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Abstract: This research intends to offer a scientific foundation for environmental monitoring and
early warning which will aid in the environmental protection management of Qaroun Lake. Qaroun
Lake is increasingly influenced by untreated wastewater discharge from many anthropogenic ac-
tivities, making it vulnerable to pollution. For that, six environmental pollution indices, namely
contamination factor (Cf), enrichment factor (EF), geo-accumulation index (Igeo), degree of contam-
ination (Dc), pollution load index (PLI), and potential ecological risk index (RI), were utilized to
assess the bottom sediment and to determine the different geo-environmental variables affecting the
lake system. Cluster analysis (CA), and principal component analysis (PCA) were used to explore the
potential pollution sources of heavy metal. Moreover, the efficiency of partial least-square regression
(PLSR) and multiple linear regression (MLR) were tested to assess the Dc, PLI, and RI depending on
the selected elements. The sediment samples were carefully collected from 16 locations of Qaroun
Lake in two investigated years in 2018 and 2019. Total concentrations of Al, As, Ba, Cd, Co, Cr, Cu,
Fe, Ga, Hf, Li, Mg, Mn, Mo, Ni, P, Pb, Sb, Se, Zn, and Zr were quantified using inductively coupled
plasma mass spectra (ICP-MS). According to the Cf, EF, and Igeo results, As, Cd, Ga, Hf, P, Sb, Se,
and Zr demonstrated significant enrichment in sediment and were derived from anthropogenic
sources. According to Dc results, all collected samples were categorized under a very high degree
of contamination. Further, the results of RI showed that the lake is at very high ecological risk.
Meanwhile, the PLI data indicated 59% of lake was polluted and 41% had PLI < 1. The PLSR and
MLR models based on studied elements presented the highest efficiency as alternative approaches to
assess the Dc, PLI, and RI of sediments. For examples, the validation (Val.) models presented the best
performance of these indices, with R2val = 0.948–0.989 and with model accuracy ACCv = 0.984–0.999
for PLSR, and with R2val = 0.760–0.979 and with ACCv = 0.867–0.984 for MLR. Both models for Dc,
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PLI, and RI showed that there was no clear overfitting or underfitting between measuring, calibrating,
and validating datasets. Finally, the combinations of Cf, EF, Igeo, PLI, Dc, RI, CA, PCA, PLSR, and
MLR approaches represent valuable and applicable methods for assessing the risk of potentially
harmful elemental contamination in the sediment of Qaroun Lake.

Keywords: Pollution load index; potential ecological risk index; degree of contamination; enrichment
factor; contamination factor; geoaccumulation index; heavy metals; PLSR; MLR

1. Introduction

The assessment of lake environments has become one of the most global topics to
have received a lot of attention from researchers, especially in arid and semi-arid re-
gions [1], because they are vital to climate management, social-economic activity, and
environmental preservation [2–4]. The contamination level in lakes reflects environmental
pollution, which results from industry, agriculture, and unplanned urbanization. Thus,
the continuous assessment of the heavy metals in the aquatic environment in Lakes is
important [5–9], because heavy metals are characterized by toxicity, accumulation in the
food chain, environmental sensitivity, and being non-biodegradable [5–9].

Qaroun Lake is a natural inland saline lake and represents one of the main geomorpho-
logical features of the Egyptian Western Desert. It is a place for fisheries, salt production,
tourism, and migratory birds in the Autumn and Winter seasons, in addition to being a nat-
ural discharge area for El-Fayoum province [10–12]. The Qaroun Lake area distinguishes
itself by its richness in terms of biodiversity, geological formations, and archaeological sites.
Furthermore, the lake is a globally significant wetland for Autumn and Wintering migratory
water birds. Consequently, in 1989, it was designated as a natural protectorate according to
Law 102/1983 by Prime Ministerial Decree No. 943/1989 [13]. In addition, it was originally
a freshwater lake and changed into a saltwater habitat [14]. El-Fayoum province discharges
a massive amount (more than 450 million m3/year) of untreated agricultural, industrial,
aquacultural, sewage, and domestic effluents into the Qaroun Lake [15–21]. The lake has no
surface outlet and loses its water through evaporation processes only. This causes a gradual
increase of lake water salinity and their pollutant content, depending on the evaporation
rate and the quantity of drainage water inflow [15,19,22]. As a result of the accumulation
of pollutants, the environmental quality of the Qaroun Lake will change and affect the
food chain and ecosystem [23,24]. Consequently, economic activities such as fishing, and
tourism will stop. Moreover, migratory birds will be affected by the lake’s environmental
degradation. The Qaroun Lake is subject to deterioration, as evidenced by previous studies
carried out by El-Kady et al. [12]; Attia et al. [11]; Redwan and Elhaddad [25]; Abdel Wahed
et al. [18]; El-Sayed et al. [10]; Soliman et al. [24]; Barakat et al. [17]; Abdel-Satar et al. [14].

The severe contamination of sediment by metals mixture can lead to the extinction of
aquatic life [26]. Natural and anthropogenic resources contributed to the release of metals
into the environment. Anthropogenic metals in sediment have higher mobility, bioavailabil-
ity, and deleterious effects on aquatic organisms than lithogenic metals [27,28]. Sediment
quality evaluations and aquatic environmental protection require an interpretation of
the spatial distribution of metals in bottom sediment, inferring the possible ecological
risk [10,29]. In the aquatic environment, the metal contaminants are absorbed and set-
tled into sediments by particulate matter. Then, the pollutants return into the waters via
the desorption mechanism [6,30]. Sediments constitute an important part of the aquatic
ecosystem because they promote biodiversity, provide a habitat for numerous benthic
creatures, and help to preserve water quality [31,32]. In addition, sediments meticulously
record evidence related to human activity and serve as important factors for assessing
pollution sources, history, dispersion, and environmental risk [33–36]. Sediments recognize
as a critical indicator for pollutants monitoring in aquatic ecosystems [37–39]. Sediment
analysis is chosen for researching metals for two main reasons [40]. (1) The metal concentra-
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tions in sediment are higher than that of the linked water body, which improves the test’s
accuracy and validity [41]. (2) Regardless of environmental changes, metal accumulation
in sediment is relatively constant [30,42]. The distribution of metals in sediments adjacent
to the populated areas could be applied to study their effects on ecosystems and evaluate
the environmental risks caused by waste discharged [12,43,44].

The study of metal concentrations in sediment assists environmental managers in
better understanding how elements behave in aquatic ecosystems. It also aids in the evalu-
ation of metal pollution in sediments which helps them to monitor water quality [44,45].
So, several geochemical and statistical methods are established to assess the quality of
the aquatic ecosystem and predict their sustainability by evaluating the environmental
risk of metals in surface sediments based on total concentration and toxicity [46–48]. For
single-element contamination evaluation, the CF, EF, and Igeo are commonly used. The
Dc, PLI, and RI have been created to assess the combined danger of several elements in
sediments [49,50]. The integration of these assessment approaches can effectively improve
the precision of heavy metal contamination evaluations in surface sediments [44,51].

The multivariate modelling processing of environmental data, e.g., principal com-
ponent analysis (PCA) and cluster analysis (CA), is commonly applied to identify po-
tential pollution sources that affect aquatic systems. It represents an effective approach
to natural resource management and assists in selecting the best solutions to pollution
problems [52–54]. The PCA and CA are used to classify metals or investigated parameters
into distinct factors/groups based on the predicted source of contribution and can assist in
the organization and simplification of huge data sets to provide useful insight [55].

Calculating the PLI, RI, and Dc necessitates a series of calculations that demand a
long time and great effort to transform numerous numbers from the sediment’s metals
data into a single value that describes the level of contamination. For that, both PLSR and
MLR methods were used in this study to solve this issue. They are common approaches to
express a linear relationship between independent and dependent variables [56]. They can
combine data from many metals into a single index to improve the accuracy of a measured
variable’s prediction. Moreover, for resolving substantially multicollinear and noisy vari-
ables and efficiently assessing observed parameters, PLSR has been proposed [57]. Many
collinear components can be reduced to a few non-correlated latent factors to minimize
data overfitting or underfitting and reduce redundant data using PLSR [58,59]. Based
on the advantages of these methods, the PLI, RI, and Dc and other pollution indices can
be simultaneously computed from numerous heavy data using these methods. To the
best of our knowledge, few studies have compared the performance of PLSR and MLR in
predicting pollution indices using metals data.

Therefore, the objectives of this research were to (i) recognize the current situation
of heavy metal concentrations and their spatial distributions in Qaroun Lake surface sed-
iments; (ii) estimate the pollution level and environmental risks of heavy metals in the
surface sediment of Qaroun Lake by calculating contamination factor (Cf), enrichment fac-
tor (EF), geo-accumulation index (Igeo), degree of contamination (Dc), pollution load index
(PLI), and potential ecological risk index (RI); (ii) explore the potential pollution sources of
heavy metals by using CA and PCA techniques; and (iv) evaluate the performance of PLSR
and MLR models based on investigated potentially harmful elements to predict the three
pollution indices, PLI, RI, and Dc.

