designed a variant of RNN—namely,
long short-term memory (LSTM) [28]. Compared with RNN, it is designed as a ring
structure with two gated units. It can effectively solve the long-term dependence of
information and avoid the disappearance or explosion of gradients, thereby significantly
improving the accuracy of SWH prediction. Fan et al. [29] used the LSTM network to
predict 10 sites with different environmental conditions and had better results in the 12 h,
24 h, 48 h, and 72 h SWH prediction. The results show that LSTM has a strong long-term
predictive ability. Gao et al. [1] used LSTM neural network to establish a wave height
prediction model at three stations in the Bohai Sea. The model uses sea surface wind and
wave height as training samples to evaluate the forecasting performance of the model and
perform error analysis. It is found that for SWH in the range of 3 to 5 m, the prediction
accuracy of the LSTM model is significant. Zhang et al. [30] proposed the numerical
long short-term memory method. This method takes the measured wave height value
at the current moment and the combined wave height of the simulated nearshore wave
prediction value as input, and generates the corrected numerical prediction as output.
Experimental results show that this method effectively improves the SWH prediction
accuracy of the Bohai Sea and Wheat Island. Raj et al. [31] developed and applied a high-
precision bidirectional long-term and short-term memory (Bi-LSTM) algorithm to predict
SWH and conducted overall analysis and evaluation of wave characteristics at two coastal
locations in Queensland.

However, multivariate SWH forecasting still faces a major research challenge, that
is, how to capture and utilize the dynamic dependencies between multiple variables.
Specifically, SWH prediction models are usually a mixture of short-term and long-term
dependencies. A successful SWH prediction model should capture these two dependencies
to make accurate predictions. Long-term dependence considers the differences between
different seasons, and short-term dependence considers wave height fluctuations caused
by wind direction and wind changes in a short time. If these two dependencies are not
considered, accurate SWH prediction is impossible. Therefore, solving these limitations of
existing methods in SWH forecasting is the main focus of this work.

This paper proposes a deep learning model for multivariate time series SWH prediction—
namely, convolutional long term time series network (CLTS-Net). As shown in Figure 1,
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it uses convolutional layers to discover local dependency between multidimensional in-
put variables; uses LSTM layers to capture complex long-term dependencies; uses a skip
connection design to capture very long-term dependencies; finally, the traditional autore-
gressive linear model is combined with the nonlinear neural network part to make the
model more robust. To better demonstrate the advantages of this method in SWH predic-
tion, this work is compared with the currently popular ANN, RNN, LSTM, and Bi-LSTM
four SWH prediction methods. The prediction results of 24 h, 48 h, and 72 h show that
CLTS-Net is always better than other methods.
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The remainder of this paper is structured as follows: In Section 2, we describe our
proposed CLTS-Net. In Section 3, the experimental design details such as the experimental
dataset, metrics, and parameter settings are introduced. In Section 4, we discuss and
analyze the results of SWH prediction. Finally, in Section 5, we summarize our findings.

2. Proposed Method

In this section, we introduce the details of the various components of the proposed
CLTS-Net architecture. The overall framework of the model is shown in Figure 1.

2.1. Convolutional Neural Network Module

As shown in Figure 1b, the first module of CLTS-Net is composed of a convolutional
neural network (CNN) without a pooling layer. Its purpose is to extract short-term patterns
in the time dimension and local dependencies between variables. CNN has fewer learning
parameters than standard neural networks, which contributes to trainability; in addition,
CNN also shows excellent performance in successfully extracting local and translation
invariant features [32]. The convolutional layer consists of two filters with a depth d of 48
and a width w of 3 (the width setting is the same as the number of variables). The k-th filter
sweeps the input time series matrix X and produces the corresponding calculation results.
The calculation formula is as follows:

hk = RELU(Wk ∗ X + bk) (1)

where ∗ denotes the convolution operation, and the output hk would be a vector; the RELU
function is RELU (x) = max(0, x), W is the weight matrix, and bk is the bias.

