
Journal of

Marine Science
and Engineering

Article

Scheduling of AGVs in Automated Container Terminal Based
on the Deep Deterministic Policy Gradient (DDPG) Using the
Convolutional Neural Network (CNN)

Chun Chen , Zhi-Hua Hu * and Lei Wang

����������
�������

Citation: Chen, C.; Hu, Z.-H.; Wang,

L. Scheduling of AGVs in Automated

Container Terminal Based on the

Deep Deterministic Policy Gradient

(DDPG) Using the Convolutional

Neural Network (CNN). J. Mar. Sci.

Eng. 2021, 9, 1439. https://doi.org/

10.3390/jmse9121439

Academic Editors: Fausto Pedro

Garcia Marquez,

Mayorkinos Papaelias and

Simone Marini

Received: 9 November 2021

Accepted: 1 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
201930510010@stu.shmtu.edu.cn (C.C.); 202030510279@stu.shmtu.edu.cn (L.W.)
* Correspondence: zhhu@shmtu.edu.cn

Abstract: In order to improve the horizontal transportation efficiency of the terminal Automated
Guided Vehicles (AGVs), it is necessary to focus on coordinating the time and space synchronization
operation of the loading and unloading of equipment, the transportation of equipment during the
operation, and the reduction in the completion time of the task. Traditional scheduling methods
limited dynamic response capabilities and were not suitable for handling dynamic terminal operating
environments. Therefore, this paper discusses how to use delivery task information and AGVs
spatiotemporal information to dynamically schedule AGVs, minimizes the delay time of tasks
and AGVs travel time, and proposes a deep reinforcement learning algorithm framework. The
framework combines the benefits of real-time response and flexibility of the Convolutional Neural
Network (CNN) and the Deep Deterministic Policy Gradient (DDPG) algorithm, and can dynamically
adjust AGVs scheduling strategies according to the input spatiotemporal state information. In the
framework, firstly, the AGVs scheduling process is defined as a Markov decision process, which
analyzes the system’s spatiotemporal state information in detail, introduces assignment heuristic
rules, and rewards the reshaping mechanism in order to realize the decoupling of the model and the
AGVs dynamic scheduling problem. Then, a multi-channel matrix is built to characterize space–time
state information, the CNN is used to generalize and approximate the action value functions of
different state information, and the DDPG algorithm is used to achieve the best AGV and container
matching in the decision stage. The proposed model and algorithm frame are applied to experiments
with different cases. The scheduling performance of the adaptive genetic algorithm and rolling
horizon approach is compared. The results show that, compared with a single scheduling rule, the
proposed algorithm improves the average performance of task completion time, task delay time,
AGVs travel time and task delay rate by 15.63%, 56.16%, 16.36% and 30.22%, respectively; compared
with AGA and RHPA, it reduces the tasks completion time by approximately 3.10% and 2.40%.

Keywords: automated container terminal; automated guided vehicles; dynamic scheduling; deep
reinforcement learning

1. Introduction

With the development of the international logistics industry, about 70% of the world’s
total trade volume is borne by ocean shipping. Over the past decade, the rapid growth of
ship size and the rapid development of automated terminals maximized the throughput of
container terminals in order to reduce the turnover time of container ships [1], which posed
many new challenges to the planning of automated container terminals, and new methods
are urgently needed to improve the service level and efficiency of automated terminals.

The automated terminal is a multi-level logistics operation process, which mainly
includes Quay Cranes (QCs) operations, Yard Cranes (YCs) operations and the horizontal
transportation of AGVs, in which AGVs are the key equipment connecting QCs operations

J. Mar. Sci. Eng. 2021, 9, 1439. https://doi.org/10.3390/jmse9121439 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-2389-6615
https://orcid.org/0000-0003-4099-3310
https://doi.org/10.3390/jmse9121439
https://doi.org/10.3390/jmse9121439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9121439
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9121439?type=check_update&version=1

J. Mar. Sci. Eng. 2021, 9, 1439 2 of 29

and YCs operations, and run through the entire port’s import and export container trans-
shipment operations. The layout of the automated container terminal is shown in Figure 1.
AGVs scheduling is one of the main parts of the AGVs control system in the automated
terminal, which takes charge of the optimal matches between AGVs and each task in
the most efficient way, while the work procedures between AGVs and other equipment
are coupled and decisions are interdependent, making the process of logistics operations
extremely complex [2]. To improve the throughput of automated terminals, the interaction
between AGVs and crane equipment is required, which depends to a large extent on the
synergy of equipment resources [3–6], it is necessary to determine the time for the container
to be transported from one equipment to another. To be more specific, when AGV and
QC process the container delivery, the two should cooperate with each other; if AGV fails
to reach the designated delivery location within the scheduling time, QC will not work.
Naturally, it delays the completion of a certain task.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 2 of 28

The automated terminal is a multi-level logistics operation process, which mainly
includes Quay Cranes (QCs) operations, Yard Cranes (YCs) operations and the horizontal
transportation of AGVs, in which AGVs are the key equipment connecting QCs opera-
tions and YCs operations, and run through the entire port’s import and export container
trans-shipment operations. The layout of the automated container terminal is shown in
Figure 1. AGVs scheduling is one of the main parts of the AGVs control system in the
automated terminal, which takes charge of the optimal matches between AGVs and each
task in the most efficient way, while the work procedures between AGVs and other equip-
ment are coupled and decisions are interdependent, making the process of logistics oper-
ations extremely complex [2]. To improve the throughput of automated terminals, the in-
teraction between AGVs and crane equipment is required, which depends to a large extent
on the synergy of equipment resources [3–6], it is necessary to determine the time for the
container to be transported from one equipment to another. To be more specific, when
AGV and QC process the container delivery, the two should cooperate with each other; if
AGV fails to reach the designated delivery location within the scheduling time, QC will
not work. Naturally, it delays the completion of a certain task.

Seaside loading and
unloading area

Yard buffer

Yard operation area

AGV horizontal
transportation area

AGV

QC

YC

Figure 1. The layout of the automated container terminal is shown in the figure.