2. Material and Methods
2.1. Study Area

Geographically, Qaroun Lake is sited in the northern deepest part (43 m below sea
level) of the El Fayoum Depression, located in the Western Desert of Egypt, about 95 km
southwest of Cairo. It exists between longitudes of 30◦24′ and 30◦50′ E and latitudes 29◦24′

and 29◦33′ N (Figure 1). Qaroun Lake is an elongated rectangular inland saline lake, about
45 km length from east to west and 5.7 km width from south to north, and its water depth
ranges from 1 to 8.8 m. Only 18% of the lake area has a water depth greater than 5 m, while
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over 67% of the lake area falls between the 2 and 5 m depth contours [60]. Qaroun Lake
covers a surface area of 235 km2 and it has a volume of water 1,100,000,000 m3 [16,61].
It is surrounded to the east and south by several human activities and land uses, such
as agricultural (represent area 28.20% of El-Fayoum province) and industrial activities
(Kom Oshim industrial zone, Amisal salt production company). Further, urbanized areas
(covered an area 4.07% of El-Fayoum province), entertainment activities (tourist resorts),
aquaculture, and a dense roads network [20]. It is the third-largest lake in Egypt. It is
distinguished by the presence of El Qarn El Zahabi Island, which is located in the middle
of the lake, covers 1.5 km2, and is a popular nesting spot for birds. The lake’s water comes
directly from the El-Fayoum province’s agricultural drainage system. Another indirect
water source comes from the groundwater seepage from the surrounding cultivated land.
Qaroun lake receives its water primarily from two drains, namely El-Bats and El-Wadi,
providing about 338 million m3/year [15,16,19,20]. Further, in the southern regions of the
lake, a total of 12 secondary drains discharge into it (Figure 1).
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Geologically, in the Fayoum area, the stratigraphic succession extends from Qua-
ternary to Tertiary. The Fayoum Depression excavate in Middle Eocene rocks, which
composed of gyps-ferrous shale, white marls, limestone, and sandstone [62]. Quaternary
deposits formed of eolian, Nilotic (alluvial sediments), and lacustrine deposits surround the
Qaroun Lake. Sands and gravels of various sizes intercalated with calcareous silt and clay
content in alluvial sediments. Claystone, gypsum, and calcareous minerals intercalated
with ferruginous sandy silt in the lacustrine deposits [63]. The bottom sediments of eastern
and southern sides of the Qaroun Lake composed fine fractions (less than 63 microns) of
about > 70%. The organic matter in the lake bottom sediment ranged between 3 and 17, the
lake water salinity varied from 28 g/L to 40 g/L, and surface temperature ranged between
22 to 25 ◦C, while the drain water salinity was recorded to be 0.6 to 2 g/L. The sand dunes
composed more than 1% of heavy minerals [19,21,24].

2.2. Sampling and Analyses

The representative bottom sediment samples of Qaroun Lake were collected using a
Van Veen Grab sampler (US EPA, [64]) in the autumn of two investigated years in 2018
and 2019 from 16 sites (three samples at each site) (Figure 1). The collected samples
were obtained from depths ranging between 2 and 5 m. The geographical information of
each sampling location was identified using a hand-held Global Positioning System (GPS)
device (Garmin/eTrex Vista HCx/personal navigator). The obtained sediment samples
were promptly sealed in plastic bags and transferred to the laboratory in an ice-filled



J. Mar. Sci. Eng. 2021, 9, 1443 5 of 27

field box. In the laboratory, sediment samples were air-dried to reach the constant weight
before being sieved through 2.0 mm sieves. It was then ground with an agate mechanical
mill (Retsch RM200) and stored in glass bottles to use in geochemical studies. Data were
referred to the sediments of the eastern and southern sides of the Lake with fine fractions
of about >70% less than 63 microns.

Sediment samples were acid-digested according to the US EPA 3052 method [65],
using the Speedwave microwave digestion system. Deionized water, concentrated nitric
acid, and concentrated hydrofluoric acid were utilized as reagents. The volume was
diluted to 50 mL in the end. The current study adopted quality control methods, such
as replicating samples or reference material and employing standard sediment reference
materials (GBW07333) provided by China’s Second Institute of Oceanography (SOA).
Experiment vessel contamination was avoided by pre-cleaning and immersing the used
vessel for at least 24 h in dilute nitric acid, followed by soaking and rinsing with deionized
water. For precision testing, blanks were prepared in the same way and with the same
reagents. Additionally, before analysis, the daily performance of the ICP-MS was examined
to ensure that the machine was operating according to the manufacturer’s specifications.

The concentration of elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Li, Mg, Mn, Mo,
Ni, P, Pb, Sb, Se, Zn, and Zr were quantified according to inductively coupled plasma mass
spectra (ICAP TQ ICP-MS Thermo Fisher Scientific Inc., Waltham, MA, USA). The labora-
tory analyses were carried out at the Environmental Geology Lab (EGL) and Environmental
and Food Lab (EFL), University of Sadat City (ISO/IEC 17025/2017).

2.3. Environmental Pollution Indices

The anthropogenic toxic metals contamination in bottom surface sediments of Qaroun
lake were assessed by applying ecological risk assessment approaches as Cf, Dc, EF, Igeo,
PLI, and RI.

2.3.1. Contamination Factor and Degree of Contamination

According to Håkanson [66], the Cf and Dc are determined based on metal concentra-
tion readings in sediment. A contamination factor is an excellent approach for monitoring
sediment pollution [67]. The Cf was calculated by dividing the concentration of each ele-
ment in sediment by the background concentration (Equation (1)). Dc is another Cf -based
index that can be defined as the total of Cfs for a specific place (Equation (2)).

C f =
Mx

Mb
(1)

Dc = ∑i=n
i=1 C f (2)

where Mx is the metal concentration value in the investigated sediment, Mb is the preindus-
trial reference value of the same metal (geochemical background value), and n is the number
of the investigated elements in the sediment sample (in the present work n = 21). Since
there were no local geochemical background values established for the metal abundances
of the upper continental crust, Taylor et al. [68] were considered for their geochemical
background. The descriptive terminology of the contamination factor and the degree of
contamination are listed in Table 1.

2.3.2. Enrichment Factor

The EF is a successful tool to assess the impact of anthropogenic activities in sedi-
ments [69–71]. The EF values were calculated using the following Equation (3).

EFx =
(Cx/CAl) sample

(Cx/CAl) background
(3)

where (Cx/CAl) sample is the ratio of measured metal to Al in the tested sample and
(Cx/CAl) background is the ratio value of the metal to Al in the natural geochemical back-
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ground. The anthropogenic contamination forecast for the tested element improves by
applying normalization against the tested element background value in the enrichment fac-
tor [72]. The aluminium (Al), iron (Fe), manganese (Mn), and titanium (Ti) are the common
elements used as normalized elements in the enrichment factor calculation [28,73,74]. In
the present study, Al was considered as a normalization element since the mobility of Al
was very small [67]. Seven contamination classes were generally recognized according to
the value of enrichment factors (Table 1).

Table 1. Classes of contamination factor (Cf), degree of contamination (Dc), enrichment factor (EF),
geo-accumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI).

Contamination Indices Indices Values Classes Reference

Cf

≤1 Low

[66]
1 < CF≤ 3 Moderate
3 < CF ≤ 6 Considerable
6 < CF Very high

Dc

Dc < 8 Low

[66]
8 < Dc < 16 Moderate
16 < Dc < 32 Considerable
Dc > 32 Very high

EF

<1 No enrichment

[75]

1–3 Minor enrichment
3–5 Moderate enrichment

5–10 Moderately severe
enrichment

10–25 Severe enrichment
25–50 Very severe enrichment
>50 Extremely severe enrichment

Igeo

Igeo ≤ 0 Unpolluted

[76,77]

0 < Igeo ≤ 1 Unpolluted to moderately
polluted

1 < Igeo ≤ 2 Moderately polluted

2 < Igeo ≤ 3 Moderately to strongly
polluted

3 < Igeo ≤ 4 Strongly polluted

4 < Igeo ≤ 5 Strongly to extremely
polluted

5 < Igeo Extremely polluted

PLI
1 > PLI Unpolluted

[78]1 < PLI Polluted

RI

RI < 150 Low ecological risk

[66]
150 < RI < 300 Moderate ecological risk
300 < RI < 600 Considerable ecological risk
600 < RI Very high ecological risk

2.3.3. Geo-Accumulation Index

The Igeo is widely used for assessing element contamination in sediment [8,79].
Müller [76] proposed the following Equation (4) to calculate the Igeo, which is used to
assess metal contamination levels in sediment samples.

Igeo = log2 (
Cn

1.5Bn
) (4)

where Cn represents the concentration of heavy metal in the sediment that has been
measured. Bn is an element’s geochemical background. For possible differences in the
background data due to lithological variations, a factor of 1.5 was applied. The Igeo was
divided into seven categories listed in Table 1.
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2.3.4. Pollution Load Index

The PLI is one of the most effective approaches for evaluating sediment pollution
status. It presents a cumulative indication of a sample’s overall level of heavy metal pollu-
tion [69,76]. It was calculated for each sediment sampling site of Qaroun lake according to
the following Equation (5) introduced by Tomlinson et al. [80].

PLI = (Cf1 × Cf2 × Cf3 × . . . × Cfn)1/n (5)

where Cf is the contamination factor for measured metals in sediment samples; n is the
number of metals tested in each sample (n = 21). The PLI for Qaroun Lake was calculated
as the nth root of the multiplications of PLI for each sediment sampling site (Equation. (6)).
Based on the PLI results, the investigated sediments can be divided into two groups:
nonpolluted (PLI < 1) and polluted (PLI > 1) (Table 1).

PLI = (PLI1 × PLI2 × PLI3 × . . . × PLIn)1/n (6)

2.3.5. Potential Ecological Risk Index

The RI was created by Håkanson [66] and provided in the following Equations (7) and (8).
It was used to quantify the ecological risk of heavy metals in sediment [20,81]. The RI
assesses the potential ecological danger posed by heavy metals in sediment by representing
the susceptibility of various biological populations to hazardous chemicals [43,82].

RI = ∑n
1 Er (7)

Er = Tr × Cf (8)

where Er is the potential ecological risk factor of the individual element and Tr is the toxic
response factor suggested by Håkanson [66] for the metals. The RI is classified into four
categories, ranging from low to very high ecological risk, as shown in Table 1.