2.2. Long Short-Term Memory Module

The output of the convolutional layer is simultaneously input to the LSTM module in
Figure 1c and the jump connection module in Figure 1d. As shown in Figure 2, LSTM uses
two gates to control the content of the cell state c: one is the forget gate, which determines
how much the cell state ct−1 from the previous moment is retained to the current moment
ct; the other is the input gate, which determines how much of the input xt of the network
at the current moment is saved in the unit state ct. The LSTM module uses an output
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gate to control how much of the unit state ct is input to the current output value ht of the
LSTM module.
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This module uses the tanh function as the activation function, and the information
state transfer formula of the unit at time t in LSTM is as follows:

ft = σ
(

w f [ht−1, xt]
)

(2)

it = σ(wi[ht−1, xt]) (3)

zt = tanh(wz[ht−1, xt]) (4)

ct = ftct−1 + it·zt (5)

ot = σ(wo[ht−1, xt]) (6)

ht = ot·tanh(ct) (7)

where ft represents the processing formula of the forget gate, it represents the processing
formula of the input gate, ot represents the processing formula of the output gate, w
represents the given weight coefficient, σ represents the sigmoid function, and · represents
the element-wise product.

2.3. Skip Connection Module

The meticulous design of the LSTM module is used to memorize historical information
so that the model can learn relatively long-term dependencies. However, due to the disap-
pearance of the gradient, LSTM often fails to capture very long-term correlations in practice.
Inspired by the Res-Net [33], we aimed to alleviate this problem by jumping connections.
As shown in Figure 1d, we used this design to extend the time span of the information flow,
thereby capturing the longer-term dependence of the data. In practical applications, we
can better improve the accuracy of the model by analyzing the characteristics of the dataset
and selecting an appropriate time span. We used a dense layer to combine the outputs of
the LSTM and skip connection module. The output formula of this module is as follows:

hD
t = WLhL

t +
m−1

∑
i=0

WS
i hS

t−i + bS (8)
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where hD
t is the prediction result of the neural network, hL

t is the output of the LSTM, m
is the number of hidden units skipped, bS is the bias, and hS

t−m+1, hS
t−m+2, . . . , hS

t means
jump m hidden states that have been passed.

2.4. Autoregressive Module

In the SWH dataset, the input data are constantly changing in a nonperiodic manner,
which greatly reduces the prediction accuracy of the neural network model. To solve this
defect, we decomposed the final prediction of CLTS-Net into a linear part that mainly
focuses on local-scale problems and a nonlinear part that contains repeated patterns. As
shown in Figure 1e, we used the classic autoregressive model as the linear module. We
denoted the forecasting result of the autoregressive model as hR

t ∈ R, and bar ∈ R, where
qar is the size of the input window over the input matrix. The autoregressive model is
formulated as follows:

hR
t,i =

qar−1

∑
j=0

War
j yt−j,i + bar (9)

Overall, the CLTS-Net model contains two parts—one is a nonlinear neural network
model part and a linear autoregressive part. The final result is the addition of the output of
these two parts,

F = hD
t + hR

t (10)

where F denotes the CLTS-Net’s final prediction at time t.

3. Evaluation

In this section, we first introduce the research area and the source of the dataset used in
this paper; then, we introduce other methods and metrics to be compared in the experiment;
finally, we describe the experimental environment.

3.1. Dataset

ERA5 is the fifth-generation ECMWF reanalysis for the global climate and weather
for the past four to seven decades. As shown in Figure 3, we selected (latitude 29◦~31◦ N,
120◦~130◦ E) as the study area. This area is dominated by wind and waves and is greatly
affected by the monsoon. The time resolution of the data is hours, and the spatial resolution
is 0.5◦ × 0.5◦. For more information, please refer to the website: https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 16
December 2021).
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To test the stability and reliability of the model, we selected three sites (P1, P2, P3)
with different water depths and different environmental conditions. For the prediction of
SWH, we used the data from 2011 to 2018 to generate the corresponding training set and
the last 720 h of data in 2020 as the test set. To ensure the relative independence of training
and test datasets, the test data were excluded from model training.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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3.2. Methods for Comparison

The methods in our comparative evaluation are as follows:
ANN: The network achieves the purpose of processing information by adjusting the

connections between a large number of internal nodes;
RNN: A neural network that is used to process sequence data, which has certain

advantages when learning the nonlinear characteristics of the sequence;
LSTM: This module can effectively solve the long-term dependence of information

and avoid the disappearance or explosion of the gradient;
Bi-LSTM: This method is a combination of forward LSTM and backward LSTM;
CLTS-Net: This is the method proposed in this paper, which combines the advan-

tages of the CNN, LSTM, and autoregressive models. It captures the short-term and
long-term dependencies in the data and combines linear and nonlinear models to make
robust predictions.