At present, the front of the block area of the automated terminal is equipped with a
sufficient number of AGV mates as auxiliary equipment for the horizontal transportation
of AGVs, helping to reduce the waiting time related to YCs and AGVs, while the seaside
QCs are not equipped with auxiliary equipment such as AGV mates. QCs need to consider
the delayed delivery time of the task during the loading and unloading of the container
task. Since QCs are the bottleneck resource of the automated terminal, it is necessary to
fully consider the resource utilization of QCs [7]. In order to realize the autonomous learn-
ing and sustainable development capabilities of the AGVs scheduling system in the auto-
mated terminal. Considering the task delivery delay time and the AGVs travel time, we
combined CNN and DDPG based on the Actor–Critic (AC) framework proposed by
Degris T. et al. [8] to build a Deep Convolution Deterministic Policy Gradient AGVs dy-
namic scheduling (CDA) algorithm framework for AGVs dynamic scheduling problems;
experimental cases verify the reliability and effectiveness of the method.

The main contributions of this paper are summarized as follows: (1) the AGVs sched-
uling problem is defined as a sequence decision-making problem, modeled as a Markov
decision-making process, the scheduling system. The scheduling environment dynami-
cally and interactively makes decisions, and then updates the scheduling strategies
through the deep reinforcement learning algorithm to realize the autonomous learning of
the scheduling system. (2) The complex environment information of the terminal system

Figure 1. The layout of the automated container terminal is shown in the figure.

At present, the front of the block area of the automated terminal is equipped with a
sufficient number of AGV mates as auxiliary equipment for the horizontal transportation of
AGVs, helping to reduce the waiting time related to YCs and AGVs, while the seaside QCs
are not equipped with auxiliary equipment such as AGV mates. QCs need to consider the
delayed delivery time of the task during the loading and unloading of the container task.
Since QCs are the bottleneck resource of the automated terminal, it is necessary to fully
consider the resource utilization of QCs [7]. In order to realize the autonomous learning
and sustainable development capabilities of the AGVs scheduling system in the automated
terminal. Considering the task delivery delay time and the AGVs travel time, we combined
CNN and DDPG based on the Actor–Critic (AC) framework proposed by Degris T. et al. [8]
to build a Deep Convolution Deterministic Policy Gradient AGVs dynamic scheduling
(CDA) algorithm framework for AGVs dynamic scheduling problems; experimental cases
verify the reliability and effectiveness of the method.

The main contributions of this paper are summarized as follows: (1) the AGVs schedul-
ing problem is defined as a sequence decision-making problem, modeled as a Markov
decision-making process, the scheduling system. The scheduling environment dynamically
and interactively makes decisions, and then updates the scheduling strategies through the
deep reinforcement learning algorithm to realize the autonomous learning of the schedul-
ing system. (2) The complex environment information of the terminal system information is
stored in the multi-channel, two-dimensional matrix of the class diagram, and the complex
CNN is created by multi-layer convolution, which effectively extracts the key information
from the state information, and through this flexible combination ensures that the deep

J. Mar. Sci. Eng. 2021, 9, 1439 3 of 29

CNN has a sufficient expression ability and generalization ability. (3) The solution to the
problem combines convolutional neural networks and reinforcement learning algorithms,
and proposes a Deep Convolution Deterministic Policy Gradient AGVs dynamic schedul-
ing (CDA) algorithm framework, which dynamically selects heuristic rules to determine
the highest priority container task, and flexibly assigns the task to a AGV. (4) Due to the
time difference between the execution of the action and the observation of the impact of the
action on the return, a reward reshaping mechanism is proposed to alleviate the excessive
instability of the environment caused by the time difference, and adjust the overall impact
of the strategy on the scheduling goal.

Most studies use modeling optimization under a strict problem definition; problem
definitions and modeling optimization methods are different for different automated termi-
nal scenarios. As a data-driven intelligent control method, DRL breaks through the strict
modeling optimization method, which can be applied to all operation scenarios and im-
prove the generalization ability of the method to solve the AGVs scheduling problem. The
system information in automated terminal logistics and transportation systems is uncertain
and will change over time, and the AGVs scheduling in such dynamic scenarios usually
requires fast and efficient algorithms. The rule-based scheduling approach has a low time
complexity and the ability to react to dynamic changes rapidly; therefore, it is very suitable
for solving scheduling problems in a dynamic environment with a high complexity, as in
real production. The combination of the DRL method and rule-based scheduling method
has a strong generalization capability, in addition to a strong optimization capability that
has theoretical research value. The artificial intelligence approach empowers the logistics
transportation system in the automated terminal, automatically acquiring knowledge and
skills through computer or intelligent simulation system simulation learning, continuously
improving the system performance to achieve a self-improvement of the system. This
effectively alleviates the difficult problem of AGVs dynamic scheduling with the partic-
ipation of multiple logistics equipment. In our computational experiments, on the one
hand, we effectively alleviate the spatio-temporal asynchrony problem of the task handover
between QCs and AGVs, and greatly reduce the task delay time and task delay rate. On the
other hand, through reasonable tasks allocation and effective integration of resources, we
improve the operational efficiency of the horizontal transportation of AGVs, which helps
to improve the throughput rate of automated terminal. It has some reference significance
for the optimization of AGVs dynamic scheduling in a real automated terminal.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature.
Section 3 defines the important elements of the Markov decision process and develops the
AGVs scheduling model. Section 4 describes the CDA algorithm in detail, including the
network structure of the CDA algorithm and the update process. In Section 5, the effective-
ness of the algorithm is verified by numerical simulation experiments, and the results of
AGA and RHPA are compared with the CDA algorithm under different case experiments.

2. Literature Review

Over the past few decades, many scholars made great contributions to the research and
development of port dispatching, including many studies on the dispatching of terminal
AGVs. The core of dispatching lies mainly in the problem model and the solution algorithm,
both of which are modeled and optimized based on the assumptions determined by the
port operating environment. Rashidi H. et al. [9] established an AGVs scheduling model
that minimizes the cost flow of automated terminals, and compared and analyzed the
extended network simplicity algorithm (NSA+) and the incomplete greedy vehicle search
algorithm (GVS). The results show that these two algorithms complement each other in
problem-solving effects, and the NSA algorithm can be used to solve large-scale problems.
Grunow M. et al. [10] studied the multi-load AGVs scheduling problem, proposed a
complex offline heuristic strategy, and used the extended simulation model to evaluate the
performance of the scheduling strategy. The simulation results showed that, compared
with the online heuristic algorithm, the offline heuristic algorithm greatly improves the