2.4. Data Analysis

Statistical analysis was utilized to appraise the complex eco-toxicological processes.
Hence, it showed the relationship and interdependence among the variables and their re-
spective weights [83]. The data results of metals in the Qaroun lake sediment samples were
processed by implementing the descriptive statistical parameters such as minimum (min),
maximum (max), mean and standard deviation (SD). The statistical analyses of the data
were carried out using PAST 4.07 (Natural History Museum, University of Oslo). The
maps were created with GIS methodology version 10.2.1. The Pearson correlation coeffi-
cient was used to identify correlations between the geochemical properties of sediment
samples [84–86]. Moreover, the significance thresholds were detected at 0.05 and 0.001
of p-value. Additionally, their relationships and likely causes were evaluated by using
multivariate statistical methods such as principal component analysis (PCA) and cluster
analysis (CA). CA (Ward’s method) was used to assess the similarities and differences
between sampling sites in terms of metal concentration [84]. CA and PCA were used to
find a likely source of metals as well as factors that influence their concentration and spatial
dispersion the most [87–89].

2.5. Partial Least-Square Regression (PLSR) and Multiple Linear Regression (MLR)

The PLSR and MLR models were tested in this study as new approaches to assess
the three pollution indices (PLI, RI and Dc). Both models were created using version
10.2 of the unscramble X program (CAMO Software AS, Oslo, Norway). The PLSR and
MLR model included the investigated 21 elements in this study as input variables (inde-
pendent variables) to predict the PLI, RI, and Dc as output variables (dependent variables).

PLSR was used in conjunction with leave-one-out cross-validation (LOOCV) to link
the input variables to the output variables. Choosing the optimal number of latent variables
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(LVs) to represent the calibration data without overfitting or underfitting is an important
step in PLSR analysis. To improve the robustness of the results, random 10-fold cross-
validation was applied to the datasets.

For the MLR, the regression was used to calculate the parameters using the least-
square approach, which minimized the sum of the errors squared.

The performance of the PLSR and MLR in predicting the three pollution indices
for calibration (Cal.) and validation (Val.) models were assessed using four criteria: (1)
R2 coefficient; (2) root mean square error (RMSE); (3) mean absolute deviation (MAD);
(4) Accuracy (ACC) of the models. The best models were selected based on the least RMSE
and MAD as well as the highest R2 and Acc. The R2, RMSE, MAD, and ACC were calculated
using Equations (9)–(12), respectively.

R2 = 1− ∑n
i=1(PIsoi − PIsfi)

2

∑n
i=1(PIsoi)

2 (9)

RMSE =

√
∑n

i=1(PIsoi − PIsfi)
2

n
(10)

MAD =
∑n

i=1|PIsoi − PIsfi|
n

(11)

Acc = 1− abs
(

mean
PIsfi − PIsoi

PIsoi

)
(12)

The measured value is PIsoi, the number of data points is n, and the predicted value
is PIsfi.

3. Results
3.1. Distribution of Elements

The metal concentrations of sediment samples were collected from Qaroun Lake in
two investigated years, 2018 and 2019, in terms of statistical description, as shown in
Table 2. Among the twenty-one examined metals, the mean concentrations values in the
sediment samples increased in the order of Mo, Se, Pb, Cd, Sb, Hf, Co, Ni, As, Li, Cu,
Zn, Cr, Ga, Ba, Mn, Mg, P, Zr, Fe, and Al (Table 2). Tables S1 and S2 showed the average
concentration values of metals in Qaroun Lake’s bottom sediment over two years. The
Al and Fe concentration values decreased in the collected samples from the western and
northwest sides of the lake (sites no. 10, 11, and 12) and increased in the eastern side
sediments. The mentioned metals recorded the highest percentage in site no. 8. Zirconium
had a distribution trend like aluminium and iron. It ranged from 0.21% in sample no. 10 to
1.23% in site no. 3. The sediment samples of the eastern part of Qaroun Lake had recorded
the highest concentration values of Cd, Co, Cr, Cu, Ni, Pb, Zn, Mn, Hf, and Ga. However,
the lowest concentration values of P, Se, and Mg were listed in the sediment of the eastern
side of the Lake. Except for Se, the samples collected from the western part of the lake
contain the minimum concentration values of Cd, Co, Cr, Cu, Pb, Zn, Sb, Mn, Hf, and
Ba. The middle part sediment samples of the lake indicated the maximum concentration
values of metals such as P, Sb, As, Mg, Ba, Li, and Mo. The comparison of results for the
two investigated years, 2018 and 2019, showed a non-significant change in the average
concentration of Al and Fe and a noticeable increase in the average concentration of As,
Ba, Cd, Cr, Cu, Ga, Hf, Li, Mn, Sb, P, Pb, Se, and Zr. Meanwhile, Co, Mg, Mo, Ni, and Zn
average concentrations recorded decreasing average values.
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Table 2. Statistical description of metal concentrations in ppm, except for aluminium, iron, and
zirconium which are in %.

Metal Concentrations Values
Al As Ba Cd Co Cr Cu Fe Ga Hf Li

First year 2018 (n = 48)
Min 0.34 3.37 55.4 3.23 2.05 6.07 3.01 0.23 28.1 3.92 10.3
Max 2.17 33.5 295 7.81 19.6 74.3 69.1 1.82 290 20.0 40.0
Mean 1.31 18.3 167 5.12 11.6 34.6 22.4 0.89 152 9.08 20.1

SD 0.49 8.21 74.8 1.10 5.33 19.0 16.0 0.49 67.7 4.11 6.85

Second year 2019 (n = 48)
Min 0.31 4.59 45.6 3.33 0.79 6.55 3.60 0.21 36.3 3.73 12.9
Max 2.13 36.5 286 7.38 22.5 72.2 68.3 1.89 324 18.4 38.1
Mean 1.30 18.8 168 5.25 11.5 34.7 22.5 0.89 156 9.55 20.1

SD 0.51 8.87 78.3 1.02 5.08 18.9 16.0 0.48 71.0 4.02 6.72

Data across two years (n = 96)
Min 0.31 3.37 45.6 3.23 0.79 6.07 3.01 0.21 28.1 3.73 10.3
Max 2.17 36.5 295 7.81 22.5 74.3 69.1 1.89 324 20.01 40.0
Mean 1.31 18.5 168 5.18 11.5 34.6 22.4 0.89 154 9.32 20.1

SD 0.49 8.41 75.3 1.04 5.48 18.7 15.8 0.48 68.3 4.00 6.67

Metal concentrations values
Mg Mn Mo Ni P Pb Sb Se Zn Zr

First year 2018 (n = 48)
Min 685 43.7 0.06 1.89 2699 0.00 0.01 0.01 0.01 0.21
Max 1367 716 4.12 32.5 4292 10.6 13.1 7.85 92.6 1.19
Mean 1030 298 1.36 12.5 3118 4.06 6.42 1.96 20.9 0.70

SD 181 170 1.27 8.46 405 3.71 3.80 2.63 23.7 0.29

Second year 2019 (n = 48)
Min 708 48.3 0.00 1.44 2695 0.00 0.00 0.00 0.00 0.23
Max 1325 787 5.92 34.2 4393 11.75 12.9 8.16 88.6 1.22
Mean 1022 316 1.25 12.3 3183 4.10 6.54 1.98 20.8 0.72

SD 160 188 1.46 9.00 404 3.79 3.42 2.69 23.2 0.31

Data across two years (n = 96)
Min 685 43.7 0.00 1.44 2695 0.00 0.00 0.00 0.00 0.21
Max 1367 787 5.92 34.2 4393 11.8 13.1 8.16 92.55 1.22
Mean 1026 307 1.30 12.4 3151 4.08 6.48 1.97 20.85 0.71

SD 168 177 1.35 8.59 399 3.69 3.56 2.62 23.07 0.29

3.2. Environment Pollution Indices
3.2.1. Contamination Factor (Cf)

Table 3 showed the descriptive statistical data of the Cf of sediment samples. Accord-
ing to the Cf average results, Qaroun Lake sediment samples classified as low Cf (Cf < 1)
for Al, Ba, Cr, Fe, Mg, Mn, Pb, Co, Cu, Ni, Mo, and Zn. However, the Cf of As, Cd, Sb, Se,
Ga, and Zr demonstrated very high contamination (6 < Cf) in the studied samples. The
categories of moderate and considerable contamination were recorded for Li, P, and Hf.
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Table 3. Statistical description of contamination factors (Cf) in Qaroun Lake sediment over two years.

Contamination Factor Values
Al As Ba Cd Co Cr Cu Fe Ga Hf Li

First year 2018 (n = 48)

Min 0.04 1.87 0.11 33.0 0.12 0.07 0.12 0.06 1.56 1.31 0.52
Max 0.27 18.6 0.59 79.7 1.15 0.87 2.76 0.52 16.1 6.67 2.00
Mean 0.16 10.2 0.33 52.2 0.68 0.41 0.90 0.26 8.47 3.03 1.01

SD 0.06 4.56 0.15 11.2 0.31 0.22 0.64 0.14 3.76 1.37 0.34

Second year 2019 (n = 48)

Min 0.04 2.55 0.09 34.0 0.05 0.08 0.14 0.06 2.02 1.24 0.65
Max 0.26 20.3 0.57 75.3 1.33 0.85 2.73 0.54 18.0 6.14 1.91
Mean 0.16 10.5 0.34 53.6 0.68 0.41 0.90 0.25 8.66 3.18 1.01

SD 0.06 4.93 0.16 10.4 0.34 0.22 0.64 0.14 3.95 1.34 0.34

Data across two years (n = 96)

Min 0.04 1.87 0.09 33.0 0.05 0.07 0.12 0.06 1.56 1.24 0.52
Max 0.27 20.3 0.59 79.7 1.33 0.87 2.76 0.54 18.0 6.67 2.00
Mean 0.16 10.3 0.33 52.9 0.68 0.41 0.90 0.25 8.56 3.11 1.01

SD 0.06 4.67 0.15 10.7 0.32 0.22 0.63 0.14 3.79 1.33 0.33

Contamination Factor values
Mg Mn Mo Ni P Pb Sb Se Zn Zr

First year 2018 (n = 48)

