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Abstract: The objective of this paper is to prove that the sea wave height is not a Gaussian process. This
is contrary to the common belief, as the height of a sea wave is generally considered a Gaussian process.
With this aim in mind, an empirical study of the buoys along the US coast at a random day is pursued.
The analysis differs from those in the literature in that we study the Gaussianity of the process as a
whole and not just of its one-dimensional marginal. This is done by making use of random projections
and a variety of tests that are powerful against different types of alternatives. The study has resulted in
a rejection of the Gaussianity in over 96% of the studied cases.

Keywords: Gaussian process; normal distribution; nortsTest R package; random projections; station-
arity; time series analysis

1. Introduction

The height of sea waves has been broadly studied in the literature, not only from
an engineering and statistical perspective [1] but also a probabilistic one [2]. In fact, as
commented in [3], the distribution of wave height (sea states) has received significant
interest over the years [4–8], which has resulted in the proliferation of models and the
analysis of their accuracy [9,10]. The interest also lies in that these models allow one to
simulate wave heights [11]. The distribution of the sea wave height is generally considered
a strictly stationary Gaussian process when measured with respect to a particular spatial
point [12], for instance, the landmark of a buoy. Despite the stationarity being commonly
rejected by most tests [13,14] when the associated time series is recorded for long periods
of time, the stationary Gaussian model is the most common in the literature [15]. This is
in part due to this Gaussian structure allowing for interpretable models of the sea surface
that result in the crest height following a particular type of Gaussian distribution: The
Rayleigh distribution [16,17]. Sometimes in a more general case, the Weibull distribution is
also considered [18]. Other well-known models are based on Forristall distribution [1],
Naess distribution [19], Boccotti distribution [20], Klopman distribution [21], van Vledder
distribution [22], Battjes–Groenendijk distribution [23], Mendez distribution [24], and
LoWiSh II distribution [25]. Having this knowledge on the distribution of sea waves is
necessary for a reliable design and analysis of ships and marine installations [26,27]; for
instance, offshore structures [26], such as oil platforms or wind turbines.

Although it is considered that certain Gaussian models are appropriate for the dis-
tribution of sea wave height when the resulting crest heights are high or the seas have
a narrow band spectrum, it is already known that this is not the appropriate model in
some cases. In particular, it is not appropriate in cases in which there are steep waves in
deep waters or as the water depth decreases [28]. This has already being studied in the
literature and, for instance, for non-Gaussian cases [29,30] a methodology to estimate the
wave crest height distribution has been developed. The hypothesis of this work is that sea
wave height is mainly not Gaussian. Thus, this work goes beyond the existing literature
and has the objective to empirically prove that the distribution of the sea wave height is
not necessarily Gaussian. The findings are important as the cases that were considered
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Gaussian are the more numerous ones. In fact, according to [31], very large waves might be
much more frequent than commonly assumed. The main scientific relevance of the study
is in that it implies that Gaussian models should not be used in general when modeling the
height of sea waves.

In proving the non-Gaussianity, it is here demonstrated that the non-Gaussian cases
correspond to non-Gaussian processes with non-Gaussian one-dimensional marginals.
This would go in line with the observations in [32] where the authors propose a model that
is able to explain the first order probability structure of the process. It occurs that the tests
commonly used in the literature have no power against alternatives with one-dimensional
Gaussian marginals. These tests are based on the process’ characteristic function [33], on its
skewness and kurtosis [34,35], or on Stein’s characterization of a Gaussian distribution [36],
for instance. However, the proposal here is to apply a methodology that is able to check the
Gaussianity of the process as a whole. Thus, the Gaussianity hypothesis can be discarded for
the heights of the sea waves either if the non-Gaussianity comes from the one-dimensional
marginal or from a higher order marginal. The test applied here is known as the random
projection test [37] and consists in applying tests that check the one-dimensional Gaussian
marginal distribution of the process to a series of processes the result of performing random
projections to the original process.

The structure of the paper is as follows. Section 2 is dedicated to present the studied
real dataset and Section 4 to analyze it. The methodology applied there is summarized in
Section 3. The conclusions are provided in Section 5.

2. Dataset

The studied dataset consists of the sea wave heights measured by buoys run by
the Coastal Data Information Program (https://cdip.ucsd.edu, (accessed on 4 October
2021)). The data at this website is freely available and contains raw measurements of
surface elevations of buoys located alongside the US coasts. That is, of measurements
that have not been preprocessed. To obtain the sea state, wave height, the dataset is
here preprocessed by means of the zero-down crossing methodology. Particularly, the
study focuses on the variable xyzZDisplacement that is downloaded from the web page
https://thredds.cdip.ucsd.edu/thredds/catalog/cdip/realtime/catalog.html, (accessed
on 4 October 2021). The data available to be downloaded depends on the date.

The data studied in this manuscript was downloaded on 14 November 2021 and is
available from the author upon request. In the downloaded dataset, there were 64 available
stations (buoys), which are labeled by an identification number that can be observed, in
ascending order, in Table 1. Note that the studied stations have been selected because of
their availability and not because they satisfy certain conditions in relation to their location
relative to the shoreline, the sea depth, or the prevailing wind directions. However, in case
the reader is interested in this information, Table 1 includes information on the location
of the 64 buoys used, latitude, longitude, and depth. To provide an example of wind
directions, Figure 1 shows the wind direction in degrees (local magnetic variation (deg):
12 E) for Station 073, Scripps Pier, La Jolla CA, on 21 January 2021 for an hour from 16:20
to 17:19 UTC, with a total of 3600 measurements. The range of degree value registered is
0.7–359.7.

Table 2 displays the length of the raw time series associated to each of the 64 buoys.
The dataset understudy is here restricted to a time series of length of 500,000 for each of the
54 buoys with a length larger than that. As commented above, the downloaded dataset
consists of un-preprocessed raw data, a consequence being that it contains unknown
values. After removing them, the resulting time series length recorded by each station is
also displayed in Table 2, with the label studied. It is worth commenting that in buoy 244,
the whole 500,000 first recorded time points have unobserved data. Thus, this buoy is not
kept in the study. This is represented in Table 2 by a line in the cell corresponding to the
label studied. On the contrary, there is a bouy for which the 500,000 first recorded time
points fully consists of observed data which is buoy 92.

https://cdip.ucsd.edu
https://thredds.cdip.ucsd.edu/thredds/catalog/cdip/ realtime/catalog.html
https://thredds.cdip.ucsd.edu/thredds/catalog/cdip/ realtime/catalog.html
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Table 1. Identification number (first column), name (second column), depth (third column), latitude
(fourth column), and longitude (fifth column) of the 64 buoys included in this study.