J. Mar. Sci. Eng. 2021, 9, 1439 4 of 29

utilization of terminal AGVs. Taking the weighted sum minimization of the QCs delay time
and the AGVs no-load travel distance as the joint optimization goal of AGVs scheduling,
Kim K H. et al. [5] established a mixed-integer programming model for AGVs optimal
task allocation, and proposed a heuristic algorithm that solves the problem, analyzing and
comparing the performance of the heuristic algorithm with other scheduling rules. In a
deterministic environment and a random environment, the algorithm achieves the joint
optimization goal of terminal AGVs scheduling. Pjevčević D. et al. [11] analyzed in depth
the influence of the number of AGVs and their dispatching rules on the process of container
unloading at the terminal, established an AGVs simulation model and efficiency evaluation
system, and proposed an efficient data envelopment analysis (DEA) for processing the
strategic decision-making method, by setting a reasonable number of AGVs and selecting
appropriate AGVs dispatching rules, which improved the efficiency of the terminal’s
operation in the unloading mode. Skinner B. et al. [12] considered the automated terminal
container transportation scheduling problem, established a modified mathematical model,
and proposed a two-part chromosome that improved the genetic algorithm to solve the
problem. In simulation experiments of different scheduling scenarios, the improved genetic
algorithm and the sequential operation scheduling method are evaluated and compared,
and the method is applied to the Brisbane container terminal in Australia. The above
problem only considers a single planning problem, which is only a partial optimization
of the automated terminal. The automated terminal is a whole in which multiple loading
and unloading equipment influences and restricts each other, the operation process of the
automated terminal needs to be optimized from a global perspective. Iris, Ç. et al. [6]
proposed a new flexible ship loading problem (FSLP), which comprehensively considered
the management of loading operations and scheduling of transport vehicles. Various
modelling enhancements and a mathematical model to obtain a strong lower bound were
designed and a heuristic algorithm was used to solve the problem. The results show that
the proposed model and heuristic algorithm can effectively generate high-quality solutions,
and can greatly save costs. Luo J. et al. [13] considered the integrated problem of AGVs
scheduling and container storage allocation in the automated terminal in the mode of
loading and unloading, and established a mixed-integer programming model to minimize
ship berth time. The effectiveness of the model and evolutionary genetic algorithm is
verified through a large number of numerical experiments, and the experimental results
show that the method can effectively solve problems of different scales, and provides a
good solution for terminal AGVs scheduling and container storage allocation problems.
The results show that the improved genetic algorithm can provide effective solutions and
improve the overall operating efficiency of the terminal. There is a strong correlation
between modeling optimization and problem definition in this particular environment.
Different terminal environments have different problem definitions, and the established
models are different. The algorithm lacks generalization ability.

In the actual port operation environment, the AGVs scheduling problem usually
faces diversified automation equipment and other unexpected working conditions, such
as machine failures, network delays, etc., due to the complexity and dynamics of the
port environment and system information over time, these make AGVs scheduling easily
affected by random disturbances. Therefore, it is necessary to increase the speed of the
algorithm solution to meet the requirements of the complex and changeable port envi-
ronment for processing timeliness. The general the heuristic search algorithm easily falls
into the local optimal and the time cost to solve it is high. In order to adapt to the highly
dynamic and complex port environment and improve the flexibility of AGVs scheduling,
many scholars on AGVs dynamic scheduling problems carried out various studies, most
of them put forward the concept of rescheduling. Angeloudis P. et al. [14] proposed A
rolling horizon optimization algorithm based on the concept of cost or benefit. The results
show that this method can minimize the maximum completion time and improve the
efficiency of the terminal AGVs horizontal transportation operation. Klerides E. et al. [15]
established a model to minimize the cost of AGVs scheduling and proposed a rolling time

J. Mar. Sci. Eng. 2021, 9, 1439 5 of 29

method. Through the analysis of port cases of different scales, the method of rolling time
method was verified. The rescheduling strategy of dynamic decision-making according
to the different states of the system can make AGVs quickly adapt to a complex and dy-
namic working environment. Cai B. et al. [16] proposed two rescheduling strategies for
the Autonomous Straddle Carriers (ASC) scheduling problem, which take advantage of
the cost of autonomous straddle carrier transportation, the cost of waiting time, and the
delay of high-priority tasks. The weighted sum of the cost is the optimization goal. The
branch-and-bound algorithm with column generation is used to solve the newly arrived
task rescheduling strategy and the unexecuted task rescheduling combination strategy; the
usage scenario for both strategies is compared through simulation experiments. In addition,
some scholars made improvements based on the static AGVs scheduling algorithm and
studied a variety of dynamic scheduling algorithms. Xin J. et al. [17] studied the dynamic
scheduling problem of the automated collision-free path of terminal AGVs; introduced
the concept of hierarchical control architecture to human–computer interaction scheduling
and automatic guided vehicle path planning; and proposed a neighborhood variable-
search, meta-heuristic algorithm based on hierarchical control structure, which could be
applied to simulated static obstacle and dynamic obstacle scheduling scenarios. The results
show that the hierarchical control system algorithm ensures the collision-free horizontal
transportation of AGV and improves the operation efficiency of the automated terminal.
Kim J. et al. [18] proposed a multi-standard AGVs scheduling strategy. At the same time,
the QCs delay time minimization and the AGVs empty travel minimization were consid-
ered as objective functions. A mixed-integer programming model was established, and
solved the above problems step-by-step through the use of a multi-objective evolutionary
derivative algorithm, and thus the goal of AGVs dynamic scheduling was achieved. The
application of machine learning algorithms to dynamic scheduling problems became a
popular topic in the study of combinatorial optimization problems. Machine learning
algorithms learn the optimal strategy for scheduling through simulation experiments or
real data, so that they can adapt to different job conditions and scheduling environments,
and have the ability to resist interference.