Min 0.03 0.04 0.04 0.04 2.45 0.00 0.05 0.20 0.00 12.5
Max 0.06 0.72 2.75 0.65 3.90 0.66 65.4 157 1.30 72.2
Mean 0.04 0.30 0.90 0.25 2.84 0.25 32.1 39.1 0.29 42.6

SD 0.01 0.17 0.85 0.17 0.37 0.23 19.0 52.6 0.33 17.5

Second year 2019 (n = 48)

Min 0.03 0.05 0.00 0.03 2.45 0.00 0.00 0.00 0.00 13.8
Max 0.06 0.79 3.95 0.68 3.99 0.73 64.3 163 1.25 73.8
Mean 0.05 0.32 0.84 0.25 2.89 0.26 32.7 39.5 0.29 43.5

SD 0.01 0.19 0.97 0.18 0.37 0.24 17.1 53.8 0.33 19.0

Data across two years (n = 96)

Min 0.03 0.04 0.00 0.03 2.45 0.00 0.00 0.00 0.00 12.5
Max 0.06 0.79 3.95 0.68 3.99 0.73 65.4 163 1.30 73.8
Mean 0.04 0.31 0.87 0.25 2.86 0.25 32.4 39.3 0.29 43.0

SD 0.01 0.18 0.90 0.17 0.36 0.23 17.8 52.3 0.32 18.0

3.2.2. Enrichment Factor (EF)

The EF descriptive statistical data of sediment samples were listed in Table 4. Generally,
the mainstream metals in sediment samples demonstrated a wide range of enrichment
from no enrichment to severe and extremely severe enrichment. Obtained sediments from
the eastern side of Qaroun Lake were extremely severely enriched in Cd, As, Ga, Zr, Sb,
Se, and P according to Hanif et al.’s [75] classification of EF. Metals such as Ba, Co, Cr, Fe,
Mn, Pb, Zn, and Cu ranged from minor enrichment to moderately severe enrichment in
the sediment under investigation. The Qaroun Lake sediment samples were not enriched
in Mg and they ranged from moderately severe enrichment to very severe enrichment in
Li, Mo, Ni, and Hf.
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Table 4. Statistical description of Enrichment Factor (EF) in Qaroun Lake sediment over two years.

Enrichment Factor Values in Sediment
Al As Ba Cd Co Cr Cu Fe Ga Hf Li

First year 2018 (n = 48)

Min 1.00 8.91 0.90 239 1.80 0.87 1.46 0.73 18.9 14.0 4.06
Max 1.00 349 3.50 779 8.61 4.41 12.4 3.01 110 35.9 17.8
Mean 1.00 86.9 2.14 362 4.24 2.45 5.24 1.54 55.7 19.2 6.99

SD 0.00 84.2 0.71 139 1.87 1.00 2.54 0.57 27.0 6.00 3.42

Second year 2019 (n = 48)

Min 1.00 11.8 0.81 231 0.58 0.96 1.79 0.76 25.1 13.7 4.02
Max 1.00 394 3.27 874 7.94 4.56 11.8 2.90 110 32.0 18.2
Mean 1.00 92.7 2.15 379 4.22 2.48 5.32 1.56 57.2 20.2 7.01

SD 0.00 94.6 0.74 158 1.87 0.97 2.47 0.53 26.7 4.72 3.36

Data across two years (n = 96)

Min 1.00 8.91 0.81 231 0.58 0.87 1.46 0.73 18.9 13.7 4.02
Max 1.00 394 3.50 874 8.61 4.56 12.4 3.01 110 35.9 18.2
Mean 1.00 89.8 2.14 370 4.23 2.46 5.28 1.55 56.5 19.7 7.00

SD 0.00 88.2 0.71 147 1.84 0.97 2.46 0.54 26.4 5.33 3.34

Enrichment Factor values in sediment
Mg Mn Mo Ni P Pb Sb Se Zn Zr

First year 2018 (n = 48)

Min 0.17 0.88 0.47 0.31 10.4 0.00 0.61 0.89 0.00 134
Max 0.81 5.65 21.0 2.91 69.0 3.59 531 1948 5.84 451
Mean 0.32 3.11 6.43 1.50 21.6 1.36 203 419 1.71 272

SD 0.17 1.51 6.83 0.79 14.4 1.22 125 668 1.67 81.3

Second year 2019 (n = 48)

Min 0.18 1.00 0.00 4.02 10.0 0.00 0.00 0.00 0.00 121
Max 0.96 6.37 26.4 18.2 73.4 3.97 519 2032 5.40 452
Mean 0.34 3.33 6.34 7.01 22.3 1.36 214 435 1.70 281

SD 0.20 1.68 7.32 3.36 15.5 1.24 121 689 1.66 86.4

Data across two years (n = 96)

Min 0.17 0.88 0.00 0.31 10.0 0.00 0.00 0.00 0.00 121
Max 0.96 6.37 26.4 18.2 73.4 3.97 531 2032 5.84 452
Mean 0.33 3.22 6.38 4.25 22.1 1.36 209 427 1.71 277

SD 0.18 1.57 6.96 3.69 14.7 1.21 121 668 1.64 82.6

3.2.3. Geoaccumulation Index (Igeo)

Table 5 shows the descriptive statistical data of Igeo in studied sediment samples.
Müller [76,77] classified the sediment into seven categories (Table 1) according to the geo-
accumulation index values from unpolluted to extremely polluted. The studied Qaroun
Lake sediment samples were unpolluted by Al, Ba, Co, Cr, Fe, Mg, Mn, Ni, Pb, and Zn.
However, sediment samples ranged from strongly polluted to extremely polluted by Cd, Zr,
Sb, and Se. Moreover, samples varied from unpolluted to moderately polluted by Hf, Mo,
Li, and P. For As and Ga in the examined sediment samples varied between moderately
polluted to strongly polluted.



J. Mar. Sci. Eng. 2021, 9, 1443 12 of 27

Table 5. Statistical description of Geoaccumulation index (Igeo) in Qaroun Lake sediment over
two years.

Geoaccumulation Index Values in Sediment
Al As Ba Cd Co Cr Cu Fe Ga Hf Li

First year 2018 (n = 48)

Min −5.15 0.32 −3.76 4.46 −3.64 −4.39 −3.64 −4.54 0.06 −0.20 −1.54
Max −2.47 3.63 −1.35 5.73 −0.38 −0.78 0.88 −1.53 3.42 2.15 0.42
Mean −3.33 2.56 −2.32 5.09 −1.37 −2.16 −1.10 −2.79 2.30 0.88 −0.64

SD 0.67 0.87 0.74 0.30 0.95 1.01 1.12 0.91 0.87 0.63 0.45

Second year 2019 (n = 48)

Min −5.27 0.77 −4.04 4.50 −5.01 −4.28 −3.38 −4.62 0.43 −0.27 −1.21
Max −2.50 3.76 −1.39 5.65 −0.18 −0.82 0.87 −1.47 3.58 2.03 0.35
Mean −3.34 2.61 −2.34 5.13 −1.46 −2.15 −1.08 −2.78 2.35 0.96 −0.64

SD 0.71 0.82 0.79 0.29 1.20 1.00 1.08 0.91 0.81 0.64 0.45

Data across two years (n = 96)

Min −5.27 0.32 −4.04 4.46 −5.01 −4.39 −3.64 −4.62 0.06 −0.27 −1.54
Max −2.47 3.76 −1.35 5.73 −0.18 −0.78 0.88 −1.47 3.58 2.15 0.42
Mean −3.34 2.59 −2.33 5.11 −1.41 −2.15 −1.09 −2.79 2.33 0.92 −0.64

SD 0.68 0.84 0.75 0.29 1.07 0.99 1.08 0.89 0.83 0.62 0.44

Geoaccumulation index values in sediment
Mg Mn Mo Ni P Pb Sb Se Zn Zr

First year 2018 (n = 48)

Min −5.65 −5.10 −5.23 −5.31 0.71 −11.2 −4.91 −2.91 −13.4 3.06
Max −4.66 −1.07 0.87 −1.21 1.38 −1.18 5.45 6.71 −0.20 5.59
Mean −5.09 −2.60 −1.57 −3.00 0.91 −4.24 3.72 2.02 −4.26 4.70

SD 0.26 1.00 1.88 1.24 0.17 3.66 2.46 3.72 3.94 0.67

Second year 2019 (n = 48)

Min −5.61 −4.96 −4.81 −5.70 0.71 −6.32 2.55 −0.10 −4.18 3.06
Max −4.70 −0.93 1.40 −1.13 1.41 −1.03 5.42 6.77 −0.26 5.59
Mean −5.09 −2.53 −1.16 −3.10 0.94 −2.55 4.38 4.52 −2.51 4.70

SD 0.23 1.02 1.59 1.39 0.17 1.41 0.75 2.10 1.17 0.67

Data across two years (n = 96)

Min −5.65 −5.10 −5.23 −5.70 0.71 −11.23 −4.91 −2.91 −13.38 3.06
Max −4.66 −0.93 1.40 −1.13 1.41 −1.03 5.45 6.77 −0.20 5.59
Mean −5.09 −2.57 −1.38 −3.05 0.92 −3.49 4.04 2.98 −3.48 4.70

SD 0.24 0.99 1.74 1.30 0.17 2.96 1.85 3.38 3.11 0.66

3.2.4. Degree of Contamination (Dc), Pollution Load Index (PLI), and Potential Ecological
Risk Index (RI)

The Dc, PLI, and RI descriptive statistical results of sediment samples are presented in
Table 6. All tested sediment samples were very highly contaminated by metals agreeing
with the data of (Dc) in Table 7. While the results of PLI showed that about 59% of the
Qaroun Lake sediment samples were polluted (PLI > 1), 41% of samples were unpolluted
(PLI < 1), as shown in Table 7. Finally, the results of the potential ecological risk index
showed that all analyzed samples were classified as very high ecological risk (RI > 600) in
Table 7. Figures 2 and 3 show the spatial distribution of Dc, PLI, and RI of tested metals in
Qaroun Lake sediment samples in years 2018 and 2019. The samples of the eastern and
middle parts of the lake and near the mouths of drains proved extremely polluted.
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Table 6. Statistical description of the degree of contamination (Dc), pollution load index (PLI), and
potential ecological risk index (RI) in Qaroun Lake sediment over two years.