Buoy Name Depth Latitude Longitude
(Feet) (ISO 6709) (ISO 6709)

28 SANTA MONICA BAY, CA 1270 33.859933° −118.641100°
29 POINT REYES, CA 1804 37.936675° −123.462920°
36 GRAYS HARBOR, WA 135 46.856850° −124.244150°
45 OCEANSIDE OFFSHORE, CA 781 33.177900° −117.472167°
67 SAN NICOLAS ISLAND, CA 859 33.219278° −119.872278°
71 HARVEST, CA 1830 34.451650° −120.779817°
76 DIABLO CANYON, CA 90 35.203815° −120.859314°
92 SAN PEDRO, CA 1563 33.617933° −118.316833°
94 CAPE MENDOCINO, CA 1132 40.294870° −124.731770°
100 TORREY PINES OUTER, CA 1876 32.933000° −117.390733°
101 TORREY PINES INNER, CA 103 32.925630° −117.276810°
106 WAIMEA BAY, HI 656 21.670483° −158.117217°
121 IPAN, GUAM 656 13.354167° 144.788330°
132 FERNANDINA BEACH, FL 51 30.709040° −81.292080°
134 FORT PIERCE, FL 54 27.551450° −80.217033°
142 SAN FRANCISCO BAR, CA 56 37.787500° −122.633100°
143 CAPE CANAVERAL NEARSHORE, FL 32 28.400200° −80.533450°
144 ST. PETERSBURG OFFSHORE, FL 308 27.344600° −84.274800°
147 CAPE HENRY, VA 49 36.915000° −75.722000°
150 MASONBORO INLET, ILM2, NC 52 34.141900° −77.715045°
153 DEL MAR NEARSHORE, CA 56 32.956583° −117.279450°
154 BLOCK ISLAND, RI 167 40.967317° −71.126550°
155 IMPERIAL BEACH NEARSHORE, CA 68 32.569567° −117.168800°
157 POINT SUR, CA 1210 36.334767° −122.103900°
158 CABRILLO POINT NEARSHORE, CA 58 36.626300° −121.907050°
160 JEFFREYS LEDGE, NH 262 42.800000° −70.170800°
168 HUMBOLDT BAY NORTH SPIT, CA 361 40.896033° −124.357000°
171 VIRGINIA BEACH OFFSHORE, VA 161 36.611000° −74.841330°
179 ASTORIA CANYON, OR 595 46.133283° −124.644450°
181 RINCON, PUERTO RICO 108 18.376580° −67.279650°
185 MONTEREY BAY WEST, CA 4799 36.700000° −122.342580°
187 PAUWELA, MAUI, HI 656 21.018567° −156.421750°
188 HILO, HAWAII, HI 1115 19.780000° −154.970000°
189 AUNUU, AMERICAN SAMOA 180 −14.273200° −170.500500°
191 POINT LOMA SOUTH, CA 3444 32.516700° −117.425200°
192 OREGON INLET, NC 60 35.750350° −75.330002°
194 ST. AUGUSTINE, FL 77 29.999860° −81.079960°
198 KANEOHE BAY, HI 266 21.477470° −157.752620°
200 WILMINGTON HARBOR, NC 42 33.722050° −78.016420°
201 SCRIPPS NEARSHORE, CA 151 32.868000° −117.266600°
202 HANALEI, KAUAI, HI 656 22.284717° −159.574217°
203 SANTA CRUZ BASIN, CA 6200 33.769000° −119.564700°
204 LOWER COOK INLET, AK 112 59.597500° −151.829100°
209 BARNEGAT, NJ 84 39.768290° -73.770370°
213 SAN PEDRO SOUTH, CA 217 33.577667° −118.182033°
214 EGMONT CHANNEL ENTRANCE, FL 46 27.590300° −82.931300°
215 LONG BEACH CHANNEL, CA 76 33.700333° −118.200668°
217 ONSLOW BAY OUTER, NC 98 34.212550° −76.949000°
220 MISSION BAY WEST, CA 1931 32.751580° −117.500750°
221 CAPE COD BAY, MA 85 41.840100° −70.328700°
222 SANTA LUCIA ESCARPMENT, CA 2132 34.767500° −121.498000°
224 WALLOPS ISLAND, VA 54 37.754166° −75.325000°
226 PULLEY RIDGE, FL 266 25.700633° −83.650133°
238 BARBERS POINT, KALAELOA, HI 919 21.323080° −158.149480°
243 NAGS HEAD, NC 69 36.001330° −75.420980°
244 SATAN SHOAL, FL 325 24.407166° −81.966833°
248 ANGELES POINT, WA 265 48.173183° −123.605217°
249 ARECIBO, PR 105 18.490850° −66.700517°
250 CAPE HATTERAS EAST, NC 85 35.259250° −75.286100°
254 POINT SANTA CRUZ, CA 66 36.934397° −122.033891°
255 TRINITY SHOAL, LA 69 29.086800° −92.506400°
256 SOUTHWEST PASS ENTRANCE W, LA 147 28.988010° −89.649270°
430 DUCK FRF 26M, NC 82 36.258808° −75.592207°
433 DUCK FRF 17m, NC 58 36.199700° −75.714117°

In Panel A of Figure 2, the surface elevation data for buoy 28 is displayed, which is
to be preprocessed to obtain the heights of sea waves. As commented before, this data
results from restricting the 21,961,898 observations stored for buoy 28 and taking the
ones corresponding to the first 500,000 time points. As it is observable from the plot, the
first 500,000 time points contain unobserved data. In fact, as displayed in Table 2, only
412,278 observations have been made. From Panel A of Figure 2, it is noticeable that the
unobserved data splits the time series in several clusters. The first one has been reproduced
solely in Panel B of Figure 2. The time points reproduced in Figure 2 are measured in
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coordinated universal times (UTC) and are reported in seconds. As reported in Table 3,
the measurements of surface elevation for buoy 28 began recording at time 1,619,719,067,
which is the Thursday, 29 April 2021 at 17:00 h 57 min and 47 s in Greenwich mean time
(GMT). The last studied measurement of that buoy was recorded at time 1,620,109,691,
which is Tuesday, 4 May 2021 at 06:00 h 28 min and 11 s in GMT. The x-axis of the plots in
Figure 2 have been computed as:

Tt = T0 + (t− 1)/r− d for t = 1, . . . , 500, 000

where Tt denotes the t-th time point, with T0 the starting time, r the time sample rate, and
d the filter delay. T0 is provided for each buoy in Table 3. r takes value 1.28 and d takes
value 133.3 for all the studied buoys except for buoys:

132, 142, 153, 171, 194, 200, 204, 244, 248, 254, 256

for which r takes value 2.56 and d value 130. Additionally, for buoys 101 and 155 takes a d
value equal to 299.

