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Abstract: The collision avoidance system is one of the core systems of MASS (Maritime Autonomous
Surface Ships). The collision avoidance system was validated using scenario-based experiments.
However, the scenarios for the validation were designed based on COLREG (International Regu-
lations for Preventing Collisions at Sea) or are arbitrary. Therefore, the purpose of this study is to
identify and systematize objective navigation situation scenarios for the validation of autonomous
ship collision avoidance algorithms. A data-driven approach was applied to collect 12-month Au-
tomatic Identification System data in the west sea of Korea, to extract the ship’s trajectory, and to
hierarchically cluster the data according to navigation situations. Consequently, we obtained the
hierarchy of navigation situations and the frequency of each navigation situation for ships that sailed
the west coast of Korea during one year. The results are expected to be applied to develop a collision
avoidance test environment for MASS.

Keywords: navigation situation; human-operated ship; MASS; clustering; testbed scenario

1. Introduction

Ship collisions are frequent accidents that account for more than 50% of all maritime
accidents [1], causing large scale of casualties and property and environmental damage [2].
Collision accidents are a concern even in the development of MASS (Maritime Autonomous
Surface Ship) [3]. Therefore, the collision avoidance and path finding system of the MASS
is considered one of the core systems of MASS [4]. Numerous studies were conducted on
this collision avoidance system and path finding/control systems [5–7]. This system was
tested in navigation scenarios to validate safety integrity.

Perera et al. presented an experimental evaluation of autonomous ship collision avoid-
ance. The experiment was conducted with scaled model ships in a lake. Five COLREG-
based encounter situations were set up for the experimental evaluation of autonomous
navigation and collision avoidance [8].

Son et al. verified the collision avoidance performance of autonomous ships by
applying a COLREG-based scenario to performing a real-ship experiment. For the scenario,
three types of navigation situations (head-on, port-crossing, and starboard-crossing) were
applied to a 1:1 situation [9].

Shen et al. presented an autonomous vessel collision avoidance algorithm in restricted
water based on deep Q-learning. The scenario was designed based on the navigation
situation defined in COLREG by applying the head-on, crossing, and overtaking scenarios
in restricted and open areas [10].

Woo et al. proposed a collision avoidance algorithm for autonomous ships using deep
reinforcement learning and tested the algorithm’s performance by applying head-on and
overtaking scenarios in a simulation environment [11].
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Pedersen et al. verified the developed autonomous navigation system through
simulation-based tests. The automated scenario generator tool was used to test it in
the set scenario. Two head-on collisions and one multiple target ship encounter scenarios
were used [12].

Porres et al. presented an AI-based scenario search and production algorithm to
validate the autonomous navigation system, but the developed scenario was limited to the
1:1 situation [13].

Huang et al. presented a new collision risk measure for the collision avoidance
algorithm. The authors compare the new model’s performance with the traditional risk
measures in the simulated environment. The scenarios used were encounter situations
with 1, 2, and 3 target ships. However, the basis for setting up the scenario was not in the
article [14].

Chun et al. proposed a collision avoidance algorithm based on deep reinforcement
learning. The developed algorithm was validated in two scenarios, but the design base for
one of them was not specified [15].

Lazarowska used a navigation scenario with a change in the target ship’s course to
validate an autonomous ship’s safe trajectory planning algorithm. Head-on, crossing, 1:2
encounter situation, and sudden change of opponent ship were the four scenarios used for
validation, and no objective scenario design basis was used [16].

Gil proposed the concept of a critical safety area for the obstacle-avoidance algorithm.
The verification experiments were conducted in a simulation environment. The author
designed the scenario considering various obstacles which were different in size and shape.
However, the basis for designing the scenario was arbitrary [17].

Szlapczynski et al. suggested a ship domain-based model of ship collision risk that
utilizes a number of parameters. A simulation was conducted to validate the presented
method. The scenarios used for the simulation were overtaking, head-on, and crossing, and
two phases were included in each scenario. However the rationale of designing scenario
was missing [18].