In recent years, with the development of Artificial Intelligence, the Internet of Things,
Big Data, and other technologies, many scholars have begun to pay attention to how to
improve the dynamic response speed of automated terminal scheduling and promote
the autonomous learning of the scheduling system to solve the dynamic problems of the
automated terminal operating environment. Han B A. et al. [19] pointed out that adaptive
scheduling can select the optimal scheduling strategy according to the optimization goal
and system status information in the dynamic production environment, and the scheduling
strategy can be regarded as a function of system state information to scheduling operation,
which reduces the calculation time of the scheduling process and ensures the speed of
a dynamic response. In the acquisition of scheduling strategy, some scholars conducted
corresponding work. Based on the inventory management model, Briskorn D. et al. [20]
converted the AGVs dynamic scheduling problem into a dynamic allocation transporta-
tion task problem; the task allocation strategy was obtained with the greedy limited rule
heuristic algorithm and the precise algorithm. A large number of comparative experiments
shows that the model and algorithm have a robust performance, which can reduce the
empty travel time of the AGVs, thereby improving the horizontal transportation efficiency
of the automated terminal. Focusing on the dynamic AGVs scheduling problem against
the background of the uncertainty of the automated terminal, and to minimize the QCs
operating time and the AGVs empty travel distance, Choe R. et al. [21] proposed a paired
preference function and an online preference learning algorithm combined with a deep
neural network. A large number of simulation experiments verify that the method can
dynamically adjust the AGVs scheduling strategy according to the actual operating condi-
tions of the automated terminal. The task of reinforcement learning is to dynamically learn
the optimal strategy by observing the rewards of the action feedback after performing a
series of actions. To reduce the average waiting time of trucks, Fotuhi F. et al. [22] proposed

J. Mar. Sci. Eng. 2021, 9, 1439 6 of 29

an agent-based YCs scheduling model and q-learning algorithm, and the optimal YCs
scheduling strategy is learned through a large number of simulation experiments. The
experiment further verified the applicability and robustness of the model and q-learning
algorithm to the YCs scheduling problem. An increasing number of scholars focused on
Deep Reinforcement Learning (DRL) to solve practical problems, Hu H. et al. [23] proposed
an adaptive, deep reinforcement learning, hybrid-rule, AGVs dynamic scheduling method
to address the dynamics and uncertainties in material handling in flexible workshops.
Experiments verified the feasibility and effectiveness of the method. For the dynamic
and stochastic nature of order dispatching in ride-sharing platforms, Tang X. et al. [24]
proposed an order dispatching solution based on deep reinforcement learning, and verified
the effectiveness of the algorithm through large-scale online tests. In addition, the applica-
tion of DRL to network flow control problems [25], financial market intraday trading [26],
subway train dispatching [27], etc. proved the superiority and effectiveness of DRL in
solving sequence decision-making.

In summary, for the AGVs dynamic scheduling optimization method in the automated
terminal, the main focus is on periodic static dispatch or rescheduling, dynamics are not
fully considered. Therefore, these scheduling methods have certain limitations for the
complex port environment. The research of a few AGVs dynamic scheduling problems is
combined with machine learning algorithms, and the performance and learning efficiency
of the algorithms used are limited by the scale of the tasks that are to be solved. In the
automated terminal, as of yet, no scholars applied a deep reinforcement learning algorithm
to solve the dynamic scheduling problem. The DRL algorithm framework is applied to
AGVs dynamic scheduling for the first time in this paper.

3. Mathematical Model
3.1. Problem Description

Horizontal transportation is an important part of the terminal operating system, which
is the link connecting QCs and YCs. In order to improve terminal operating efficiency and
reduce terminal operating costs, this paper adopts the dual-cycle mode of simultaneous
loading and unloading [28], in which the AGVs dynamic scheduling process is divided
into the following: the scheduling system assigns the container to AGV, AGV travels to the
loading and unloading point at the QC, AGV picks up or unloads the container, transports
the container, and the container is then unloaded or picked at the front buffer area of the
yard. As an example of import container unloading operations, first, the scheduling system
obtains the current information of all containers and the AGVs space-time information, and
allocates the container to be executed to the AGV. Then the AGV arrives at the designated
QC location for container handover. Finally, the container is transported by the AGV to the
block of yard, where the empty AGV can accept the container assignment of the dispatch
system again. The dynamic scheduling process of a single AGV is shown in Figure 2.
AGV’s operation time at the QC location should be as close as possible to QC’s loading and
unloading time, reducing the delay time of container handover. In order to better describe
whether there is a delay in the handover process of containers, the earliest possible event
time of each container task is set [5]. If the containers fail to be executed by the AGVs
before the earliest possible event time, the handover of the container is delayed.

J. Mar. Sci. Eng. 2021, 9, 1439 7 of 29J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 7 of 28

Finish

Decision-
making

Decision-
making

……

Decision-
making

Decision-
making

Decision-
making

Time Dimension

Spatial dim
ension

QC

YC

Loaded AGV

Unloaded AGV

AGV scheduling decision stage

Flow of AGV

Figure 2. The dynamic scheduling process of a single AGV.

3.2. Notation of the Global Parameters
We introduce the following AGVs scheduling-related model notations as shown in

Tables 1 and 2.

Table 1. Parameter notations.

Parameters Notations 𝑉 Set of AGVs, indexed by 𝑣 ∈ 𝑉. 𝑄 Set of QCs, indexed by 𝑞 ∈ 𝑄. 𝑌 Set of YCs, indexed by b∈ Y. 𝑁௤ Set of containers for QC 𝑞, indexed by 𝑖 ∈ 𝑁௤. 𝑁 Set of all containers, 𝑁 =∪ 𝑁௤. 𝑒𝑙௜ The earliest possible event time container 𝑖. 𝐺 Automated terminal horizontal transportation map of path network. 𝐷𝑖𝑠(. , .) The function of time for each container transported by AGV. 𝑡௜௤ Service time of QC 𝑞 loading or unloading container 𝑖. 𝑡௜௕ Service time of YC 𝑏 loading or unloading container 𝑖. 𝑇 Time interval 𝑇 = [0, 𝑡௠], 𝑡௠ is the final completion time of the task. 𝑀𝑅 Set of heuristic container allocation rule, 𝑀𝑅 = {𝑚𝑟ଵ, … , 𝑚𝑟ଵ଼}. Δ Action space. S State space. 𝐷𝑖𝑚(.) Representation of the dimensions of the matrix. 𝑙𝑟 Learning rate of Actor network and Critic network. 𝑀 Capacity of experience replay memory. 𝐵𝑆 Batch size. 𝑖𝑡௠௔௫ Maximum number of episodes. 𝐶௨ Target network parameter update frequency. 𝑙௦ Algorithm training time step. 𝜏 Target network parameter soft update coefficient. 𝛾 The discount coefficient of accumulate reward. 𝛽 The scaling factor in the reward function.