Table 2. The 64 available buoys are labeled by a number, displayed in ascending order. It is also
presented the length of the associated raw time series. The smallest length value is depicted in bold.
Under the studied label, it is the length of the raw time series under study after restricting it to the
first 500,000 time points, in the 54 cases that the length is larger than this value, and eliminating the
unobserved values.

Buoy Length Studied Buoy Length Studied

28 21,961,898 412,278 188 2304 2304
29 82,994,856 467,744 189 9216 6912
36 9,898,154 428,576 191 1705,130 460,831
45 47,402,495 421664 192 57,802,921 479,264
67 38,315,689 334,112 194 331,008 162,047
71 97,159,848 447,008 198 16,644,266 306,294
76 45,186,217 426,410 200 36,864 13,056
92 11,225,258 500,000 201 382,634 366,506
94 44,405,161 412,448 202 12,713,472 2304
100 29,592,746 453,920 203 20,524,202 403,232
101 392,063 276,863 204 18,523,392 6912
106 27,261,324 251,533 209 48,176,809 486,176
121 36,864 29,952 213 23,726,762 474,656
132 92,626,942 14,592 214 9,469,610 410,144
134 184,490 177,578 215 71,599,273 483,872
142 41,028,863 3072 217 33,912,745 343,158
143 4,170,410 463,136 220 43,743,913 476,960
144 290,474 260,522 221 32,689,322 412,448
147 38,223,529 460,832 222 4,370,858 207,222
150 2,732,714 435,488 224 53,720,233 449,312
153 61,614,437 19,968 226 55,466,665 449,312
154 33,799,849 479,264 238 7,206,912 13,824
155 1,276,799 399,819 243 6,806,186 467,744
157 56,572,585 467,574 244 100,154,110 -
158 23,500,970 467,744 248 13,824 10,752
160 40,979,113 414,752 249 16,777,898 474,656
168 96,282,024 469,194 250 11,446,442 410,144
171 76,003,582 190,464 254 3,026,688 20,768
179 47,052,457 458,358 255 13,676,714 398,624
181 8,713,898 481,568 256 29,211,647 74,496
185 5,580,458 453,920 430 25,175,978 272,042
187 33,458,857 315,680 433 32,809,130 428,714

Table 3 displays the starting and ending recording times of the surface elevation
for each of the studied stations, in addition to the ones of station 28. The largest time is
1,636,876,799, which represents Sunday, 14 November 2021 at 07:00 h 59 min and 59 s GMT.
It is represented in bold in Table 3. This is the end time for the recording of buoy 101,
whose starting time is 1,636,570,501, i.e., Wednesday, 10 November 2021 at 18:00 h 55 min
and 1 s GMT. Meanwhile, the smallest starting time point is 1,560,970,667, which represents
the Wednesday 19 June 2019 at the 18:00 h 57 min and 47 s GMT. This number has also
been highlighted in bold in Table 3. It corresponds to the buoy with identification number
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071, whose end time point is 1,561,361,291, i.e., Monday, 24 June 2019 at 07:00 h 28 min and
11 s GMT.
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Figure 1. Plot of 3600 wind directions (degrees) with respect to time (minutes:seconds) for the
Station 073, Scripps Pier, La Jolla, CA, on 21 January 2021 from 16:20 to 17:19 UTC.

Table 3. Starting and ending time of the recorded surface elevations for each of the studied buoys.
The time is measured in seconds in UTC.

Buoy Start Time End Time Buoy Start Time End Time
(s. UTC) (s. UTC) (s. UTC) (s. UTC)

28 1619719067 1,620,109,691 188 1,635,934,857 1,635,936,656
29 1,572,037,067 1,572,427,691 189 1,634,756,400 1,634,763,599
36 1,629,143,867 1,629,534,491 191 1,635,544,667 1,635,935,291
45 1,599,843,600 1,600,234,224 192 1,591,718,267 1,592,108,891
67 1,606,942,667 1,607,333,291 194 1,636,124,270 1,636,253,570
71 1,560,970,667 1,561,361,291 198 1,623,873,467 1,624,264,091
76 1,601,575,067 1,601,965,691 200 1,635,524,870 1,635,539,270
92 1,628,107,067 1,628,497,691 201 1,636,577,867 1,636,876,799
94 1,602,187,067 1,602,577,691 202 1,626,850,800 1,627,241,424
100 1,613,757,467 1,614,148,091 203 1,620,842,267 1,621,232,891
101 1,636,570,501 1,636,876,799 204 1,629,496,670 1,629,691,982
106 1,615,579,067 1,615,969,691 209 1,599,238,667 1,599,629,291
121 1,624,278,600 1,624,307,399 213 1,618,340,267 1,618,730,891
132 1,600,205,270 1,600,400,582 214 1,629,478,667 1,629,869,291
134 1,636,732,667 1,636,876,799 215 1,580,939,867 1,581,330,491
142 1,620,435,470 1,620,630,782 217 1,610,384,267 1,610,774,891
143 1,633,618,667 1,634,009,291 220 1,602,701,867 1,603,092,491
144 1,636,649,867 1,636,876,799 221 1,611,338,267 1,611,728,891
147 1,607,014,667 1,607,405,291 222 1,633,463,867 1,633,854,491
150 1,634,741,867 1,635,132,491 224 1,594,907,867 1,595,298,491
153 1,609,953,430 1,610,148,742 226 1,593,543,467 1,593,934,091
154 1,610,470,667 1,610,861,291 238 1,606,899,600 1,607,290,224
155 1,635,879,301 1,636,269,925 243 1,631,559,467 1,631,950,091
157 1,592,679,467 1,593,070,091 244 - -
158 1,618,516,667 1,618,907,291 248 1,636,534,670 1,636,729,982
160 1,604,861,867 1,605,252,491 249 1,623,769,067 1,623,774,467
168 1,561,658,267 1,562,048,891 250 1,627,934,267 1,628,324,891
171 1,606,739,270 1,606,934,582 254 1,634,927,270 1,635,317,894
179 1,600,117,067 1,600,507,691 255 1,626,191,867 1,626,387,179
181 1,630,069,067 1,630,459,691 256 1,624,062,470 1,624,453,094
185 1,632,517,067 1,632,907,691 430 1,617,209,867 1,617,405,179
187 1,610,737,067 1,611,127,691 433 1,611,244,667 1,611,635,291