Table 1 shows a summary of related works. The related works show that various
methods are being used to improve the collision avoidance algorithm for autonomous
ships. A scenario-based test is generally used for the validation of collision avoidance
system development. However, the scenarios used for validation are mainly designed
based on the navigation situations in the COLREG or the arbitrary design of the researcher.
Thus, there may be a dearth of research into systematic scenario design testing of the MASS
collision avoidance system.

Table 1. Summary of related works.

Related Works Method Test Scenario Design Rationale

Perera, L. P. et al. (2014) Experimental evaluation of
autonomous ship collision avoidance Scenario base 5 cases COLREG

Son et al. (2018) Verification of autonomous collision
avoidance in real-ship experiment Scenario base 3 cases COLREG

Shen, H et al. (2019) Collision avoidance model using deep
Q-learning Scenario base 6 cases COLREG

Woo, J et al. (2020) Collision avoidance algorithm using
deep reinforcement learning Scenario base 2 cases COLREG

Pedersen et al. (2020) Verification of autonomous navigation
system in simulation experiment Scenario base 3 cases Automated scenario

generator tool

Porres et al. (2020) AI-based scenario production algorithm Scenario base 30,000 cases
(1:1 situation)

AI-based scenario search
and production algorithm

Huang, et al. (2020) Collision risk measure for collision
avoidance algorithm Scenario base 3 cases Arbitary desing

Chun et al. (2021) Collision avoidance algorithm using
deep reinforcement learning Scenario base 2 cases Arbitrary design
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Table 1. Cont.

Related Works Method Test Scenario Design Rationale

A. Lazarowska (2021) Autonomous ships safe trajectory
planning algorithm Scenario base 4 cases Arbitrary design

Gil, M (2021) Critical safety area for the
obstacle-avoidance algorithm Scenario base 2 cases Arbitrary design

Szlapczynski, R et al. (2021) Ship domain-based model of ship
collision risk Scenario base 3 cases Arbitary desing

For this reason, systematic scenarios must be developed to verify the MASS col-
lision avoidance algorithm. In addition, because human-operated ships dominate the
environment in which the MASS will navigate in the future, objectively recognizing the
navigation situations where autonomous vessels are likely to encounter human-operated
ships is necessary.

Therefore, the purpose of this study is to differentiate the navigation situation of
human-operated ships for mass collision avoidance algorithm validation.

2. Methodology

This section aims to describe the methodology that objectively analyzes the navigation
situations by clustering the latent ship’s trajectory from the Automatic Identification System
(AIS) data collected over a long period in a wide sea area.

The methodology workflow is shown in Figure 1. The collected data was AIS data, and
the data’s characteristics were verified through data analysis. Then, in the preprocessing
stage, criteria were applied to the AIS data to extract the trajectory of own ship and target
ship, and necessary data cleaning and calculation were performed. Then, feature extraction
was used to turn the extracted trajectory data into a variable that represented the navigation
situation. Finally, hierarchical clustering was applied to analyze the composition and ratio
of the navigation situation.
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2.1. Data Collection
2.1.1. AIS Data

The collected data were AIS data. The Republic of Korea’s Ministry of Oceans and
Fisheries provided this data, which included both static and dynamic data [19].

2.1.2. Spatial Information

AIS data were collected from all over the Korean sea, as shown in Figure 2. In this
study, the Yellow Sea (west sea) of South Korea, where the no obstacles, such as islands,
exist, is presented as the selected target sea area shown in red. Thus, navigation situations
between ships that were not affected by the geographic environment could be collected.
The distance from east to west and north to south was 90 nautical miles.

2.1.3. Temporal Information

AIS data was data collected for 12 months From 1 September 2019 to 31, 2020. There-
fore, it was possible to analyze the data and to consider monthly or seasonal changes.