Dc PLI RI

First year 2018 (n = 48)

Min 149 0.20 1139
Max 297 1.60 2478

Mean 196 0.97 1679
SD 44.0 0.37 330

Second year 2019 (n = 48)
Min 148 0.35 1176
Max 309 1.82 2353

Mean 200 1.07 1725
SD 44.0 0.39 303

Data across two years (n = 96)
Min 148 0.20 1139
Max 309 1.82 2478

Mean 198 1.02 1702
SD 43.3 0.38 313

Table 7. Assessment of surface sediments of Qaroun Lake according to categories of degree of contamination (Dc), pollution
load index (PLI), and potential ecological risk index (RI).

Indices Classes
Sediment Samples (%)

1st Year (2018) 2nd Year (2019) Across Two Years

Degree of
Contamination

(Dc)

Low 0 0 0
Moderate Dc 0 0 0

Considerable Dc 0 0 0
Very high Dc 100% (48 samples) 100% (48 samples) 100% (96 samples)

Pollution Load Index
(PLI)

Unpolluted 37.5% (18 samples) 43.75% (21 samples) 40.63% (39 samples)
Polluted 62.5% (30 samples) 56.25% (27 samples) 59.38% (57 samples)

Ecological Risk Index
(RI)

Low ecological risk 0 0 0
Moderate ecological risk 0 0 0

Considerable ecological risk 0 0 0
Very high ecological risk 100% (48 samples) 100% (48 samples) 100% (96 samples)

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 2. Spatial distribution maps of sediment quality indices: A. Degree of contamination (Dc); B. Pollution load index 
(PLI); and C. potential risk index (RI) in year 2018. 

 
Figure 3. Spatial distribution maps of sediment quality indices: (A) Degree of contamination (Dc); (B) Pollution load index 
(PLI); and (C) potential risk index (RI) in the year 2019. 

3.3. Correlation Matrix. 
Pearson correlation coefficient analysis shown in Figure 4 showed a strong positive 

correlation of Cd, Cr, Cu, Fe, Pb, Ni, Co, Li, Hf, Zr, Ba, and Mn with Al (r = 0.76, 0.73, 0.71, 
0.8, 0.54, 0.75, 0.61, 0.65, 0.83, 0.64, 0.64, and 0.51 respectively) and Sb, Cd, Cr, Cu, Pb, Zn, 
Ni, Co, Li, and Hf with Fe (r = 0.63, 0.89, 0.84, 0.92, 0.60, 0.82, 0.83, 0.81, 0.67, 0.89 respec-
tively); as well as Cr, Co, Ba, Zr, and Ga with Mn (r = 0.63, 0.53, 0.67, 0.74, 0.53 respectively) 
and Sb, Cd, Cr, Cu, Pb, Zn, Ni, Co, and Zr with Hf (r = 0.51, 0.89, 0.91, 0.93, 0.65, 0.77, 0.89, 
0.79, 0.68 respectively). Another significant relation of Zn with Sb (r = 0.66), Cd (r = 0.74), 

Figure 2. Spatial distribution maps of sediment quality indices: (A). Degree of contamination (Dc); (B). Pollution load index
(PLI); and (C). potential risk index (RI) in year 2018.



J. Mar. Sci. Eng. 2021, 9, 1443 14 of 27

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 2. Spatial distribution maps of sediment quality indices: A. Degree of contamination (Dc); B. Pollution load index 
(PLI); and C. potential risk index (RI) in year 2018. 

 
Figure 3. Spatial distribution maps of sediment quality indices: (A) Degree of contamination (Dc); (B) Pollution load index 
(PLI); and (C) potential risk index (RI) in the year 2019. 

3.3. Correlation Matrix. 
Pearson correlation coefficient analysis shown in Figure 4 showed a strong positive 

correlation of Cd, Cr, Cu, Fe, Pb, Ni, Co, Li, Hf, Zr, Ba, and Mn with Al (r = 0.76, 0.73, 0.71, 
0.8, 0.54, 0.75, 0.61, 0.65, 0.83, 0.64, 0.64, and 0.51 respectively) and Sb, Cd, Cr, Cu, Pb, Zn, 
Ni, Co, Li, and Hf with Fe (r = 0.63, 0.89, 0.84, 0.92, 0.60, 0.82, 0.83, 0.81, 0.67, 0.89 respec-
tively); as well as Cr, Co, Ba, Zr, and Ga with Mn (r = 0.63, 0.53, 0.67, 0.74, 0.53 respectively) 
and Sb, Cd, Cr, Cu, Pb, Zn, Ni, Co, and Zr with Hf (r = 0.51, 0.89, 0.91, 0.93, 0.65, 0.77, 0.89, 
0.79, 0.68 respectively). Another significant relation of Zn with Sb (r = 0.66), Cd (r = 0.74), 

Figure 3. Spatial distribution maps of sediment quality indices: (A) Degree of contamination (Dc); (B) Pollution load index
(PLI); and (C) potential risk index (RI) in the year 2019.

3.3. Correlation Matrix

Pearson correlation coefficient analysis shown in Figure 4 showed a strong posi-
tive correlation of Cd, Cr, Cu, Fe, Pb, Ni, Co, Li, Hf, Zr, Ba, and Mn with Al (r = 0.76,
0.73, 0.71, 0.8, 0.54, 0.75, 0.61, 0.65, 0.83, 0.64, 0.64, and 0.51 respectively) and Sb, Cd,
Cr, Cu, Pb, Zn, Ni, Co, Li, and Hf with Fe (r = 0.63, 0.89, 0.84, 0.92, 0.60, 0.82, 0.83,
0.81, 0.67, 0.89 respectively); as well as Cr, Co, Ba, Zr, and Ga with Mn (r = 0.63, 0.53,
0.67, 0.74, 0.53 respectively) and Sb, Cd, Cr, Cu, Pb, Zn, Ni, Co, and Zr with Hf (r = 0.51,
0.89, 0.91, 0.93, 0.65, 0.77, 0.89, 0.79, 0.68 respectively). Another significant relation of
Zn with Sb (r = 0.66), Cd (r = 0.74), Cr (r = 0.71), Cu (r = 0.92), Pb (r = 0.71), Ni (r = 0.81),
Co (r = 0.66), and Li (r = 0.54) was stated. However, As and Se showed a negative rela-
tion with Al (r = −0.61 and −0.58), Fe (r = −0.39 and −0.71), Mn (r = −0.38 and −0.62),
Hf (r = −0.58 and −0.64), Zn (r = −0.18 and −0.52), Cu (r = −0.51 and −0.67), Ni (r = −0.62
and −0.71), Ba (r = −0.66 and −0.34), Zr (r = −0.69 and −0.35), Cr (r = −0.49 and −0.77),
Pb (r = −0.33 and −0.48), Sb (r = −0.07 and −0.51), and Co (r = −0.49 and −0.78).
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3.4. Multivariate Statistical Analysis
3.4.1. Cluster Analysis

Figure 5 shows the dendrogram resulting from the cluster analysis of metal concen-
trations in Qaroun Lake sediments. There are four main groups of clustering that have
been detected in the CA results for tested elements. The first one is a grouping of the
metals Al, Fe, and Zr (Cluster I), and the second one is composed of P (Cluster II). The
third cluster (Cluster III) included Mg. The last group (Cluster IV) was further split into
two sub-clusters, one group containing Mn and the other one grouping Sb, Cd, Pb, Se, Mo
Ni, Co, Hf, As, Li Cr, Cu, Zn, Ba, and Ga.
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3.4.2. Principal Component Analysis

The results of a PCA for the 21 tested elements in Qaroun Lake sediment samples
are shown in Table 8 and Figure 6. Three significant components explain in total 99.776%
of the variance were selected. The first component (PC1) explained 80.998% of the total
variance was predominated by large positive loading of Al, Fe, and Zr (loading 0.69767,
0.66589, and 0.26369 respectively) especially from sampling sites S1, S2, S3, S6, S7, S8, S14,
and S16. The second principal component (PC2) explained 13.696% of the total variance
and mainly composed of P, Mn, Ba, Mg, Zn, and Ga (loading −0.09366, 0.032219, 0.016643,
−0.012688, −0.003363, and 0.0055782 respectively). The third (PC3) one explained 5.0824%
of the total variance.
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Table 8. Principal component analysis results.