Once the dataset is preprocessed, making use of the zero-down crossing methodology
to obtain the sea wave heights, the length of each time series decreases, as reported in
Table 4. As in Table 2, in Table 4, buoy 244 has a line in place of its length, because of
the studied recordings being unobserved. Thus, this buoy is not included in the rest of
the analysis. In Figure 3, the sea wave heights of 6 buoys that cover the spectrum of
mean heights shown in Table 5 are displayed. It is observable from the plots that they
correspond to different sea states. In particular, the plot corresponding to buoy 226 (1st
row–1st column) represents wave heights that are generally of less than 1 m while the
plots corresponding to buoy 433 and 155 (1st row–2nd column and 2nd row–1st column,
respectively) show heights that are generally of less than 3 m and that of buoys 222 and 189
(2nd row–2nd column and 3rd row–1st column) have slightly higher values. Meanwhile,
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the plot of buoy 106 (3rd row–2nd column) shows much higher values of the sea heights.
For the exact values, see Table 5, which represents the range and mean of sea heights and
periods for each of the studied 63 buoys. It is observable from these values that the study
comprises a variety of sea states. For instance, the maximum mean height recorded is over
to 2 m and corresponds to buoy 106. Meanwhile, the time series studied for buoy 226 has a
mean value of only 0.17 m. Both values are highlighted in bold in Table 5.
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Figure 2. (Panel A): Representation of the studied time series for buoy 28. The voids represent
unobserved data. (Panel B): Representation of the first observed segment of the time series in
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Table 4. Length of the 64 studied wave height time series after preprocessing the corresponding
surface elevations. The buoy with no associated value corresponds to that in which the surface
elevations are unobserved.

Buoy Length Buoy Length Buoy Length Buoy Length

28 53,055 143 78,727 188 161 220 52,880
29 50,072 144 54,798 189 844 221 85,438
36 50,696 147 88,537 191 51,258 222 24,429
45 63,179 150 92,248 192 96,017 224 82,826
67 30,739 153 927 194 10,578 226 91,653
71 45,184 154 85,352 198 50,000 238 697
76 45,324 155 38,422 200 850 243 87,981
92 69,255 157 56,255 201 48,102 244 -
94 45,071 158 67153 202 274 248 477

100 53,103 160 73,135 203 49,098 249 73,017
101 33,875 168 65,148 204 567 250 64,811
106 22,640 171 11,208 209 81,533 254 927
121 3718 179 57,563 213 71,486 255 87,275
132 1136 181 88,800 214 86,138 256 4787
134 24,806 185 43,133 215 69,636 430 45,559
142 201 187 27,017 217 60,739 433 77,214

Table 5. For each of the 63 buoys of positive length, minimum, maximum, and mean wave height
and period of the studied time series.

Buoy
Height Period

Min Max Mean Min Max Mean

28 0.01 3.14 0.69 1.56 19.53 6.07
29 0.01 9.50 1.48 1.56 21.88 7.30
36 0.01 4.67 1.21 1.56 17.97 6.60
45 0.01 1.58 0.40 1.56 19.53 5.21
67 0.01 4.54 1.08 1.56 28.91 8.49
71 0.01 4.18 1.06 1.56 18.75 7.73
76 0.01 3.44 0.84 1.56 19.53 7.35
92 0.01 2.27 0.49 1.56 17.97 5.64
94 0.01 5.74 1.11 1.56 19.53 7.15
100 0.01 3.25 0.65 1.56 19.53 6.68
101 0.01 1.86 0.41 1.56 21.09 6.38
106 0.01 9.79 2.34 1.56 17.97 8.68
121 0.03 6.39 1.92 1.56 12.50 6.29
132 0.04 4.11 1.32 0.78 11.33 5.01
134 0.01 1.85 0.47 1.56 15.62 5.59
142 0.10 4.56 1.56 0.78 11.72 5.88
143 0.01 1.39 0.33 1.56 18.75 4.60
144 0.01 3.67 0.41 1.56 10.94 3.71
147 0.01 4.41 0.61 1.56 14.84 4.07
150 0.01 1.57 0.34 1.56 17.19 3.69
153 0.01 2.28 0.76 0.78 20.70 8.39
154 0.01 7.99 0.68 1.56 16.41 4.39
155 0.01 16.08 0.69 1.56 24.22 8.13
157 0.01 4.26 0.87 1.56 19.53 6.49
158 0.01 2.12 0.44 1.56 19.53 5.44
160 0.01 2.75 0.47 1.56 17.19 4.43
168 0.01 2.05 0.49 1.56 15.62 5.63
171 0.02 10.24 2.29 0.78 14.06 6.64
179 0.01 4.88 0.87 1.56 15.62 6.22
181 0.01 1.66 0.31 1.56 12.50 4.24
185 0.01 9.93 1.16 1.56 21.88 8.22
187 0.01 8.83 2.23 1.56 27.34 9.13
188 0.09 3.76 1.79 1.56 17.97 10.97
189 0.08 5.60 1.83 1.56 14.06 6.38
191 0.01 40.08 0.74 1.56 19.53 7.02
192 0.01 2.60 0.52 1.56 16.41 3.90
194 0.01 8.16 2.14 0.78 14.06 5.98
198 0.01 2.89 0.65 1.56 14.06 4.79
200 0.01 6.04 1.98 0.78 10.55 5.99
201 0.01 2.06 0.41 1.56 17.97 5.95
202 0.08 4.58 1.77 1.56 11.72 6.52
203 0.01 2.74 0.63 1.56 21.88 6.42
204 0.02 3.98 1.21 0.78 8.98 4.74
209 0.01 2.40 0.46 1.56 13.28 4.66
213 0.01 2.27 0.52 1.56 19.53 5.19
214 0.01 1.10 0.21 1.56 15.62 3.72
215 0.01 1.73 0.32 1.56 21.09 5.43
217 0.01 3.03 0.58 1.56 15.62 4.41
220 0.01 1.94 0.51 1.56 20.31 7.05
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Table 5. Cont.