2.2. Data Examination

Data examination was performed to understand AIS data characteristics and identify
problems such as the missing values, outliers, and errors inherent in the data.
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2.2.1. Time Stamp

The transmit rate of AIS data varies depending on the ship’s status and type of
AIS transponder [20]. Therefore, the time interval of the collected data, as shown in
Figure 3a, shows an inconsistent characteristic. Moreover, the time interval beyond the AIS
transmission cycle was confirmed.
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2.2.2. COG (Course over the Ground)

In Figure 3b, COG distribution was primarily concentrated at 010 and 190 degrees.
This explains that the ship traffic in this sea area was mainly formed in the north–

south direction.

2.2.3. Heading

As shown in Figure 3c, a large number of 511-degree readings were observed in the
heading. Since the heading value 511 indicates that the value is not available, heading
errors of 511 degrees appeared to be in need of substitution with appropriate values in a
preprocessing stage to confirm the relative bearing between ships [21].
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2.3. Data Preprocessing

The own ship and target ship trajectories were extracted from AIS data by applying
criteria in the data preprocessing stage. In addition, the trajectory extraction process
necessitated time-series cleaning and distance calculation. Figure 4 describes the trajectory
extraction process.
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2.3.1. Trajectory Extraction

• Own ship extraction

The MMSI number of the vessel and the corresponding gross tonnage were extracted
from the static data because the subject ship of the research project was a vessel of gross
tonnage between 100,000 and 150,000. Then, the data rows in the dynamic data with the
same MMSI number were sorted using the extracted MMSI number. The own ship data
extracted through the application of gross tonnage included ships that were not sailing.
Therefore, only ships with a speed of 5 knots or greater were extracted.

• Target ship extraction

Data of target ships with the same time range as the own ships were extracted. Using
the time-series range for each own vessel, data corresponding to the same time range was
extracted from dynamic data.

• Distance

When the distance between the ships was less than 3 miles, a row of dynamic data
was extracted by calculating the distance between the own ship and the target ship. The
calculated distance was the Euclidean distance using longitude and latitude. Table 2
summarizes the applied criteria.

Table 2. Criteria list.

Criteria Object Ship Description

Gross tonnage Own ship 100,000–150,000 GT
SOG of own ship Own ship Over 5kts

Time range Target ship Same time range with own ship
Distance Target ship Less than 3 miles with own ship
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2.3.2. Data Cleaning

During the trajectory extraction stage, time-series synchronization and interpolation
for variables were performed. Correlation with COG was confirmed for replacing heading
values of 511 (not available) identified during data examination. Since the criteria of own
ship is a ship moving at 5 knots or more, the correlation was checked for ships with SOG
5 knots or more. Since COG and heading are continuous values, a Pearson correlation
coefficient was used. As a result, a high correlation of 0.9864 was confirmed with a zero
p-value, and the not available heading value was replaced with COG. Figure 5 describes
the correlation between COG and heading.
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2.4. Feature Extraction

Because machine learning uses a numerical learning and decision-making basis, con-
verting the AIS data into feature data representing the navigation situation was necessary to
apply the navigation situation to the clustering algorithm [22]. In addition, because the clus-
tering algorithm’s performance varies depending on input features, the following approach
was used to extract features that could effectively express the navigation situation.

2.4.1. Periodic Feature

Three experts with more than five years of onboard experience and knowledge of
data science determined the domain of the features to be the input data to the clustering
algorithm. Consequently, the domain of the features was set to a periodic feature that
could comprehensively explain the entire situation from the beginning to the end of the
navigation situation.

2.4.2. Relative Bearing Change

The relative bearing change was extracted as a feature to explain the general navigation
situation [23]. As shown in Figure 6, changes to the relative bearing in a vessel were
converted into a change in quadrant in a Cartesian coordinate system. By passing an
abeam through the starboard of the own ship, the ship (a) was changed from starboard
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bow to starboard quarter, and when this is expressed as a change in the quadrant, it is
expressed as Q1-Q1-Q4.
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The feature was extracted by calculating the change of the quadrants of a target ship
in the entire trajectory, and the extracted feature list was 24 quadrant changes, as shown in
Table 3.