Figure 2. The dynamic scheduling process of a single AGV.

3.2. Notation of the Global Parameters

We introduce the following AGVs scheduling-related model notations as shown in
Tables 1 and 2.

Table 1. Parameter notations.

Parameters Notations

V Set of AGVs, indexed by v ∈ V.
Q Set of QCs, indexed by q ∈ Q.
Y Set of YCs, indexed by b ∈ Y.
Nq Set of containers for QC q, indexed by i ∈ Nq.
N Set of all containers, N = ∪Nq.
eli The earliest possible event time container i.
G Automated terminal horizontal transportation map of path network.

Dis(., .) The function of time for each container transported by AGV.
tq
i Service time of QC q loading or unloading container i.

tb
i Service time of YC b loading or unloading container i.

T Time interval T = [0, tm], tm is the final completion time of the task.
MR Set of heuristic container allocation rule, MR = {mr1, . . . , mr18}.
∆ Action space.
S State space.

Dim(.) Representation of the dimensions of the matrix.
lr Learning rate of Actor network and Critic network.
M Capacity of experience replay memory.
BS Batch size.

itmax Maximum number of episodes.
Cu Target network parameter update frequency.
ls Algorithm training time step.
τ Target network parameter soft update coefficient.
γ The discount coefficient of accumulate reward.
β The scaling factor in the reward function.

J. Mar. Sci. Eng. 2021, 9, 1439 8 of 29

Table 2. Variable notations.

Variables Notations

K Set of scheduling decision stages, indexed by k ∈ K.
sk State variable represents the environment information in decision stage k, sk ∈ S.
s1

k The component of the state variable represents the information of containers.
s2

k The component of the state variable represents the AGV information.
tk Time of decision stage k.
uik The urgency of container i in the decision stage k.

π(∆|sk) The decision strategy to determine the probability of each action based on sk.
∆k The action in the decision stage k.
sk′ The state variable of next decision stage.

tk′
Time of decision stage k′, which is also the completion time of the individual

container task.
tqi
vk

The actual time that container i is handed over between AGV v and QC q.

Dqi
vk

The delay time of container i transported by AGV v.
Civk The travel time of container i transported by AGV v.
rk The reward value of the state variable transition from sk to sk′ .
π∗ The optimal strategy.
Dav Average delay time of all containers.
Cav Average travel time per container for AGVs transportation.
Nr Number of containers delayed.

3.3. AGVs Dynamic Scheduling Model

The dynamic scheduling of AGVs in the automated terminal can be described as a
staged container–AGV matching problem. The entire container–AGV matching process
is discretely partitioned in time, thus transforming the scheduling problem into a finite
stochastic dynamic decision process, which is then modeled as a Markov decision process
(MDP). The scheduling system interacts intermittently with the environment in all decision
stages, and then dynamically assigns the highest priority container to the available AGV
for execution until all tasks are completed. Such a complete process is called an episode.
At each decision stage k, the scheduling system senses the environment state variable sk,
the scheduling system makes a corresponding action ∆k in response to the interaction state
variable sk based on the policy π(∆k|sk) . At this time, the container and the available
AGV achieve a successful matching. After the current container transportation is over,
the environment generates a numerical reward rk as effective feedback for the decision.
According to the AGVs scheduling process described above, we define the state variables,
action rules, reward functions, and policy definitions.

3.3.1. System State Information

The local and global characteristic information of the system is described by defining
state variables as sk in the decision-making stage k. State variables are the key informa-
tion for the scheduling system to make a decision, and this decision directly affects the
efficiency of the entire system. Therefore, extracting system state information is vital in
optimizing the entire scheduling process. AGVs scheduling in the automated terminal
involves multiple equipment, determining the amount of information involved in the
characterization system. Data are obtained through various data collection equipment, and
then multiple sources of information are combined to accurately determine the current
system state information. This article characterizes the system state information from two
perspectives of the sequence information of QCs containers and AGVs information, which
are represented by s1

k and s2
k , respectively, the final state variable of the decision stage is

sk =
[
s1

k , s2
k
]
.

For the QCs containers, sequence information s1
k is represented by a four-channel

matrix, which describes the global features of the environment, storing different categories
of feature information in different channels. The dimension of s1

k can be expressed as
Dim

(
s1

k
)
= 4× |Q| ×max

{∣∣Nq
∣∣∣∣q ∈ Q

}
; the height and width of each channel are set to

J. Mar. Sci. Eng. 2021, 9, 1439 9 of 29

the number of QCs and the maximun number of tasks of single QC, respectively. Learning
lessons from Kim J. et al. [18] in solving the AGVs scheduling problem, we select the
characteristic attributes used to describe the state component s1

k . The details of s1
k are

as follows:

(1) The channel of container types is used to indicate the types of containers. In the dual-
cycle mode of loading and unloading, the execution of different types of containers
by the AGVs affects the synchronization of the operation of the QCs and the AGVs.
For example, when the AGVs transport the importing containers, they directly travel
to the QCs to pick up the container, this process only includes the empty travel
time of the AGVs. When the AGVs transport and export the container, they first
travel to the front of the YCs to pick up container, and then travel to the QCs to
unload the container, the process includes two processing stages, so it takes longer
for AGVs to reach QCs. The values 0 and 1 are used to denote the import and export
boxes, respectively.

(2) The channel for container urgency indicates the urgency of each container. In order
to ensure the synchronization of the QCs in loading and unloading each container
with the AGVs, and to reduce the delay time of containers handover, the urgency of a
container can be expressed as the remaining time until the earliest possible event time.
Once the container is transported, the urgency of the container is set to 0; otherwise,
the urgency of the unexecuted container uik can be expressed as:

uik = eli − tk, i ∈ N, k ∈ K (1)

(3) The estimated load travel time channel records the estimated load travel time for each
container not transported by the AGV. The load travel time for the AGV to execute
the container is estimated using an automated terminal horizontal transportation
map of path network G, according to the container loading and unloading location.
The estimated load travel time is set to 0 if the container is assigned to the AGV
for execution.

(4) The completion time channel records the actual time that each container is completed,
initialized to an all-0 matrix.

The AGVs scheduling process is driven not only by the containers’ information but
also the spatio-temporal information of the AGVs themselves. Since the information of
the AGVs is constantly changing in time and space, only the local state information of the
AGVs can be captured. The AGVs spatio-temporal state information s2

k is mapped as a
two-dimensional matrix with dimensions Dim

(
s2

k
)
= |V| × (1 + |Q|+ |Y|), initialized to 0.