Buoy
Height Period

Min Max Mean Min Max Mean

221 0.01 4.36 0.59 1.56 10.16 3.77
222 0.01 4.38 1.07 1.56 21.09 6.63
224 0.01 1.94 0.46 1.56 14.06 4.24
226 0.01 1.04 0.17 1.56 10.94 3.83
238 0.01 5.15 1.91 1.56 22.66 15.47
243 0.01 4.20 0.50 1.56 13.28 4.15
248 0.05 3.67 1.39 1.17 16.02 8.78
249 0.01 2.87 0.77 1.56 13.28 5.08
250 0.01 4.12 0.83 1.56 11.72 4.94
254 0.02 5.56 1.85 0.78 18.36 8.73
255 0.01 1.58 0.35 1.56 9.38 3.57
256 0.01 7.09 2.04 0.78 13.28 6.08
430 0.01 4.57 0.75 1.56 15.62 4.66
433 0.01 4.01 0.47 1.56 16.41 4.34

3. Methodology

Let X := {Xt}t∈Z be a stochastic process. It is Gaussian if for any T ⊂ Z with finite
cardinality, {Xt}t∈T follows a multivariate normal distribution. Most common procedures
to test the Gaussianity of a stochastic process are designed for stationary processes. Thus,
in Section 4, the stationarity is checked first. The most commonly used tests for stationarity
are the Augmented Dickey–Fuller test [13], the Phillips–Perron test [38], and the Ljung–Box
test [39], and so, we apply those. These tests check the null hypothesis of non-stationarity
against the alternative of non-stationarity.

Once it can be assumed that X is a stationary process, the aim of this study is to
contrast the null hypothesis of X being Gaussian against the alternative that X does not
follow a Gaussian process. There are a variety of tests with this aim. However, most of
them simply contrast the null hypothesis of the one-dimensional marginal distribution
of X being Gaussian against the alternative that this marginal distribution is not Gaus-
sian. Of course, a rejection with those tests will provide a rejection for X being Gaussian.
However, these tests are not able to detect non-Gaussian processes with Gaussian one-
dimensional marginals. A class of them checks whether the characteristic function of the
one-dimensional marginal of the process is that of a Gaussian distribution. From this class,
the Epps test is used [33], which compares at certain points the empirical characteristic
function of the one-dimensional marginal distribution of the process with that of a Gaus-
sian distribution. Another class is that of the skewness—kurtosis tests, also known as
Jarque–Bera tests [40]. These tests check whether the empirical skewness and kurtosis
depart from zero, as a Gaussian distribution has zero skewness and kurtosis. From these,
the Lobato and Velasco test is used [34].

To test the Gaussianity of the stationary process X completely, and not just of a certain
order marginal, the random projection test is used [37]. This test consists of projecting the
process X and applying a test for the Gaussianity of the one-dimensional marginal of the
projection. The hypotheses required for the application of the random projection test come
from the hypotheses required by the test applied to the one-dimensional marginal of the
projection. To introduce these hypotheses, the notation

γX(t) := E[(X0 −E[X0])(Xt −E[X0])]

is used for any t ∈ Z. In the case the Epps test is applied, the hypotheses are:

(E1.) X is an ergodic stationary process.
(E2.) The characteristic function of the one-dimensional marginal of X is analytic.
(E3.) ∑t∈Z |t|ζ |γX(t)| < ∞, for some ζ > 0.
(E4.) The spectral density matrix of the process:

{(cos(λ1Xt), sin(λ1Xt), . . . , cos(λN Xt), sin(λN Xt))}t∈Z (1)
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at frequency 0 exists and is positive definite. In (1) the {λi}N
i=1, with N > 1, are

drawn at random in such a way that λ1 and λ2 are independent and identically
distributed with an absolutely continuous distribution.

In the case the Lobato and Velasco test is applied, the hypotheses are:

(L1.) X is an ergodic stationary process.
(L2.) ∑∞

t=0 |γX(t)| < ∞.
(L3.) Xt − E[X0] = ∑∞

i=1 k(i)εt−i, where ∑∞
i=1 |k(i)| < ∞, ∑∞

i=1 ik(i) < ∞ and the {εt}t∈Z
are independent and identically distributed random variables with E[εn] = 0 and
E[X4

0 ] < ∞.

Hypothesis (E1.) and (L1.) coincide. Note that, although stationarity is a requirement
for the tests applied, no regular wave shape is assumed. However, requiring stationarity
automatically implies, as commented in the introduction, that the time series recorded for
long periods of time cannot be analyzed under these hypothesis tests. A reason behind
this can be seen in [41,42], where the significance of the intra-seasonal and intra-annual
variability of the wave distribution is studied. Note that X is stationary if and only if
{Xt}t∈T and {Xt+k}t∈T are identically distributed for any k ∈ Z and T ⊂ Z, which does
not allow the difference in variability seen in those papers when long periods of time are
studied. Furthermore, (E3.) and (L2.) are related. In fact, if t takes non-negative values (L2.),
it implies that (E3.). (E2.), (E4.), and (L3.) are also connected, in the sense that (E2.) and (E4.)
are assumptions related to the fact that the Epps test makes use of characteristic functions
while (L3.) relates to the Lobato and Velasco test, which is based on the distribution
moments. Thus, it could be said that there are no big difference in the implications derived
from either assuming the Epps or Lovato and Velasco set of assumptions.

In Nieto-Reyes et al. [37], it is proposed to make use of a stick-breaking procedure
to draw the sequence in which to project the time series. The procedure makes use of a
beta distribution. Two sets of parameters are proposed there: (100,1) when the objective
is to obtain a projected process similar to the original one and (2,7) when the aim is that
the sequence does not contain many zero values. Therefore, if the aim is to apply only
one projected test, the proposal here is to make use of the (100,1) parameters when the
one-dimensional distribution before being projected is close to being non-Gaussian and
of the (2,7) parameters when it is far from it. For the selection of the test to check the
one-dimensional distribution of the projected process, the idea is to use the Lobato and
Velasco test when the departure from Gaussianity seems to come from a non-zero skewness
or kurtosis and to use the Epps test otherwise. Thus, rejecting the null hypothesis has
different implications under the four different scenarios:

• Parameters (100,1) with the Lobato and Velasco test: The non-Gaussianity of the
process is related to the third and/or fourth order moment of a small dimensional
distribution of the original non-projected process.

• Parameters (2,7) with the Lobato and Velasco test: The non-Gaussianity of the process
is related to the third and/or fourth order moment of the one-dimensional distribution
of the projected process.