Table 3. Feature list.

Feature Number Navigation Situaion Quadrant Change

1 Pass-1 Q1-Q1-Q4
2 Pass-2 Q2-Q2-Q3
3 Cross-1 Q1-Q1-Q2
4 Cross-2 Q1-Q1-Q3
5 Cross-3 Q1-Q2-Q2
6 Cross-4 Q1-Q2-Q3
7 Cross-5 Q2-Q1-Q1
8 Cross-6 Q2-Q1-Q4
9 Cross-7 Q2-Q2-Q1
10 Cross-8 Q2-Q2-Q4
11 Overtake-1 Q3-Q3-Q1
12 Overtake-2 Q3-Q3-Q2
13 Overtake-3 Q4-Q4-Q1
14 Overtake-4 Q4-Q4-Q2
15 Away from forward-1 Q1-Q1-Q1
16 Away from forward-2 Q2-Q2-Q2
17 Away from stern-1 Q3-Q3-Q3
18 Away from stern-2 Q3-Q3-Q4
19 Away from stern-3 Q3-Q4-Q3
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Table 3. Cont.

Feature Number Navigation Situaion Quadrant Change

20 Away from stern-4 Q3-Q4-Q4
21 Away from stern-5 Q4-Q3-Q3
22 Away from stern-6 Q4-Q3-Q4
23 Away from stern-6 Q4-Q4-Q3
24 Away from stern-6 Q4-Q4-Q4

2.5. Hierarchical Clustering
Agglomerative Clustering Algorithm

An agglomerative hierarchical clustering algorithm was used in this study. This
algorithm’s parameter tuning must consider several factors. In this study, the clustering
algorithm considered the similarity (distance) measuring method, the proximity (linkage)
measuring method, and the optimal number of clusters [24].

3. Result
3.1. Input Data

A data set that counts situations corresponding to features in each ship’s trajectory
was used as the clustering input data. Each row of input data was a row vector describing
one trajectory as a combination of the number of ships corresponding to the features.

The illustrations in Figure 7 conceptualize the process from the navigation situation to
input data. Trajectory (a) is composed of one starboard passing vessel, one crossing vessel,
one overtaking vessel, and one moving away from the forward, and the corresponding
features are 1, 3, 11, 15. This combination of the navigation situation is described as a row
vector (a). A zero in row vector (a) means that there was no vessel corresponding to the
feature, and a one means that there was one vessel in the navigation situation corresponding
to that feature. Trajectory (b) has two vessels crossing from the starboard side, one vessel
crossing from the port side, and one overtaking vessel, and the corresponding features are
3, 7, 11. This combination of the navigation situation is described as a row vector (b).
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The input data was an array comprising 1998 row vectors because the feature extrac-
tion was applied to 1998 trajectories.

3.2. Clustering Algorithm Parameter Tuning
3.2.1. Distance Measurement

The hamming distance, average linkage distance measurement, and linkage method
were used in the clustering algorithm. The hamming distance, which is appropriate for
distinguishing the difference among a combination of vectors, was selected because the
input data feature was a set of row vectors that count the situations corresponding to the
features in the trajectory for each column [25]. Figure 8 is the row vector of the sailing
situation mentioned as an example above. These 2-row vectors use the hamming distance,
and the elements corresponding to the four features are different, so the hamming distance
is 4.
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3.2.2. Linkage Method

For the linkage method, the average linkage with the highest value was selected by
comparing the cophenetic correlation coefficient for each method, as shown in Table 4 [26].

Table 4. Cophenetic correlation coefficient.