3.3. Metrics

To evaluate the performance of the model, we used the following four metrics—
namely, root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percent
error (MAPE), and correlation coefficient (R).

MAE =
1
n

n

∑
i=1
|ŷi − yi| (11)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (12)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (13)

R =
∑n

i=1
(
ŷi − ŷi

)
(yi − yi)√

∑n
i=1
(
ŷi − ŷi

)2
∑n

i=1(yi − yi)
2

(14)

In the formula, n is the total number of test samples, and yi and ŷi are the true and
predicted values, respectively. It is worth noting that the lower the RMSE, MAE, and MAPE
values, the better the consistency between the measurement and the prediction, but the
higher the R-value, the more accurate the prediction.

3.4. Experimental Details

Except for the input layer and output layer, we performed a dropout procedure after
each layer, and the rate was set to 0.2. The Adam algorithm was used to optimize the
model parameters.

We used a 2.60 GHz Intel Core i5-11400F processor, graphics card Nvidia GeForce
RTX 3060 computing platform for experiments. The methods mentioned in the experiment
were all implemented by Keras in the Python environment.

4. Results

We conducted multiple sets of experiments to verify the performance of each model to
predict SWH and analyzed the experimental results, the discussion of which is presented
in this section.

4.1. SWH Forecast Performance at P1

Table 1 list the experimental results of five algorithms at P1 after training, verification,
and testing. The best results are shown in bold. It is worth noting that the prediction results
of SWH short-term forecasts (1 h, 3 h, 6 h, and 12 h) based on deep learning methods
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have reached high accuracy and are not the focus of this work. This paper only focuses on
longer-term forecasts (24 h, 48 h, and 72 h).

Table 1. The prediction result of significant wave height at point P1.

Metrics Method 24 h 48 h 72 h

RMSE

ANN 0.2881 0.3520 0.4102

RNN 0.2750 0.2668 0.3199

LSTM 0.2182 0.2044 0.3124

Bi-LSTM 0.1102 0.1413 0.3076

CLTS-Net 0.0424 0.0465 0.2008

MAE

ANN 0.1864 0.2470 0.2837

RNN 0.1821 0.1796 0.1876

LSTM 0.1509 0.1309 0.1685

Bi-LSTM 0.0628 0.0817 0.1486

CLTS-Net 0.0270 0.0280 0.0706

MAPE

ANN 0.2505 0.3472 0.3773

RNN 0.2802 0.2750 0.2631

LSTM 0.2426 0.1924 0.2234

Bi-LSTM 0.0927 0.1159 0.1818

CLTS-Net 0.0469 0.0447 0.0764

R

ANN 0.7966 0.7010 0.2218

RNN 0.8274 0.8357 0.4559

LSTM 0.9385 0.9180 0.4772

Bi-LSTM 0.9593 0.9420 0.5017

CLTS-Net 0.9913 0.9911 0.8054

It can be seen from the results that the predictive index R of ANN in 24 h is maintained
at about 0.79. When it is greater than 48 h, the prediction error of ANN is too large to apply
and predict long-term SWH, while the prediction result of RNN is better than 24 h. The
prediction performance of LSTM and Bi-LSTM is better within 24 h. When it exceeds 48 h,
the prediction performance decreases significantly.

Overall, as the time span increases, the MAE, RMSE, and MAPE of each method show
an increasing trend, and their R gradually decreases. In particular, when the prediction time
increases by more than 24 h, the indicators of other algorithms are significantly reduced,
and CLTS-Net can maintain good prediction results at 24 h and 48 h. Even in the 72 h
forecast, R can still reach 0.80, which is still significantly better than other methods.