• Parameters (100,1) with the Epps test: The non-Gaussianity of the process is related in
general to a small dimensional distribution of the original non-projected process.

• Parameters (2,7) with the Epps test: tThe non-Gaussianity of the process is related in
general to the one-dimensional distribution of the projected process.

4. Data Results

This section is dedicated to study whether the sea height time series presented and
pre-processed in Section 2 have been drawn from Gaussian processes. The analysis is
performed using R and, in particular, the nortsTest package, which is aimed at assessing
normality of stationary processes. Thus, the normality tests applied in this section are
intended for stationary processes. Then, it is first checked that this assumption is satisfied.
For this, three different tests are applied: Augmented Dickey–Fuller, Phillips–Perron, and
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Ljung–Box. As commented in Section 3, the aim is to reject the null hypothesis. As it
is observable from Table 6, which summarizes the obtained results, this is what occurs
for each of the 63 studied buoys. In particular, for each of the buoys, a p-value smaller
or equal than 0.01 is obtained for the Augmented Dickey–Fuller and the Phillips–Perron
tests and smaller than that value for the Ljung–Box test. Note that the null hypothesis
of non-stationarity is tested against the alternative hypothesis of stationarity. This leads
us to the conclusion that stationarity can be assumed and, therefore, normality tests for
stationary processes can be applied to these data.

Table 6. Summary of the obtained p-values when applying, to each of the 62 buoys, three different
tests to check for stationarity. Each of the 62 p-values is smaller or equal than 0.01 for the Augmented
Dickey–Fuller test (first column) and the Phillips–Perron test (second column). Each of them is smaller
than 0.01 for the Ljung–Box test (third column). The null hypothesis is of non-stationarity.

Augmented Dickey-Fuller Phillips-Perron Ljung-Box

p-value ≤0.01 ≤0.01 <0.01

To check the Gaussianity of the process associated to each of the different buoys,
as well as the Epps and Lobato and Velasco tests are first applied. As commented in
Section 3, these tests check the Gaussianity of the one-dimensional marginal distribution
of the process. Thus, a rejection with these tests implies the rejection of the Gaussianity of
the whole process. The results appear in Table 7. By looking separately to the resulting
p-values of the Epps or Lobato and Velasco tests, the Gaussianity of the process associated
to 60 out of the 63 buoys could be rejected when making use of the Epps test and of 61
out of 63 when making use of the Lobato and Velasco test. The buoys for which the Epps
test does not have enough evidence to reject the null hypothesis of Gaussianity are buoys
142, 202, and 238. Meanwhile, the buoys for which the Lobato and Velasco test does not
have enough evidence to reject the null hypothesis are buoy 188 and, again, buoy 238. The
corresponding p-values are highlighted in bold in Table 7. Note that in the five buoys, at
least one of the two obtained p-values is smaller than 0.05, reflecting that the process does
not follow the Guassian distribution in terms of the characteristic function (Epss test) or in
terms of the skewness and kurtosis (Lobato and Velasco test).

To be on the safe side, it is here taken into account the multiplicity of having run two tests.
For that, the false discovery rate (FDR) is applied for dependent tests [43]. It is clear that in
this case, there is dependency as both tests have been applied to the same dataset. Although
it could be argued that the FDR for independent tests [44] also allows for some type of
dependency and that this might be of that type, the most restrictive FDR is used here to be
cautious. The other would have given smaller values in columns 4 and 8 of Table 7. Using
the FDR for dependent tests, the Gaussianity of the processes associated to 61 out of the 63
studied buoys is rejected. Note that this would result in a rejection rate of 96.83%. The FDR
values larger than 0.05 are highlighted in bold in Table 7.

A further study is pursued, which consists in applying the random projection test. To do
so, four p-values are computed per buoy in a way that the time series is projected two times
using the parameters (2,7) and two times using the parameters (100,1). Then, the Epps test
is applied two times: One to a projected time series resulting from the parameters (2,7) and
the other to one resulting from (100,1). It is the same for the Lovato and Velasco test on the
other two projected time series. The results are illustrated in Figure 4 where these p-values are
plotted against the corresponding ones reported in Table 7. Thus, the x-axis represents the
p-values obtained when computing the Epps (left column) and the Lobato and Velasco test
(right column) of the sea height time series without performing a projection. Note that those
p-values illustrate whether the one-dimensional marginal of the process follows a Gaussian
distribution. Meanwhile, the y-axis displays the obtained p-values when computing the
corresponding test on the projected process. The top row plots make use of the parameters
(100,1) for the projection and the bottom row plots of the parameters (2,7). A grey line at
y = 0.05 is drawn to differentiate the p-values that are above or below it. It can be observed
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that in the two top plots, the p-values obtained with and without a projection are similar.
Remember that, as commented in Section 3, making use of the (100,1) parameters results in a
projected time series similar to the original one. However, in the case that the (2,7) parameters
are used, the p-values obtained when projecting are larger or equivalent to those when the
test is applied without performing a projection.
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Figure 4. For each of the 63 studied time series, in each of the panels, the p-value is plotted and
obtained by applying a Guassianity test on the time series (x-axis) against the one resulting on
applying the same test but on the corresponding projected time series (y-axis). The left column makes
use of the Epps test and the right of the Lobato and Velasco test. For the projection, top row makes
use of the parameters (100,1) and the bottom row of (2,7). The line y = 0.05 is displayed in each panel
in gray.

Table 7. Gaussianity tests for the one-dimensional marginal of the height of sea waves. For each studied buoys (first and fifth
columns), it is reported the p-values resulting from applying the Epps (second and sixth columns) and the Lobato and Velasco
test (third and seventh columns) and adjusted p-values using the false discovery rate (FDR) for dependent tests (fourth and
eighth columns). The bold indicates that the values are larger than 0.05.