Linkage Cophenetic Correlation Coefficient

Average 0.8949
Single 0.8060

Complete 0.7273
Weighted 0.6703

3.2.3. Number of Clusters

Figure 9 shows the silhouette values to find the appropriate number of clusters. The
higher the silhouette value, the better the distinction between clusters [27]. When the
number of clusters was 347, the silhouette value was 1.0, so the appropriate number of
clusters was 347.
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3.3. Clustering Result
3.3.1. Similarity of Clusters

The dendrogram shown in Figure 10 can be used to determine the similarity of each
leaf node that constituted the navigation situation. The lowest level of the dendrogram
is called a leaf node or cluster; the cluster’s vertical line is called a node. Each node is
connected to one horizontal line, called a clade, and the height of this clade explains the
difference between connected clusters [28]. The difference in the cluster can be explained by
the distance measurement used in the clustering algorithm, and a dendrogram in Figure 10
can be explained by the hamming distance of the input row data used. In this dendrogram,
the height of the leaf node increases as it goes to the right, and the height decreases as it
goes to the left. Therefore, navigation situations with high similarity were clustered on the
left side, and navigation situations with low similarity were clustered on the right.
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3.3.2. Frequency of Clusters

Figure 10 shows how many navigation situations are clustered at each leaf node. The
height represents the frequency and the x-axis corresponds to the order of a dendrogram.
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The two most frequent clusters show frequencies of 522 and 459, and they accounted for
49.1% of the input data points.

However, it can be confirmed that clusters were connected to the same clade as a
cluster with high frequency have a low frequency. For example, in the Figure 11, the
frequency of the 9th cluster(b) connected to the same clade as the 7th cluster(a), which
occurred 459 times, is 3. This is because one property of the hamming distance to is to
calculate the distance as 1 if the number of vessels is different, even though the combination
of a vessel relationship is the same. Although the number of vessels is large in Figure 12
and they were classified as being in a similar situation because all vessels were passing by
the starboard in the same the 7th cluster, the frequency is different because the number of
vessels is different.
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3.3.3. Ordinary and Extraordinary Situation

The red lines in Figure 13 are the leaf node locations where 1:1 situations were clustered
among leaf nodes of the dendrogram. In general, different clusters can be recognized as
connected to the same clade with high similarity, based on the 1:1 navigation situation, and
these clusters indicate navigation situations where the hamming distance was less than 2.3
from the corresponding 1:1 navigation situation, as shown in Figure 13.
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Figure 13. Clustering of 1:1 vessels and similar navigation situations: (a) a cluster group with a
hamming distance of less than 2.3 from a 1:1 situation, (b) a cluster group with a hamming distance
of larger than 2.3 from 1:1 situation.

Figure 14 shows the conversion of the hamming distance to the number of different
input elements. This figure shows that the clusters can be distinguished into two large two
groups based on the dissimilarity value of 2.3. Therefore, these clusters can be distinguished
as group (a) and group (b).
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Group (a) comprises ordinary navigation situations in which the dissimilarity related
to the 1:1 navigation situation was low, and its proportion in the total was 95.2%. Group (b)
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comprises extraordinary navigation situations that differs from other navigation situations,
and its proportion in the total is 4.8%.

3.3.4. Top 20 Frequent Clusters

Table 5 summarizes the 20 most frequent navigation situations. The 27th cluster
has 522 distinguished trajectories, accounting for 26.1% of the total, and the second most
frequent cluster was the 7th cluster, accounting for 23%. The top 20 clusters in Table 5
account for 75.7% of the total navigation situation.

Table 5. Top 20 frequent clusters.

Cluster Number Navigation Situation Description Frequency (%) Accumulated Rate (%)

27th Pass port 1:1 522 (26.1) 26.1
7th Pass starboard 1:1 459 (23.0) 49.1
1st Pass port and starboard 1:2 (1 and 1) 88 (4.4) 53.5
8th Pass port 1:2 59 (3.0) 56.5

35th Pass starboard 1:2 57 (2.9) 59.3
94th Away from starboard bow 1:1 38 (1.9) 61.2
120th Away from starboard quarter 1:1 37 (1.9) 63.1
197th Away from port bow 1:1 37 (1.9) 64.9
138th Away from port quarter 1:1 36 (1.8) 66.7