Variable PC1 PC2 PC3

Mn 0.012694 0.032219 0.019371
Sb 0.000304 −0.00042 0.001246
As −0.0007 −0.00129 −0.00061
Cd 0.000138 −4.19 × 10−5 0.000193
Cr 0.002398 8.72 × 10−5 0.004486
Cu 0.001997 −0.00121 0.002912
Fe 0.66589 −0.61233 0.41661
Pb 0.000316 7.51 × 10−5 0.000377
Se −0.00028 9.63 × 10−5 −0.0002
Zn 0.002336 −0.00336 0.005295
Ni 0.001044 −0.00029 0.00068
Co 0.000573 −0.00023 0.001358
Mo 2.23 × 10−5 1.08 × 10−6 −0.00012
Li 0.000608 −0.00063 −0.001
Mg 0.009468 −0.01269 0.013791
Al 0.69767 0.31179 −0.64028
Ba 0.00606 0.016643 −0.00567
Zr 0.26369 0.71941 0.64055
P −0.00122 −0.09366 0.070073
Ga 0.003915 0.005578 0.024705
Hf 0.00054 8.70 × 10−5 0.000666
Eigenvalue 4.57 × 107 7.73 × 106 2.87 × 106

% Total variance 80.998 13.696 5.0824
Cumulative % variance 80.998 94.694 99.7764
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3.5. Performance Efficiency of PLSR and MLR Models to Predict the Degree of Contamination
(Dc), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI)

In Table 9, the calibration (Cal.) models presented the best performance efficiency to
predict the PLI, RI and Dc, based on the 21 selected elements, with R2

cal = 0.961–0.991 and
with ACCc = 0.981–0.999 for PLSR, and with R2

cal = 0.947–0.996 and with ACCc = 0.976–0.998
for MLR. The validation (Val.) models also presented the best performance efficiency, with
R2

val = 0.948–0.989 and with ACCv = 0.984–0.999 for PLSR, and with R2
val = 0.760–0.979

and with ACCv= 0.867–0.984 for MLR. The Val. Model of the PLSR method performed
better efficiency to predict the PLI than the Val. Model of the MLR method (Table 9;
Figures 7 and 8). In general, the Cal. and Val. models of the PLSR method showed barely
higher values of R2 and ACC and lower values of RMSE and MAD than the MLR method for
RI and Dc. For example, the R2

val, ACCv, RMSEv, and MADv for RI of PLSR models were
0.951, 0.989, 70.270, and 55.823, respectively, while the R2

val, ACCv, RMSEv, and MADv
for RI of MLR models were 0.930, 0.955, 117.487, and 93.095, respectively. The optimum
LVs were 3, 5, and 3 for the calibration PLSR models of PLI, RI, and Dc, respectively. A
comparison between measuring datasets, calibrating datasets, and validating datasets
for three pollution indices using the PLSR and MLR models is shown in Figures 7 and 8.
Hence, the results showed that there were no clear overfitting and underfitting between
measuring, calibrating, and validating datasets for PLI, RI and Dc. Moreover, the models of
Cal and Val of both PLSR and MLR showed good slopes between measured and predicted
data of the PLI, RI, and Dc and the value of the slope of the two models varied from 0.864
to 1.087. Thus, these results confirm that PLSR and MLR models including 21 elements as
input data can be used as alternative methods to estimate the three pollution indices.

Table 9. Results of calibration (R2
cal, RMSEC, MADc, and Accc), and ten-fold cross-validation (R2

val, RMSEv, MADv, and
Accv): PLSR and multiple linear regression MLR models of the relationships between several heavy metals and three
pollution load indices (PLI, RI and Dc). ***: p < 0.001.

Models Pollution Indices LVs
Calibration Validation

R2
cal RMSEc MADc ACCc R2

val RMSEv MADv ACCv

PLSR
Dc 3 0.991 *** 4.0165 3.1635 0.999 0.989 *** 4.367 3.504 0.999
PLI 3 0.961 *** 0.084 0.060 0.981 0.948 *** 0.099 0.076 0.984
RI 5 0.967 *** 59.097 47.025 0.988 0.951 *** 70.270 55.823 0.989

MLR
Dc - 0.996 *** 3.117 1.469 0.998 0.979 *** 7.575 5.688 0.984
PLI - 0.947 *** 0.086 0.073 0.989 0.760 *** 0.231 0.173 0.867
RI - 0.964 *** 70.664 51.031 0.976 0.930 *** 117.487 93.095 0.955
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4. Discussion

The fluctuation in heavy metal concentrations could be related to changes in ele-
ment sources and current physico-chemical conditions. Adsorption, precipitation, and
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redox changes all have an impact on the metal content in sediments [90]. The distri-
bution and concentrations of pollutants as the heavy metals in sediments variate with
grain size, percentage of silicates, oxide-hydroxide, carbonates, and organic matter in
sediments [25,91,92]. The sediments samples were collected from the eastern and middle
parts of the lake (at the mouth of El-Bates and El-Wadi drains, respectively) have more
organic matter than those of the western side, and the northern desert coast is far from
the El-Bates drain. A similar observation was previously confirmed by Soliman et al. [24],
El-Zeiny et al. [20], and El-Kady et al. [12]. The twenty-one examined element concentration
results showed that all environmental sensitive metals in the lake sediments appeared
to have gathered in front of the El-Bats and El-Wadi drains, indicating high levels in the
lake’s eastern and central regions. These locations receive a massive amount of agricultural,
industrial, aquacultural, and untreated sewage drainage water [12,16,17,93]. Previously,
Abdel Wahed et al. [18] documented a significant relationship between the toxic metals
in the lake sediments and those in the drain water. Further, Bai et al. [94] stated that
heavy metals, such as Cd, Cr, Cu, Ni, Pb, and Zn, were associated with anthropogenic
inputs of domestic sewage and agrochemical discharge. Therefore, the primary source of
environment-sensitive metals in the lake, especially in its eastern and northeastern sections,
comes from the El-Bats drain. The vulnerability of the eastern and southern side of the
lake caused by the accumulation of metals in lake sediments was previously confirmed
by El-Sayed et al. [10], Attia et al. [11], and El-Kady et al. [12]. Coagulation due to the
mixing of freshwater and saltwater at the inlet of drains that pours into the lake will lead
to appreciable sedimentation at the mouth of the drains and increase the percentage of fine
sediments and organic matter. Consequently, it may be an additional probable factor for
an elevated concentration of metals [92,95]. Organic compounds and oxidation-reduction
results had an impact on heavy metals dissolution and sorption [96]. Arid and semi-arid
locations with high evaporation rates, such as the research area, have oxidizing aquatic
ecosystems. In these areas, excessive salinity and pH are common [97,98]. Meanwhile, the
locations with a lot of organic matter, such as the areas under investigation near the inlet of
drains, represent a reducing aquatic ecosystem. Due to microbial reduction, reducing zones
may have low dissolved heavy metals, and provide the conditions for the precipitation of
heavy metals [99]. El-Zeiny et al. [20] stated a significant positive correlation between the
lake’s water electric conductivity and heavy metals in bottom sediment, which refers to
the salinity of water impact in the accumulation of heavy metals in the bottom sediments.
The salinity of lake water in the western and northwestern parts was higher than in the
eastern side [18]. Therefore, the lake water salinity may be a possible factor controlling
the concentration of metals in the eastern and middle parts of the lake. The high levels of
Al and Fe in the sediments studied suggested spontaneous contamination by terrigenous
material [9,100].

Environmental pollution indices represent an effective tool and guide for evaluating
the state of the sediments environment by using a comprehensive geochemical examina-
tion [101]. The pollution indices were grouped into six classes by Kowalska et al. [48] based
on the diverse aims of calculation, i.e., to offer information about: (1) contamination levels
from each of the metals studied on an individual basis (CF and Igeo); (2) the total amount
of pollution (Dc and PLI); (3) the heavy metal sources (EF); (4) the potential ecological
risk (RI); (5) the place with the greatest potential risk of accumulating heavy metal; (6) the
surface horizon’s capacity to accumulate heavy metals. The indices play a beneficial role
in determining the accumulation of metals caused by natural processes or anthropogenic
actions [48]. The results of (Cf) revealed that the sediment samples that were thoroughly
investigated have a wide range of metal contamination levels, ranging from very low to
very high. In the testing lake sediments, contamination levels of As, Cd, Sb, Se, Ga, and Zr
were very high. The findings of (Igeo), which demonstrated that the lake sediments were
significantly polluted by the same metals mentioned previously, confirmed these conclu-
sions. The EF value of naturally derived elements is almost less than one, whereas the EF
values of anthropogenically derived elements are several orders of magnitude higher [102].
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Excluding the Al normalized element, the EF results refer to all the investigated metals
having anthropogenic sources, and the Mg was the only investigated element that has a
natural origin. According to the Håkanson [66] criteria that were utilized to identify the
contamination degree (Dc) of the lake sediments resulting from all metals presence, the
results of Qaroun Lake sediments represent a very high level of contamination (Dc > 32).
The (PLI) outcomes revealed that the eastern and southern sides of the middle part of the
lake were polluted, and the western and west northern parts were still unpolluted. The
(RI) data showed that the bottom sediment of Qaroun Lake was a very high ecological risk
due to the presence of metals such as As, Cd, Cu, Ni, Co, and Pb, which are prospective
environmental poisonous metals.

Pearson’s correlation matrix is commonly used to determine the dimension of sim-
ilarity and to assess the interrelationships between the parts being studied [103]. The
correlation matrix revealed that some elements are highly associated with Al. Al is one
of the most well-preserved elements because of its high resistance to weathering and
erosion. These referred to these elements are mainly originated from natural sources. On
the other hand, they may be of anthropogenic sources and bind to clay minerals [104–106].
Furthermore, some metals are strongly correlated with Fe and Mn. Regarding the factors
controlling the distribution of the heavy metals, the results mentioned confirm that clay
minerals and (oxy) hydroxides of iron and manganese play roles in the distribution of
metals in examined samples. The metals investigated from the Qaroun Lake were nega-
tively linked with As, Se, and P, indicating that these metals may have different sources
and distributions.

To comprehend the origins of elements, a single correlation study is insufficient. As
a result, CA and PCA have been widely utilized to detect element sources in sediment
and their element properties [107]. The cluster analysis seems to be a useful technique to
collect a range of data sets by grouping them. Principal component analysis refers to an
interaction of various observed variables that explain the behaviour of a single process that
links these variables together [108]. The results of the PCA showed a high loading of Al, Fe,
and Zr in the three main components, and other tested metals in the same components had
significant positive correlations with Al, Fe, and Mn, indicating these metals had a natural
occurrence in sediment or from anthropogenic sources, with the distribution controlled
by clay minerals and oxides of iron and Mn. Moreover, the tested metals had a positive
correlation with the lake’s eastern and southern parts samples.