The first column of the matrix specifies the working status of the AGV, “0” means the AGV
is idle, “1” means the AGV is assigned a container; the remaining columns indicate the
travel time from the current position of the AGV to each QC q position, and to each YC b
position, respectively, and the specific values can be obtained by querying the automated
terminal horizontal transportation map of path network G.

3.3.2. Action Space Expression

In the process of AGVS dynamic scheduling, the scheduling system needs to plan a
suitable container and assign a suitable AGVS for the container to execute. As ships become
larger and the number of containers increases dramatically, it is difficult to accurately
determine the containers that need to be transported within the limited decision-making
time in dynamic scheduling. The heuristic assignment rule is a scheduling behavior
of the system that schedules AGVs to transport containers, speeding up the dynamic
response of the scheduling system and determining the order of container assignment
in the scheduling process. The principle of validity and sufficiency is followed when
determining the assignment rules. Validity is reflected in the influence of assignment
rules on the convergence effect of the objective function, where different assignment rules
determine the order of containers execution and directly affect the convergence degree of

J. Mar. Sci. Eng. 2021, 9, 1439 10 of 29

the objective function. Sufficiency refers to the diversity of the design of assignment rules,
which can not only overcome the short-sightedness of a single assignment rule, but can also
select appropriate rules based on different state information in different decision-making
stages. Based on the above two principles, 18 heuristic assignment rules are designed in
this paper with reference to the criterion proposed by Choe R. et al. [21], where rules 7–18
are hybrid assignment rules combined by two single assignment rules. The specific details
of the 18 heuristic assignment rules are shown in Table 3.

Table 3. Specific details of the heuristic assignment rules.

Symbols Rules Description

mr1 LTT The container with the longest transport time from origin to
destination is assigned to an AGV.

mr2 STT The container with the shortest transport time from origin to
destination is assigned to an AGV.

mr3 GUT The container with the greatest urgency is assigned to an AGV.
mr4 LUT The container with the least urgency is assigned to an AGV.

mr5 LPT

The container with the longest processing time is assigned to an AGV;
the processing time includes the time for loading and unloading the

container at QCS and YCS, as well as the transportation time from the
origin to the destination of the container.

mr6 SPT The container with the shortest processing time is assigned to an AGV.

mr7 LQ-LTT Selecting the QC q with the most remaining containers, from which the
container with the longest transport time is selected.

mr8 LQ-STT Selecting the QC q with the most remaining containers, from which the
container with the shortest transport time is selected.

mr9 SQ-LTT Selecting the QC q with the fewest remaining containers, from which
the container with the longest transport time is selected.

mr10 SQ-STT Selecting the QC q with the fewest remaining containers, from which
the container with the shortest transport time is selected.

mr11 LQ-GUT Selecting the QC q with the most remaining containers, from which the
container with the greatest urgency is assigned to an AGV.

mr12 LQ-LUT Selecting the QC q with the most remaining containers, from which the
container with the least urgency is assigned to an AGV.

mr13 SQ-GUT Selecting the QC q with the fewest remaining containers, from which
the container with the greatest urgency is assigned to an AGV.

mr14 SQ-LUT Selecting the QC q with the fewest remaining containers, from which
the container with the least urgency is assigned to an AGV.

mr15 LQ-LPT Selecting the QC q with the most remaining containers, from which the
container with the longest processing time is assigned to the an AGV.

mr16 LQ-SPT Selecting the QC q with the most remaining containers, from which the
container with the shortest processing time is assigned to an AGV.

mr17 SQ-LPT Selecting the QC q with the fewest remaining containers, from which
the container with the longest processing time is assigned to an AGV.

mr18 SQ-SPT Selecting the QC q with the fewest remaining containers, from which
the container with the shortest processing time is assigned to an AGV.

The type of AGV determines the AGVs to be assigned to the selected container, and each
AGV has a unique ID. In this paper, the action space consists of heuristic assignment rules
and types of AGV. The action space can be represented as ∆ = {(mr, v)|mr ∈ MR, v ∈ V}.

3.3.3. Reward Design and Reshaping

At each decision stage k, the scheduling system obtains the state variable sk and
makes a decision Xπ(sk), and the corresponding container is assigned to the AGV. After
the AGV completes the container task, it needs a measurement standard to measure the
task completion effect. Therefore, the two optimization goals of minimizing the delay
time of the tasks and the travel time of the AGVs are fully considered, and the reward
function to calculate the reward value of the feedback is designed, which is then used for
action evaluation and strategy optimization. The end of each container task is transported

J. Mar. Sci. Eng. 2021, 9, 1439 11 of 29

by AGV, the actual time tqi
vk that container i is handed over between AGV v and QC q,

and actual completion time of each container tk′ . The concepts of individual container
task delay time cost and AGV travel time cost are introduced based on the optimization
objectives of task delay time and single AGV travel time, as shown in Equations (2) and (3):

Dqi
vk = max{(tqi

vk − eli), 0} (2)

Civk = tk′ − tk − tb
i − tq

i (3)

Generally, a simple numerical summation of the above-defined cost can be used as the
reward value of the feedback. However, when the AGV transports a container task, there
is a time difference between the start of the task, and the reward is observed at the end of
the task. Within this time difference, if there are other tasks that match the AGV, then these
will change the successor state information sk′ , causing the entire system environment to
become excessively unstable. Therefore, the reward reshaping mechanism proposed in this
paper calculates the average delay cost Dav for all tasks and the average trip cost Cav for
all AGVs for the whole process. A difference factor in the terms Dqi

vk − Dav and Civk − Cav
between the cost of a single container task is introduced, and the average cost of the entire
process, as well as the scaling factor of the difference factor, is proposed to reshape the
reward function. The process of reward function reshaping is shown in Formulas (4)–(8):

Dav =
1
K ∑

k∈K
Dqi

vk (4)

Cav =
1
K ∑

k∈K
Civk (5)

Dqi
vk = Dqi

vk + β
(

Dqi
vk − Dav

)
(6)

Civk = Civk + β(Civk − Cav) (7)

rk = e−Dqi
vk + e−Civk (8)

3.3.4. Optimal Scheduling Strategy

The strategy π(∆|sk) is the probability of all actions in the action space under the
condition of the state variable sk in the decision state k. The scheduling system can select
the container task to pair with AGV based on known action probabilities. Associated with
the policy π is the action value function Qπ(sk, ∆k) that represents the expected cumulative
discount reward after the execution of action ∆k in state variable sk using the policy π, with
the formula shown in (9):

Qπ(S, ∆) = Eπ{
K

∑
i=k+1

γi−k−1ri|sk, ∆k} (9)

From the action value function of Formula (9), the Bellman equation under the general
policy can be written, as shown in Formula (10):

Qπ(sk, ∆k) = Eπ

{
rk + γQπ

(
s′k, ∆k′

)∣∣sk, ∆k
}

(10)

The basic idea of RL is to iteratively update the following Bellman equation to learn an
optimal strategy π∗ to maximize the expected cumulative discount reward. The cumulative
reward under the optimal strategy is shown in Formula (11).