From the experimental results obtained in Table 1, it can be seen that when predicting
the 72 h SWH, only CLTS-Net can maintain better prediction performance. The perfor-
mance of the other methods is compared with the 24 h measurement index. There is a
considerable decline, and it loses the value of a practical application, therefore the meaning
of comparison. In order to facilitate a more intuitive display of the SWH prediction results,
Figures 4 and 5 show the 24 h and 48 h SWH prediction results, respectively. In general,
it can be seen that the performance of CLTS-Net is better than the other four methods. In
most periods, the prediction curve of each point is almost the same as the ERA5 data curve.
To better show the prediction effect of the method in this paper, we separately provide the
corresponding fitting curve diagram.
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Figures 4 and 5, respectively, show the comparison between the observed and pre-
dicted values of CLTS-Net’s continuous forecast every 24 h and 48 h at point P1. Since
point P1 is located in the offshore area, the wave height is relatively low throughout the
year, and the smaller the overall error is smaller. It shows that CLTS-Net is feasible to
predict the long-term SWH of the 48 h time span in the offshore area.

We focused on analyzing the errors of the 24 h and 48 h prediction results at various
points and troubleshooting the reasons, so that future optimization work can be better
carried out.

At point P1, the wave height range of ERA5 is between 0.2 m and 2 m. The scattering
point closer to the diagonal reflects the higher the accuracy of the model’s prediction. It
can be seen from Figures 6 and 7 that the prediction results of CLTS-Net are closer to the
diagonal, while the scattered points of other methods (ANN, RNN, LSTM) are concentrated
on the lower right of the diagonal, which means that the results tend to low.
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When the SWH is about 0.5 m, the prediction results of ANN, RNN, and LSTM are better.
When the SWH value becomes larger, the predicted value will have a larger deviation, which
may be because point P1 is located in the coastal area, and the training data lack a relatively
large SWH value. From the perspective of prediction results, the bidirectional LSTM structure
can indeed capture more feature information and dependencies, and the prediction effect is
better than LSTM, but as the SWH value increases, the predicted value will also appear low
problem. The advantage of CLTS-Net at point P1 is obvious, i.e., the error is concentrated in
the range of ±0.3 m, and the 24 h and 48 h correlation coefficients are as high as 99%.

4.2. SWH Forecast Performance at P2

Table 2 list the experimental results of five algorithms at P2 after training, verification,
and testing. The best results are shown in bold.

Table 2. The prediction result of significant wave height at point P2.

Metrics Method 24 h 48 h 72 h

RMSE

ANN 0.7611 1.0941 1.1397

RNN 0.6852 0.7564 1.1105

LSTM 0.5001 0.6299 1.0183

Bi-LSTM 0.4563 0.6117 0.9827

CLTS-Net 0.1314 0.1824 0.7740

MAE

ANN 0.4589 0.6798 0.7015

RNN 0.3162 0.3819 0.6290

LSTM 0.2673 0.2972 0.3790

Bi-LSTM 0.2045 0.3091 0.3801

CLTS-Net 0.0618 0.0868 0.2444

MAPE

ANN 0.2271 0.2879 0.3038

RNN 0.1252 0.1910 0.2564

LSTM 0.1372 0.1151 0.1233

Bi-LSTM 0.0823 0.1324 0.1310

CLTS-Net 0.0276 0.0389 0.0757

R

ANN 0.7616 0.6814 0.2157

RNN 0.8381 0.7214 0.4139

LSTM 0.9026 0.8886 0.3993

Bi-LSTM 0.9387 0.9215 0.4495

CLTS-Net 0.9921 0.9883 0.7107
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Compared with the model performance at point P1, the predictive indicators at point
P2 are generally lower. The possible reason is that the SWH at point P2 is relatively large
and changes relatively quickly.