Therefore, all the previously mentioned finding speculates that metals in Qaroun
Lake sediment may originate from a mixed source (natural and anthropogenic). The
findings suggest that the potential environmental toxic elements As, Se, Cd, Zr, Hf, Ga,
Sb, Cr, Ni, and P in the bottom sediment samples of Qaroun Lake mainly originated from
anthropogenic activity. Human activities, such as industrial, agricultural, entertainment,
aquacultural, traffic, and urban, surrounding Qaroun Lake are essential and supposed
to be potential sources for the enrichment of toxic metals in lake sediments. The ceramic
and fertilizer industries may be expected sources for harmful elements, such as Zr, Hf,
and Ga. The anomalous concentrations of Zr and Hf may be due to natural resources,
such as heavy minerals in the bottom sediments. The heavy mineral grains may derive
from Western Desert sand dunes grain settling in the lake. The sand dunes composed
more than 1% of heavy minerals [109]. Continuing to get rid of these emissions without
treatment leads to an increase in the proportion of environmentally harmful metals in
the lake, leads to the destruction of the different ecological systems in the lake, and will
cause a complete cessation of fishing and recreational activities, as well as a direct impact
on migratory birds. BirdLife International added Lake Qarun to its list of Important
Bird Areas (IBA) in 1999, recognizing its international significance for bird conservation
during their migration road in the east of Africa and the Middle east. In the winter,
Qarun Lake attracts massive numbers of waterfowl, with 32,665 recorded in 1989/90. It
is known to breed at least ten species of waterbirds that began nesting at Qarun Lake
in the early 1990s, and an estimated 1000 couples nested on El Qarn island in summer
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1998 [110,111]. So, it is urgent to establish integrated treatment plants (tertiary treatment)
to treat the wastewater before discharging into the lake and prioritize the implementation
of environmental regulations relating to the treatment of industrial drainage. Recently,
the governorate has begun a mechanical treatment operation on the El-Bats drain as the
first step toward lake rehabilitation. This method includes the redirection of the El-Bats
drain from immediately discharging wastewater into the lake to a new canal roughly
5 km long. Moving wastewater to a greater distance allows suspended particles and solid
wastes to settle and increases oxygen dissolution, allowing more biodegradable organic
matter to oxidize. After that, the water is subject to extra artificial aeration before passing
through sand and gravel filters for further purification. This approach will require ongoing
monitoring and laboratory analysis to determine its efficacy in decreasing pollution from
the lake.

The mathematical techniques applied to compute the PLI, RI, and Dc in sediments
with high efficiency and accuracy [66,78,80] are time-consuming. They require numerous
mathematical steps to convert enormous metals data into a single value to describe the
sediments’ pollution levels. On the other hand, both PLSR and MLR procedures are simple
to use and do not require multiple steps to compute the PLI, RI, and Dc of sediments
with high performance. The multivariate regression models, such as PLSR and MLR,
have recently been used as alternative methods to predict the environmental pollution
indices based on data for concentrations of several metals [58,59,112,113]. To the best of
our knowledge, the issue of predicting the PLI, RI, and Dc of sediments of Qaroun Lake
using PLSR and MLR methods, based on several elements, has not yet been addressed.

The Cal. and Val. models presented the best performance to predict the PLI, RI, and Dc,
based on selected 21 elements, with R2 = 0.948–0.991 for PLSR, and with R2 = 0.760–0.998
for MLR. In agreement with our results, recently, Abowaly et al. [114] found that the PLSR
and MLR models performed best in predicting the PLI of the soil depending on data for
the four investigated elements. With R2 = 0.89–0.93 in the surface layer, 0.91–0.96 in the
subsurface layer, 0.89–0.94 in the lowest layers, and 0.92–0.94 throughout the three layers,
the validation (Val.) models fared the best in predicting the PLI. Finally, the findings of
this study demonstrate that two approaches, PLSR and MLR, can assess PLI, RI, and Dc in
sediments of Qaroun Lake.

5. Conclusions

The current study might be regarded as one of the Qaroun Lake geo-environmental
monitoring activities. The concentrations for all examined elements reflect the highest
values in the organic-rich and clayey sediments of the eastern and middle parts of the
lake. Meanwhile, the lowest concentration values generally were observed in the western
and northwest sediment samples, characterized by light colours reflecting less organic
matter and clay mineral percentages. The distribution of metals in lake bottom sediment
may be controlled by: (1) percentages of organic matter; (2) clay minerals; (3) coagulations
result from the mix of fresh water with saline water; (4) salinity; (5) iron and magnesium
oxides; (6) oxidation-reduction processes; (7) metal sources. The high levels of Al and Fe
in the sediments studied suggested spontaneous contamination by terrigenous material.
The tested lake sediments demonstrated very high contamination levels of As, Cd, Sb,
Se, Ga, and Zr. Excluding the Al normalized element, all the investigated metals have
anthropogenic sources, and Mg was the only investigated element that has a natural origin.
Qaroun Lake sediments represent a very high level of contamination (Dc > 32). The eastern
and southern sides of the middle part of the lake were polluted (PLI > 1), and the western
and west northern parts were still unpolluted (PLI < 1). The bottom sediment of Qaroun
Lake was shown to be at very high ecological risk. The tested metals positively correlated
with Al, Fe, and Mn, and negatively linked with As, Se, and P, indicating that these metals
may have different sources and distributions. The metals in Qaroun Lake sediment may
originate from a mixed source (natural and anthropogenic). The potential environmental
toxic metals As, Se, Cd, Zr, Hf, Ga, Sb, Cr, Ni, and P in the bottom sediment samples
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of Qaroun Lake mainly originated from anthropogenic activity. Based on the preceding,
it is evident that elements contaminated the Qaroun Lake sediments, and the lake will
become unsuitable for recreational activities or fishing due to the harm present to human
health and the environment. As a result, substantial and necessary steps must be taken
to regulate sewage entrance, treat it before it enters the Lake, and manage the lake water
quality and sediments.

In calibration and validation data sets, the PLSR and MLR models performed well
in estimating the Dc, PLI, and RI of sediments, with the highest R2 values, lowest RMSE
and MAD values, and highest slope values. Future research should be concerned with
studying the stability of PLSR and MLR models to assess Dc, PLI, and RI or other pollution
indices of sediments under various environmental conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jmse9121443/s1, Table S1. The average value of metal concentrations in Qaroun Lake
sediments in the year 2018; Table S2. The average value of metal concentrations in Qaroun Lake
sediments in the year 2019.
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48. Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the
degree of soil contamination-A review. Environ. Geochem. Health 2018, 40, 2395–2420. [CrossRef]

49. Huang, L.; Pu, X.; Pan, J.F.; Wang, B. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay
in the northern Yellow Sea. Chemosphere 2013, 93, 1957–1964. [CrossRef]

50. Islam, M.d.; Proshad, R.; Ahmed, S. Ecological risk of heavy metals in sediment of an urban river in Bangladesh. Hum. Ecol. Risk
Assess. Int. J. 2017, 24, 699–720. [CrossRef]

51. Delgado, J.; Barba-Brioso, C.; Nieto, J.M.; Boski, T. Speciation and ecological risk of toxic elements in estuarine sediments affected
by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci. Total Environ.
2011, 409, 3666–3679. [CrossRef]

52. De Bartolomeo, A.; Poletti, L.; Sanchini, G.; Sebastiani, B.; Morozzi, G. Relationship among parameters of lake polluted sediments
evaluated by multivariate statistical analysis. Chemosphere 2004, 55, 1323–1329. [CrossRef] [PubMed]

53. Kalamaras, N.; Michalopoulou, H.; Byun, H.R. Detection of drought events in Greece using daily precipitation. Hydrol. Res. 2010,
41, 126–133. [CrossRef]

54. Wang, M.; Markert, B.; Chen, W.; Peng, C.; Ouyang, Z. Identification of heavy metal pollutants using multivariate analysis and
effects of land uses on their accumulation in urban soils in Beijing, China. Environ. Monit. Assess. 2012, 184, 5889–5897. [CrossRef]
[PubMed]

55. Tariq, R.S.; Shah, M.H.; Shaheen, N.; Khalique, A.; Manzoor, S.; Jaffar, M. Multivariate analysis of selected metals in tannery
effluents and related soil. J. Hazard. Mater. 2005, 122, 17–22. [CrossRef] [PubMed]

56. Cho, H.J.; Lee, H.J. Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland
agricultural region. Water 2018, 10, 1156. [CrossRef]

57. Feng, M.; Guo, X.; Wang, C.; Yang, W.; Shi, C.; Ding, G.; Zhang, X.; Xiao, L.; Zhang, M.; Song, X. Monitoring and evaluation in
freeze stress of winter wheat (Triticum aestivum L.) through canopy hyper-spectrum reflectance and multiple statistical analysis.
Ecol. Indic. 2018, 84, 290–297. [CrossRef]

58. Gad, M.; Elsayed, S.; Moghanm, F.S.; Almarshadi, M.H.; Alshammari, A.S.; Khedher, K.M.; Eid, E.M.; Hussein, H. Combining
water quality indices and multivariate modeling to assess Surface water quality in the Northern Nile Delta, Egypt. Water
2020, 12, 2142. [CrossRef]

59. Elsayed, S.; Hussein, H.; Moghanm, F.S.; Khedher, K.M.; Eid, E.M.; Gad, M. Application of irrigation water quality indices and
multivariate statistical techniques for surface water quality assessments in the Northern Nile Delta, Egypt. Water 2020, 12, 3300.
[CrossRef]

60. Baioumy, H.M.; Kayanne, H.; Tada, R. Reconstruction of lake level and climate changes in Lake Qarun, Egypt, during the last
7000 years. J. Great Lakes Res. 2010, 36, 318–327. [CrossRef]

61. Dardir, A.A.; Wali, A.M.A. Extraction of salts from Lake Qaroun, Egypt: Environmental and economic impact. Glob. NEST J. 2009,
11, 106–113.