Qπ∗(sk, ∆k) = maxEπ∗{∑K
i=k+1 γi−k−1ri|sk, ∆k} = maxQπ(sk, ∆k) (11)

J. Mar. Sci. Eng. 2021, 9, 1439 12 of 29

The AGVs dynamic scheduling problem is modeled as MDP. The ultimate goal is
to find the optimal scheduling strategy π∗ to obtain the maximum expected cumulative
discount reward.

4. CDA Scheduling Algorithm

In this paper, the DDPG algorithm is used to achieve AGVs dynamic scheduling.
In the previous section, we defined the large-scale discrete action space consisting of a
combination of heuristic assignment rules and AGVs types. Based on the original DDPG
algorithm, the discrete action space reparameterization trick [29] is introduced and the
DDPG algorithm is slightly modified, so that the algorithm can better search for the optimal
scheduling strategy π∗ in the discrete action space. This method combines the deterministic
policy gradient (DPG) and the deep CNN, which can be robustly learned. The DDPG
algorithm is based on the network structure of the DQN algorithm and uses the fixed
network technique to design the evaluation network structure and the target network
structure to mitigate the instability of the target network update. The DDPG algorithm is
based on the AC framework, and both of the above network architectures—two neural
network approximators, the Actor network and the Critic network. In the estimation
network, the Actor estimation network µ(sk

∣∣θµ) is the policy function of the state variable
mapping action; the Critic estimation network Q(sk, ∆k|θ Q) is the parameterized value
function that approximates the Q(sk, ∆k) values of the state variable sk and the action
∆k given by the Actor estimation network, which is then used to evaluate the Actor
estimation network the quality of the action ∆k and guide the direction of the strategy
π update [28], where θµ and θQ are the parameters of the Actor estimation network
and the Critic estimation network, respectively. In the estimation network parameter
updating process, the Actor target network µ(sk′ |θ ′µ) temporarily fixes the Actor estimation
network parameters; and the Critic target network Q(sk′ , ∆k′ |θ′Q) temporarily fixes the
Critic estimation network parameters to improve the stability and convergence of algorithm
training, which are structurally consistent with the estimation networks of Actor and Critic,
where θ′µ and θ′Q are the parameters of the Actor target network and the Critic target
network, respectively.

4.1. CDA Algorithm Network Structure

Actor network and Critic network are function approximators, and the design of their
network structure is very important for the nonlinear approximate estimation of the value
function. Because the state information represents the port scheduling environment from
multiple perspectives, the dimensions and distribution of data are different due to different
data sources. In this paper, the state variable sk, which represents the system information,
consists of component s1

k and component s2
k , and the data structures are a 4-channel 2D

matrix and a single-channel 2D matrix, respectively. There are differences in the dimensions
of the 2D matrix for different components, and it is not possible to fuse each component
information directly from the channels. The CNN has a wide range of applications in
image classification, image recognition, and video processing, etc. Therefore, this paper
uses multi-layer CNN to combine simple patterns into complex patterns when designing
the network structure. This flexible combination can extract the data correlation and ensure
that the deep CNN has a sufficient expressive ability and generalization. A hierarchical
processing idea is introduced to handle the different components, including s1

k and s2
k of

state variable sk. Two deep CNN network structures are used to extract the key feature
information of each state component, and then the multi-dimensional key features are made
one-dimensional to achieve multi-source information fusion. Deep CNN usually consists
of three types of layers: convolution layers, pooling layers and fully connected layers, with
the convolution and pooling layers being structurally contiguous. In the convolution layers,
the local features of the matrix data are extracted by convolution operations. The main
role of the pooling layer is to further reduce the number of parameters by subsampling the
unimportant features after the convolution operation.

J. Mar. Sci. Eng. 2021, 9, 1439 13 of 29

The convolution layers and the pooling layers are equivalent to feature engineering,
while fully connected layers are equivalent to feature weighting, which acts as a “classifier”
in the whole neural network. The details of the Actor network and Critic network structure
are shown in Tables 4 and 5, respectively.

Table 4. Details of the Actor network structure.

Layers Number of Neurons Activation Functions Descriptions

Input layer 1 4× |Q| ×max
{∣∣Nq

∣∣} None Input of state component s1
k .

Input layer 2 |V| × (1 + |Q|+ |B|) None Input of state component s2
k .

Convolution layer 1 32 Swish Extracting s1
k information.

Pooling layer 1 None None Extracting s1
k information.

Convolution layer 2 64 Swish Further extraction of s1
k information.

Pooling layer 2 None None Further extraction of s1
k information.

Flatten layer 1 None None One-dimensionalization of s1
k .

Convolution layer 3 64 Swish Extracting s2
k information.

Pooling layer 3 None None Extracting s2
k information.

Flatten layer 2 None None One-dimensionalization of s2
k .

Concatenation layer None None Concatenation of s1
k and s2

k .
Fully connected layer 100 Relu None

Output layer 1 |V| Softmax Output AGV information.
Output layer 2 |MR| Softmax Output assignment rule information.

Gumbel-softmax layer 1 None Matching of AGV with container.

Table 5. Details of the Critic network structure.

Layers Number of Neurons Activation Functions Descriptions

Input layer 1 4× |Q| ×max
{∣∣Nq

∣∣} None Input of state component s1
k .

Input layer 2 |V| × (1 + |Q|+ |B|) None Input of state component s2
k .