Buoy Epps L.-V. FDR Buoy Epps L.-V. FDR

28 0 1.12 × 10−258 0 188 3.81 × 10−2 2.62 × 10−1 7.62 × 10−2

29 2.41 × 10−217 1.02 × 10−133 4.81 × 10−217 189 1.78 × 10−4 1.56 × 10−11 3.13 × 10−11

36 9.61 × 10−277 1.5 × 10−196 1.92 × 10−276 191 0 0 0
45 0 0 0 192 0 1.63 × 10−268 0
67 0 0 0 194 1.81 × 10−71 3.75 × 10−117 7.51 × 10−117

71 9.33 × 10−303 0 0 198 0 0 0
76 0 0 0 200 7.52 × 10−4 6.84 × 10−8 1.37 × 10−7

92 0 0 0 201 0 2.21 × 10−234 0
94 0 4.49 × 10−49 0 202 1.6 × 10−1 6.74 × 10−3 1.35 × 10−2

100 0 4.52 × 10−263 0 203 0 0 0
101 2.95 × 10−268 5.97 × 10−210 5.9 × 10−268 204 1.98 × 10−2 6.9 × 10−8 1.38 × 10−7

106 2.25 × 10−175 1.9 × 10−103 4.5 × 10−175 209 0 9.03 × 10−318 0
121 1.25 × 10−23 6.68 × 10−38 1.34 × 10−37 213 0 0 0
132 8.85 × 10−4 1.62 × 10−18 3.23 × 10−18 214 0 0 0
134 1.05 × 10−287 0 0 215 0 6.3 × 10−309 0
142 1.44 × 10−1 5.48 × 10−3 1.1 × 10−2 217 0 0 0
143 0 0 0 220 0 0 0
144 6.72 × 10−105 1.71 × 10−175 3.41 × 10−175 221 0 1.66 × 10−34 0
147 2.8 × 10−194 5.09 × 10−158 5.59 × 10−194 222 1.57 × 10−194 8.51 × 10−105 3.14 × 10−191

150 0 1.9 × 10−153 0 224 0 0 0
153 6.03 × 10−18 8.73 × 10−12 1.21 × 10−17 226 8.42 × 10−251 1.42 × 10−101 1.68 × 10−250

154 0 2.34 × 10−160 0 238 2.31 × 10−1 8.17 × 10−2 1.63 × 10−1

155 0 0 0 243 1.77 × 10−98 1.14 × 10−68 3.55 × 10−98

157 0 0 0 244 - - -
158 0 0 0 248 1.39 × 10−6 4.47 × 10−4 2.79 × 10−6

160 0 3.16 × 10−214 0 249 0 0 0
168 0 0 0 250 3.97 × 10−315 2.69 × 10−307 7.95 × 10−315

171 5.42 × 10−100 4.64 × 10−183 9.28 × 10−183 254 1.64 × 10−5 1.58 × 10−6 3.16 × 10−6

179 0 2.39 × 10−302 0 255 0 0 0
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Table 7. Cont.

Buoy Epps L.-V. FDR Buoy Epps L.-V. FDR

181 0 2.62 × 10−167 0 256 1.4 × 10−37 2.31 × 10−43 4.62 × 10−43

185 4.4 × 10−139 1.85 × 10−198 3.7 × 10−198 430 1.79 × 10−195 1.49 × 10−46 3.58 × 10−198

187 1.72 × 10−258 0 0 433 2.87 × 10−167 2.05 × 10−54 5.75 × 10−167

For each buoy, Table 8 reports the FDR-adjusted p-value for dependent tests resulting of
combining the four p-values illustrated in the y-axis of Figure 4. The p-values that does not
result in a rejection are highlighted in bold in Table 8. There it can observed that the random
projection test is able to reject the null hypothesis of Gaussianity in 60 out of the 63 buoys.
This is one case less than the obtained without projecting the different time series.

Table 8. FDR adjusted p-value resulting of combining four p-values to apply the random projection test for each buoy.
Values larger than 0.05 is highlighted in bold.

Buoy
Epps L.-V.

FDR
(100,1) (2,7) (100,1) (2,7)

28 0 1.64 × 10−105 6.64 × 10−105 8.42 × 10−8 0
29 3.51 × 10−202 7.59 × 10−166 1.58 × 10−144 2.43 × 10−10 1.4 × 10−201

36 9.97 × 10−308 5.44 × 10−76 3.71 × 10−154 1.11 × 10−5 3.99 × 10−307

45 0 1.83 × 10−146 0 0 0
67 0 2.95 × 10−256 0 3.74 × 10−124 0
71 6.98 × 10−316 5.94 × 10−177 0 1.29 × 10−137 0
76 0 3.03 × 10−210 0 8.4 × 10−155 0
92 0 1.03 × 10−278 5.85 × 10−315 6.23 × 10−14 0
94 5.73 × 10−141 1.6 × 10−111 1.73 × 10−30 5.94 × 10−5 2.29 × 10−140

100 0 2.68 × 10−149 2.36 × 10−169 1.39 × 10−13 0
101 4.97 × 10−272 5.8 × 10−148 8.39 × 10−131 5.87 × 10−5 1.99 × 10−271

106 7.7 × 10−193 4.75 × 10−26 8.91 × 10−84 7.38 × 10−8 3.08 × 10−192

121 5.78 × 10−26 3.34 × 10−13 1.03 × 10−36 8.09 × 10−18 4.12 × 10−36

132 2.44 × 10−3 2.03 × 10−2 6.56 × 10−17 4.66 × 10−5 2.62 × 10−16

134 5.95 × 10−281 2.22 × 10−68 0 6.41 × 10−46 0
142 7.94 × 10−2 9 × 10−1 9.87 × 10−3 8.09 × 10−1 3.95 × 10−2

143 0 8.08 × 10−208 0 1.73 × 10−144 0
144 3.48 × 10−96 1.91 × 10−53 8.31 × 10−146 1.87 × 10−28 3.33 × 10−145

147 1.42 × 10−182 2.48 × 10−269 1.22 × 10−122 1.55 × 10−15 9.91 × 10−269

150 0 3.68 × 10−77 5.46 × 10−81 1.41 × 10−5 0
153 1.82 × 10−17 9.13 × 10−12 4.37 × 10−13 6.95 × 10−8 7.3 × 10−17

154 0 0 2.54 × 10−133 1.45 × 10−36 0
155 3.8 × 10−308 8.67 × 10−83 0 1.89 × 10−140 0
157 0 2.42 × 10−151 1.26 × 10−301 1.36 × 10−13 0
158 0 6 × 10−162 9.86 × 10−289 6.38 × 10−26 0
160 0 1.24 × 10−175 8.81 × 10−152 1.92 × 10−10 0
168 0 1.49 × 10−210 0 2.19 × 10−177 0
171 6.8 × 10−111 4.02 × 10−45 2.3 × 10−169 2.89 × 10−33 9.2 × 10−169

179 2.93 × 10−298 3.69 × 10−167 2.38 × 10−271 2.04 × 10−24 1.17 × 10−297

181 0 2.48 × 10−70 6.52 × 10−126 1.28 × 10−6 0
185 9.48 × 10−137 4.31 × 10−58 1.61 × 10−158 7.8 × 10−26 6.42 × 10−158

187 1.85 × 10−274 7.41 × 10−76 0 2.52 × 10−105 0
188 4.99 × 10−2 3.39 × 10−1 × 10−1 × 10−1 2 × 10−1

189 3.99 × 10−4 6.99 × 10−2 1.41 × 10−10 1.07 × 10−3 5.62 × 10−10

191 0 0 0 0 0
192 0 4.43 × 10−252 4.65 × 10−187 1.37 × 10−18 0
194 1.02 × 10−72 6.07 × 10−31 9.61 × 10−112 4.3 × 10−34 3.84 × 10−111

198 0 6.67 × 10−254 0 6.04 × 10−41 0
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Table 8. Cont.