5th Pass port and starboard 1:3 (2 and 1) 31 (1.6) 68.3
41th Pass port and starboard 1:3 (1 and 2) 25 (1.3) 69.5
155th Crossing bow (starboard bow to port quarter) 1:1 21 (1.1) 70.6
15th Pass port 1:3 16 (0.8) 71.4
54th Pass starboard 1:3 15 (0.8) 72.1
185th Crossing bow (port bow to starboard quarter) 1:1 15 (0.8) 72.9
50th Pass port and starboard 1:4 (3 and 1) 12 (0.6) 73.5
110th Crossing bow (starboard bow to port bow) 1:1 12 (0.6) 74.1
172th Crossing stern (port bow to starboard quarter) 1:1 11 (0.6) 74.6
222th Crossing stern (starboard bow to port quarter) 1:1 11 (0.6) 75.2
117th Pass port and starboard quarter away 1:2 (1 and 1) 10 (0.5) 75.7

4. Discussion

A total of 347 leaf nodes were clustered as a result of hierarchical clustering. Thus,
the navigation situation could be distinguished among ordinary navigation situations and
extraordinary navigation situations based on the hamming distance (dissimilarity) of the
cluster being 2.3.

An ordinary situation is a case in which the hamming distance is less than 2.3 from
the 1:1 navigation situation between the own ship and target ship, implying that there are
three or fewer ship relationships in the navigation situation. In all navigation situations,
ordinary navigation situations occured 95.2% of the time, whereas extraordinary navigation
situations occured 4.8% of the time.

Furthermore, the most common navigational situations were confirmed. A navigation
situation that passed from the bow directly to the stern direction without crossing the
bow or stern direction of the own ship was the most frequently occurring navigation
situation, with 11 clusters out of the top 20 navigation situations being related to it. The
proportion of these situations in the total was 64.5%. Ships that did not get closer to their
ship in the direction of the bow and stern, which occurred 7.5% of the time, were the next
most common navigation situation. The third-highest rate of navigation situations was a
navigation situation that approached from the port and starboard and passed the bow or
stern direction of the own ship, which exhibited a ratio of 3.5%.

However, there are still uncertainties regarding the application of these methods. The
encounters with other ships that can occur during a voyage were objectively clustered
through this approach, but the passing distance with the encountered ships, elapsed time
to termination of the situation, etc. were not considered in the suggested method.
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5. Conclusions

The MASS collision avoidance system is one of the core systems of MASS. However,
compared to this importance, because the scenario design being used in the test was
subjective and did not reflect the characteristics of human-operated ships encountered by
the actual MASS, it is necessary to develop an objective scenario. Therefore, the navigation
situation of human-operated ships was distinguished for the validation of systematic
MASS in this study. The navigation situations of human-operated ships were objectively
analyzed using AIS data, and the navigation situations were classified through a data-
driven approach of data preprocessing, feature extraction, and hierarchical clustering.

Therefore, by comparing cluster similarity and frequency, the navigation situations
that a ship can encounter during navigation were divided into ordinary and extraordinary
navigation situations. Ordinary navigation situations account for 95.2% of total navigation
situations, and extraordinary navigation situations occur at a rate of 4.8%. The top 20
situations, which account for 75% of the total navigation situations, could be classified
along with the occurrence rate.

This research proposed a data-driven clustering model for human-operated ship
navigation situations. As a result, the actual navigation conditions of human-operated
ships were objectively distinguished. The ratio of ordinary and extraordinary situations,
which are two major categories of the proposed navigation situation, and the ratio of the
detailed navigation situations constituting it, seems to be a more objective basis for collision
avoidance algorithm test scenario design.

However, in general, because the sea area where the data analysis was applied is a
region with the traffic is concentrated from north to south and south to north, the navigation
situations comprised an overwhelming number of passing situations, the extracted features
could only explain ship navigation relationship using relative bearings, excluding other
navigational aspects. The movement of the own ship was not considered. Such limitations
of this study will be supplemented through future work.
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