Figures 8 and 9, respectively, show the comparison between the observed and pre-
dicted values of CLTS-Net’s continuous forecast every 24 h and 48 h at point P2. For point
P2, it is relatively far away from the land, and the wave heights are mostly 2–6 m, and there
are even more than 6 m in some periods. It can be seen from the curve that, except for the
method in this article, the other methods cannot accurately predict the sudden increase in
wave height, and the prediction result is always far smaller than the real value. However,
the method proposed in this paper fits better when the wave height is low and also has
a small error even when the wave height is greater than 6 m, indicating that CLTS-Net is
feasible for 48 h long-term SWH prediction.

1 
 

 
Figure 8. Continuous prediction at point P2 for 24 h prediction.
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At point P2, the wave height range of ERA5 is between 0.5 m and 6.5 m, with a
relatively large range of change and a sharper trend. Compared with points P1 and P3,
the overall error is larger. As shown in Figures 10 and 11, CLTS-Net has some prediction
results that are too large in the 24 h prediction, but the overall gap is not large, and the
error is mostly about ±0.5 m, which is within an acceptable range; the prediction result of
ANN is not ideal whether it is the prediction result of 24 h or 48 h; from RNN to LSTM
to Bi-LSTM, the error is gradually reduced, and the R-value of the prediction is gradually
improved, but compared with CLTS-Net, these three methods still have a large number
of points with large errors, and even some points deviate by more than 3 m, which is an
unacceptable prediction result.
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4.3. SWH Forecast Performance at P3

Table 3 list the experimental results of five algorithms at P3 after training, verification,
and testing. The best results are shown in bold.

It is worth noting that, compared with points P1 and P2, the 72 h prediction correlation
coefficient of point P3 can still reach 0.98. The reason may be while the model fully learns
the characteristics, the data changes at this stage are relatively regular, and the data
fluctuations are relatively stable. The conclusions in Tables 1–3 can illustrate that capturing
short-term and long-term dependencies helps predict long-term SWH and also illustrates
the wide applicability of CLTS-Net in different sea areas.

Figures 12 and 13 are the comparison of the observed and predicted values of CLTS-
Net’s continuous forecast every 24 h and 48 h at point P3, respectively. Point p3 is located
in the deep-sea area, and the wave height changes rapidly. Still the same problem, other
methods cannot accurately predict the sudden increase in wave height, and the prediction
result is always smaller than the actual value.
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Table 3. The prediction result of significant wave height at point P3.

Metrics Method 24 h 48 h 72 h

RMSE

ANN 0.6239 0.6415 0.7029

RNN 0.3792 0.5715 0.5917

LSTM 0.3009 0.3092 0.5161

Bi-LSTM 0.2868 0.2681 0.4990

CLTS-Net 0.1647 0.1271 0.1283

MAE

ANN 0.4676 0.5020 0.5319

RNN 0.3053 0.4470 0.4650

LSTM 0.2098 0.2049 0.4058

Bi-LSTM 0.1964 0.1772 0.3649

CLTS-Net 0.1275 0.0914 0.0900

MAPE

ANN 0.2341 0.2497 0.2745

RNN 0.1985 0.2418 0.2663

LSTM 0.1151 0.1082 0.2350

Bi-LSTM 0.0999 0.0889 0.1944

CLTS-Net 0.0760 0.0524 0.0553

R

ANN 0.7101 0.7234 0.3123

RNN 0.8552 0.7850 0.6260

LSTM 0.8950 0.9117 0.6649

Bi-LSTM 0.9377 0.9315 0.6971

CLTS-Net 0.9736 0.9850 0.9844

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

the 24 h prediction, but the overall gap is not large; the error distribution is about ±0.5 m, 
which is still within an acceptable range. Regardless of whether the prediction result of 
ANN is 24 h or 48 h, there are still large errors, indicating that the method of ANN is not 
suitable for long-term SWH prediction; in addition, regardless of whether RNN forecast 
is at 24 h or 48 h, there are many cases in which the forecast value is low, many data errors 
exceed 1 m, and the accuracy and reliability methods are poor; the accuracy of Bi-LSTM 
is slightly improved compared with LSTM, but there are also data with large errors, and 
the overall prediction value is low, which is not an effective SWH solution. 

 
Figure 12. Continuous prediction at point P3 for 24 h prediction. 

 
Figure 13. Continuous prediction at point P3 for 48 h prediction. 