Buoy
Epps L.-V.

FDR
(100,1) (2,7) (100,1) (2,7)

200 5.27 × 10−4 1.64 × 10−3 5.17 × 10−7 5.22 × 10−3 2.07 × 10−6

201 0 5.91 × 10−172 6.19 × 10−228 2.74 × 10−18 0
202 1.93 × 10−1 2.34 × 10−1 1.41 × 10−2 4.06 × 10−1 5.62 × 10−2

203 0 9.69 × 10−157 2.52 × 10−296 3.65 × 10−213 0
204 6.17 × 10−3 4.85 × 10−4 1.14 × 10−7 1.6 × 10−3 4.55 × 10−7

209 0 1.55 × 10−160 6.35 × 10−227 4.8 × 10−21 0
213 0 2.89 × 10−168 0 3.93 × 10−41 0
214 0 2.75 × 10−309 0 4.2 × 10−17 0
215 0 3.27 × 10−149 3.46 × 10−281 1.67 × 10−11 0
217 0 6.4 × 10−197 2.47 × 10−239 1.69 × 10−27 0
220 0 1.27 × 10−246 0 5.2 × 10−126 0
221 0 9.72 × 10−119 7.12 × 10−31 4.02 × 10−4 0
222 4.17 × 10−194 3.94 × 10−62 1.18 × 10−58 1.47 × 10−1 1.67 × 10−193

224 0 5.35 × 10−217 4.09 × 10−213 6.44 × 10−12 0
226 0 2.99 × 10−176 4.11 × 10−89 4.17 × 10−10 0
238 1.91 × 10−1 8.15 × 10−2 5.17 × 10−2 1.3 × 10−1 1.91 × 10−1

243 9.55 × 10−97 2.45 × 10−73 3.32 × 10−65 2.35 × 10−8 3.82 × 10−96

248 1.12 × 10−6 2.44 × 10−2 4.61 × 10−4 3.51 × 10−2 4.47 × 10−6

249 0 0 0 2.81 × 10−144 0
250 7.49 × 10−301 1.75 × 10−285 1.78 × 10−203 5.94 × 10−10 3 × 10−300

254 3.34 × 10−6 2.55 × 10−3 1.43 × 10−6 8.38 × 10−3 5.71 × 10−6

255 0 0 0 6.69 × 10−133 0
256 2.79 × 10−40 6.22 × 10−32 2.81 × 10−42 8.9 × 10−20 1.13 × 10−41

430 1.51 × 10−181 4.04 × 10−129 7.77 × 10−35 9.29 × 10−4 6.02 × 10−181

433 4.94 × 10−163 1.83 × 10−149 5.96 × 10−47 1.36 × 10−5 1.98 × 10−162

They correspond to buoys 188, 202, and 238, with 202 the buoy that did result in a
rejection when making use of the adjusted FDR p-value without the use of projections.

Let us analyze these results in detail. For buoy 188, the null hypothesis of Gaussianity
is rejected when making use of the Epps test without projecting the data (Table 7) and when
the (100,1) parameters are used for the projection (Table 8). Note that as this projection
results in a time series similar to the original, this is expected to happen. Despite these
rejections, as the other performed tests do not result in a rejection, none of the two corre-
sponding adjusted p-values result in a rejection. For the case of buoy 238, it also occurs that
none of the two corresponding adjusted p-values result in a rejection. However, for this
buoy, it is due to none of the performed tests having resulted in a rejection, independently
of whether projections were made or not. The case of buoy 202 differs as it does not result
in a rejection (adjusted FDR p-value smaller than 0.05) when projections are made but it
does when the data is not projected. This is in part due to the FDR for dependent data
in a conservative methodology, which loses power when the amount of performed tests
increases. The p-values smaller than 0.05 for this buoy correspond to the Lovato and
Velasco test without a projection and projecting with the parameters (100,1). Note that the
same behavior has been commented above for buoy 188 with the Epps test.

5. Conclusions

This manuscript is dedicated to empirically studying the Gaussianity of the sea waves
heights, which is commonly assumed in the literature. The measurements provided by
62 buoys along the US coast are studied and obtained that over 96% of the studied time series
were drawn from a non-Gaussian process. The analysis is novel in that it makes use of a test
that is powerful against non-Gaussian processes with one-dimensional Gaussian marginals.

The Gaussian distribution is also known as normal distribution. The name normal
comes from the fact that it is the most common distribution in nature in one-dimensional
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spaces. However, as it is shown in this study that it might not be the most common one in
higher dimensional spaces. This goes in line with the fact that non-parametric statistics,
where no distribution of the data is assumed, is nowadays the most common way to study
multivariate and functional data.

The implication of this study is that the Gaussian assumption should not be used in
simulating sea wave heights. This is due to the assumption that a false hypothesis results
incurs an error. That not using the appropriate models results in incurring an error is not
new. In fact [10] is dedicated to measuring and comparing the error caused by different
wave height calculation models. As commented there, it is important to incur the lowest
possible error, that is, to have an accurate model, in order to design appropriately offshore
engineering structures, such as drilling ships and offshore platforms, under different
marine scenarios.

A direct consequence of the study presented here is that it can be assumed, though, the
one-dimensional marginal of the process is generally non-Gaussian. Further studies on the
matter could include the study of the two-dimensional marginal distribution of the process,
and the distribution of the full process. Once this distribution is known, the error in assuming
Gaussianity could be easily quantified. The literature contains already studies on the two-
dimensional marginal distribution of the process ([45–47] and the references therein). There,
a model is assumed and the parameters of it obtained. Knowing the one-dimensional
marginal distribution is not Gaussian will help in selecting the appropriate model.
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