http://doi.org/10.1016/j.envint.2006.11.013
http://doi.org/10.1016/j.ecoenv.2012.06.027
http://doi.org/10.1016/j.chemosphere.2017.10.078
http://doi.org/10.1007/s40808-020-00913-8
http://doi.org/10.1007/BF03326139
http://doi.org/10.1007/s11270-006-1925-6
http://doi.org/10.1016/j.ecolmodel.2009.12.002
http://doi.org/10.1007/s10661-016-5301-8
https://www.ukm.my/jsm/english_journals/vol38num4_2009/vol38num4_09page435-442.html
https://www.ukm.my/jsm/english_journals/vol38num4_2009/vol38num4_09page435-442.html
http://doi.org/10.1007/s11157-013-9315-1
http://doi.org/10.1007/s10661-012-2754-2
http://doi.org/10.1007/s10653-018-0106-z
http://doi.org/10.1016/j.chemosphere.2013.06.080
http://doi.org/10.1080/10807039.2017.1397499
http://doi.org/10.1016/j.scitotenv.2011.06.013
http://doi.org/10.1016/j.chemosphere.2003.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15081775
http://doi.org/10.2166/nh.2010.001
http://doi.org/10.1007/s10661-011-2388-9
http://www.ncbi.nlm.nih.gov/pubmed/22068310
http://doi.org/10.1016/j.jhazmat.2005.03.017
http://www.ncbi.nlm.nih.gov/pubmed/15943925
http://doi.org/10.3390/w10091156
http://doi.org/10.1016/j.ecolind.2017.08.059
http://doi.org/10.3390/w12082142
http://doi.org/10.3390/w12123300
http://doi.org/10.1016/j.jglr.2010.03.004


J. Mar. Sci. Eng. 2021, 9, 1443 26 of 27

62. Said, R. The River Nile: Geology, Hydrology and Utilization; Pergamon Press: Oxford, UK, 1993; p. 320.
63. Metwaly, M.; El-Qady, G.; Massoud, U.; El-Kenawy, A.; Matsushima, J.; Al-Arifi, N. Integrated geoelectrical survey for groundwa-

ter and shallow subsurface evaluation: Case study at Siliyin spring, El-Fayoum, Egypt. Int. J. Earth. Sci. 2010, 99, 1427–1436.
[CrossRef]

64. United States Environmental Protection Agency (US EPA). Methods for Collection, Storage and Manipulation of Sediments for Chemical
and Toxicological Analyses: Technical Manual; Office of Water: Washington, DC, USA, 2001; ISBN EPA-823-B-01-002.

65. US Environmental Protection Agency (EPA). Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based
Matrices; Print Office: Washington, DC, USA, 1996; p. 20.

66. Håkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1003.
[CrossRef]

67. Barik, S.K.; Muduli, P.R.; Mohanty, B.; Rath, P.; Samanta, S. Spatial distribution and potential biological risk of some metals
in relation to granulometric content in core sediments from Chilika Lake, India. Environ. Sci. Pollut. Res. 2018, 25, 572–587.
[CrossRef] [PubMed]

68. Taylor, S.R.; McLennan, S.M. Chemical composition and element distribution in the Earth’s crust. In Encyclopedia of Physical
Science and Technology, 3rd ed.; Meyers, R., Ed.; Academic Press: Cambridge, MA, USA, 2001; Volume 2, pp. 697–719.

69. Guo, W.; Huo, S.; Xi, B.; Zhang, J.; Wub, F. Heavy metal contamination in sediments from typical lakes in the five geographic
regions of China: Distribution, bioavailability, and risk. Ecol. Eng. 2015, 81, 243–255. [CrossRef]

70. Frie, A.L.; Dingle, J.H.; Ying, S.C.; Bahreini, R. The effect of a receding saline lake (the Salton Sea) on airborne particulate matter
composition. Environ. Sci. Technol. 2017, 51, 8283–8292. [CrossRef]

71. Wang, A.-j.; Bong, C.W.; Xu, Y.-h.; Hassan, M.H.A.; Ye, X.; Bakar, A.F.A.; Li, Y.-h.; Lai, Z.-k.; Xu, J.; Loh, K.H. Assessment of
heavy metal pollution in surficial sediments from a tropical river-estuary-shelf system: A case study of Kelantan River, Malaysia.
Mar. Pollut. Bull. 2017, 125, 492–500. [CrossRef]

72. Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River
sediment. Environ. Pollut. 2016, 219, 1077–1091. [CrossRef] [PubMed]

73. Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Khan, A.J. Contamination level, ecological risk, and source
identification of heavy metals in the hyporheic zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070.
[CrossRef] [PubMed]
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104. Reimann, C.; Filzmoser, P.; Hron, K.; Kynčlová, P.; Garrett, R.G. A new method for correlation analysis of compositional
(environmental) data-a worked example. Sci. Total Environ. 2017, 607, 965–971. [CrossRef] [PubMed]

105. Shafiq, M.; Bakht, J.; Iqbal, A.; Shafi, M. Growth, protein expression and heavy metal uptake by tobacco under heavy metals
contaminated soil. Pak. J. Bot. 2020, 52, 1569–1576. [CrossRef]

106. Zhang, J.; Zhou, F.; Chen, C.; Sun, X.; Shi, Y.; Zhao, H.; Chen, F. Spatial distribution and correlation characteristics of heavy metals
in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China. PLoS ONE 2018, 13, e0201414. [CrossRef]

107. Al-Wabel, M.I.; Sallam, A.E.-A.S.; Usman, A.R.A.; Ahmad, M.; El-Naggar, A.H.; El-Saeid, M.H.; Al-Faraj, A.; El-Enazi, K.;
Al-Romian, F.A. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia.
Environ. Monit. Assess. 2017, 189, 252. [CrossRef]

108. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374,
20150202. [CrossRef] [PubMed]

109. Bubenzer, O.; Embabi, N.S.; Ashour, M.M. Sand Seas and Dune Fields of Egypt. Geosciences 2020, 10, 101. [CrossRef]
110. BirdLife International (BLI). Important Bird Areas Factsheet: Lake Qarun Protected Area. 2021. Available online: http://www.

birdlife.org (accessed on 6 August 2021).
111. Elsayed, S.; Ibrahim, H.; Hussein, H.; Elsherbiny, O.; Elmetwalli, A.H.; Moghanm, F.S.; Ghoneim, A.M.; Danish, S.; Datta, R.;

Gad, M. Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks.
Water 2021, 13, 3094. [CrossRef]

112. Elsayed, S.; Gad, M.; Farouk, M.; Saleh, A.H.; Hussein, H.; Elmetwalli, A.H.; Elsherbiny, O.; Moghanm, F.S.; Moustapha, M.E.;
Taher, M.A.; et al. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess SomeWater Quality
Indicators of Qaroun Lake in Egypt. Sustainability 2021, 13, 10408. [CrossRef]

113. Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.;
Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake,
Egypt. Water 2021, 13, 2258. [CrossRef]

114. Abowaly, M.E.; Belal, A.A.A.; Abd Elkhalek, E.E.; Elsayed, S.; Abou Samra, R.M.; Alshammari, A.S.; Moghanm, F.S.;
Shaltout, K.H.; Alamri, S.A.M.; Eid, E.M. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination
Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [CrossRef]

http://doi.org/10.1016/j.marpolbul.2017.05.047
http://doi.org/10.1007/s10661-007-9876-y
http://www.ncbi.nlm.nih.gov/pubmed/17694352
http://doi.org/10.1016/j.quaint.2017.10.026
http://doi.org/10.1016/j.quaint.2018.05.011
http://doi.org/10.1016/j.envpol.2010.11.004
http://doi.org/10.1007/s10661-006-9187-8
http://doi.org/10.1016/j.jhazmat.2008.04.061
http://www.ncbi.nlm.nih.gov/pubmed/18547718
http://doi.org/10.1016/j.chemosphere.2010.12.067
http://doi.org/10.1016/j.envpol.2020.113986
http://www.ncbi.nlm.nih.gov/pubmed/31995779
http://doi.org/10.1016/j.apgeochem.2003.09.005
http://doi.org/10.1016/j.marpolbul.2020.111721
http://doi.org/10.1016/j.chemosphere.2016.10.126
http://doi.org/10.1007/s10661-012-2650-9
http://doi.org/10.1007/s10661-019-7408-1
http://doi.org/10.1016/j.scitotenv.2017.06.063
http://www.ncbi.nlm.nih.gov/pubmed/28724228
http://doi.org/10.30848/PJB2020-5(13)
http://doi.org/10.1371/journal.pone.0201414
http://doi.org/10.1007/s10661-017-5919-1
http://doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://doi.org/10.3390/geosciences10030101
http://www.birdlife.org
http://www.birdlife.org
http://doi.org/10.3390/w13213094
http://doi.org/10.3390/su131810408
http://doi.org/10.3390/w13162258
http://doi.org/10.3390/su13148027

	Introduction 
	Material and Methods 
	Study Area 
	Sampling and Analyses 
	Environmental Pollution Indices 
	Contamination Factor and Degree of Contamination 
	Enrichment Factor 
	Geo-Accumulation Index 
	Pollution Load Index 
	Potential Ecological Risk Index 

	Data Analysis 
	Partial Least-Square Regression (PLSR) and Multiple Linear Regression (MLR) 

	Results 
	Distribution of Elements 
	Environment Pollution Indices 
	Contamination Factor (Cf) 
	Enrichment Factor (EF) 
	Geoaccumulation Index (Igeo) 
	Degree of Contamination (Dc), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI) 

	Correlation Matrix 
	Multivariate Statistical Analysis 
	Cluster Analysis 
	Principal Component Analysis 

	Performance Efficiency of PLSR and MLR Models to Predict the Degree of Contamination (Dc), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI) 

	Discussion 
	Conclusions 
	References