 

 
Figure 14. Each column represents a scatter diagram (top) and error range diagram (bottom) of a method for continuous 
forecasting at point P3 for 24 h forecasts. From left to right, they are CLTS-Net, ANN, RNN, LSTM, and Bi- LSTM. 

Figure 12. Continuous prediction at point P3 for 24 h prediction.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

the 24 h prediction, but the overall gap is not large; the error distribution is about ±0.5 m, 
which is still within an acceptable range. Regardless of whether the prediction result of 
ANN is 24 h or 48 h, there are still large errors, indicating that the method of ANN is not 
suitable for long-term SWH prediction; in addition, regardless of whether RNN forecast 
is at 24 h or 48 h, there are many cases in which the forecast value is low, many data errors 
exceed 1 m, and the accuracy and reliability methods are poor; the accuracy of Bi-LSTM 
is slightly improved compared with LSTM, but there are also data with large errors, and 
the overall prediction value is low, which is not an effective SWH solution. 

 
Figure 12. Continuous prediction at point P3 for 24 h prediction. 

 
Figure 13. Continuous prediction at point P3 for 48 h prediction. 

 

 
Figure 14. Each column represents a scatter diagram (top) and error range diagram (bottom) of a method for continuous 
forecasting at point P3 for 24 h forecasts. From left to right, they are CLTS-Net, ANN, RNN, LSTM, and Bi- LSTM. 

Figure 13. Continuous prediction at point P3 for 48 h prediction.



J. Mar. Sci. Eng. 2021, 9, 1464 13 of 15

At point P3, the wave height range of ERA5 is between 0.5 m and 4.5 m, which is
smaller than the wave height change range of point P2, but the changing trend is more
intense. As shown in Figures 14 and 15, CLTS-Net has some small prediction results in
the 24 h prediction, but the overall gap is not large; the error distribution is about ±0.5 m,
which is still within an acceptable range. Regardless of whether the prediction result of
ANN is 24 h or 48 h, there are still large errors, indicating that the method of ANN is not
suitable for long-term SWH prediction; in addition, regardless of whether RNN forecast is
at 24 h or 48 h, there are many cases in which the forecast value is low, many data errors
exceed 1 m, and the accuracy and reliability methods are poor; the accuracy of Bi-LSTM is
slightly improved compared with LSTM, but there are also data with large errors, and the
overall prediction value is low, which is not an effective SWH solution.
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Figure 15. Each column represents a scatter diagram (top) and error range diagram (bottom) of a method for continuous
forecasting at point P3 for 48 h forecasts. From left to right, they are CLTS-Net, ANN, RNN, LSTM, and Bi-LSTM.

5. Conclusions

This paper proposed a deep learning model for multivariate time series SWH predic-
tion. First, the method used convolutional layers to discover local dependency patterns
between multidimensional input variables and used LSTM layers to capture complex long-
term dependencies; then, jump connections were used designed to capture very long-term
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dependencies; finally, the traditional autoregressive linear model and the nonlinear neural
network part were paralleled to make the model more robust.

To compare the quality of the model, we used five algorithms to predict the SWH
of three different stations under different marine environmental conditions. We used the
complete data of these sites from 2011 to 2018 to train the model and used four indicators
to evaluate the accuracy and stability of the prediction results. The results show that the
CLTS-Net algorithm can obtain more accurate results in 24 h, 48 h, and 72 h predictions.

It can be seen that the SWH prediction technology based on CLTS-Net can make full
use of the important information of sea wind and significant wave height, establish a
prediction model, and realize business applications. This method opens up a new field for
ocean forecasting and has broad prospects for development and application. For future
research, there are several promising directions to extend this work. Due to the complexity
of the actual marine environment, it is quite a challenging task to extend the CLTS-Net
method to all sites based on a broader dataset. The number of input features directly
determines the prediction results. For this reason, more environmental factors, such as
wind speed, water depth, terrain, etc., need to be considered and added to the input of
CLTS-Net. This general deep learning model deserves more attention in future analysis. In
addition, the current work mainly considers single-point forecasts. In the future, it will be
considered to extend single-station forecasts to regional forecasts.
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