Input layer 2 2 None Actor network output of action ∆k.
Convolution layer 1 32 Swish Extracting s1

k information.
Pooling layer 1 None None Extracting s1

k information.
Convolution layer 2 64 Swish Further extraction of s1

k information.
Pooling layer 2 None None Further extraction of s1

k information.
Flatten layer 1 None None One-dimensionalization of s1

k .
Convolution layer 3 64 Swish Extracting s2

k information.
Pooling layer 3 None None Extracting s2

k information.
Flatten layer 2 None None One-dimensionalization of s2

k .
Concatenation layer 1 None None Concatenation of s1

k and s2
k .

Concatenation layer 2 None None Concatenation of sk and ∆k.
Fully connected layer 1 100 Relu None
Fully connected layer 2 50 Relu None

Output layer 1 Relu Q(sk, ∆k
∣∣θQ) corresponding to states and actions.

4.2. Algorithm Update Process

The goal of the CDA algorithm is to optimize the policy π → π∗ of AGVs scheduling
by the non-approximated estimation of action value functions through deep neural net-
works. The algorithm update process contains two sub-processes, which are the scheduling
process of AGVs and the training process of the algorithm. The update process of the
algorithm is shown in Algorithm 1. The purpose of the AGVs scheduling process is to
obtain a tuple of transfer sequences consisting of dynamic state information, action infor-
mation, and reward information by interacting with the automated terminal environment
to provide data support for the training process of the CDA algorithm. The scheduling
process of AGVs can be generally described as follows: the scheduling system obtains the
state variable sk from the scheduling environment of the AGVs. Based on the results of state
variable sk processing by the Actor estimation network, the scheduling system determines

J. Mar. Sci. Eng. 2021, 9, 1439 14 of 29

the assignment rule and AGV with high priority. According to the above assignment rule,
AGV is assigned to high-priority container tasks and transports the container to designated
handover points (including QCs andYCs); after the implementation of the scheduling
program, the scheduling system receives the feedback reward rk and obtains the current
state variable sk′ , and the transfer sequence tuple [sk, ∆k, rk, sk′] of the interaction between
the system is stored in the experience replay memory. The above process corresponds to
lines 3–6 of Algorithm 1 and the blue solid arrows in Figure 3.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 15 of 28

Figure 3. Overview of the CDA algorithm.

The loss function 𝐿(𝜃ொ) is equal to the mean square error of the action value 𝑄൫𝑠௝, Δ௝ห𝜃ఓ൯ predicted by the Critic estimation network and the state action target value 𝑄(𝑠௝, 𝛥௝|𝜃ொᇱ) calculated by Equation (12), 𝐿(𝜃ொ) is shown in Equation (13). The Critic esti-
mation network parameters 𝜃ொ are updated by gradient back propagation:

𝐿൫𝜃ொ൯ = 1𝐵𝑆 ෍ ቀ𝑄൫𝑠௝, Δ௝, |𝜃ொᇱ ൯ − 𝑄൫𝑠௝, Δ௝ห𝜃ொ൯ቁଶ஻ௌ
௝ୀଵ (13)

The policy gradient 𝛻𝐽(𝜃ఓ) is the gradient of the state action value (𝑠௝, Δ௝|𝜃ఓ) of the
Critic estimation network to action Δ௝, and is used to update the strategy parameters 𝜃ఓ
of the Actor estimation network, causing the neural network select the action with the
highest payoff or higher likelihood. The formula for the strategy gradient 𝛻𝐽(𝜃ఓ) is
shown below. The following equation calculates the strategy gradient 𝛻𝐽(𝜃ఓ):

∇J൫θஜ൯ = − 1BS ෍ ቀ∇୼ೕQ൫s୨, Δ୨หθஜ൯∇ఏഋΔ௝ቁ୆ୗ
୨ୀଵ (14)

In order to ensure the stable convergence of the training process, under the condition
of meeting the target network parameter update frequency 𝐶௨, the “soft” target update
method is used to update the parameters of the Actor target network and Critic target
network. The target network parameters are updated as shown in Equations (15) and (16): θஜᇱ = 𝜏𝜃ఓ + (1 − 𝜏)𝜃ఓᇱ (15)θᇱ୕ = 𝜏𝜃ொ + (1 − 𝜏)𝜃ொᇱ (16)

Figure 3. Overview of the CDA algorithm.

The training process of the algorithm is performed every fixed time step ls: samples of
BS∗[sj, ∆j, rj, sj′] are sampled uniformly and randomly from the experience replay memory,
the state variables sj and sj′ are input to the Actor estimation network, and Actor target
network, respectively. The actions ∆j and ∆j′ are given based on the predicted values of
the network. The Critic target network takes the state variable sj′ and the action ∆j′ given
by the Actor target network as an input to predict the state action value Q(sj′ , ∆j′ |θ′Q) and
calculates the state action target value Q(sj, ∆j|θ′Q) through Equation (12):

Q(sj, ∆j|θ′Q) =
{

rj, tj < tmax
rj + γQ(sj′ , ∆j′ |θ′Q), tj ≥ tmax

(12)

The loss function L
(
θQ
)

is equal to the mean square error of the action value Q
(
sj, ∆j

∣∣θµ

)
predicted by the Critic estimation network and the state action target value Q(sj, ∆j|θ′Q)

J. Mar. Sci. Eng. 2021, 9, 1439 15 of 29

calculated by Equation (12), L
(
θQ
)

is shown in Equation (13). The Critic estimation network
parameters θQ are updated by gradient back propagation:

L
(
θQ
)
=

1
BS

BS

∑
j=1

(
Q(sj, ∆j,

∣∣∣θ′Q)−Q(sj, ∆j
∣∣θQ)

)2
(13)

The policy gradient ∇J
(
θµ

)
is the gradient of the state action value (sj, ∆j

∣∣θµ) of the
Critic estimation network to action ∆j, and is used to update the strategy parameters θµ of
the Actor estimation network, causing the neural network select the action with the highest
payoff or higher likelihood. The formula for the strategy gradient ∇J

(
θµ

)
is shown below.

The following equation calculates the strategy gradient ∇J
(
θµ

)
:

∇J
(
θµ

)
= − 1

BS

BS

∑
j=1

(
∇∆j Q(sj, ∆j|θ µ)∇θµ

∆j

)
(14)

In order to ensure the stable convergence of the training process, under the condition
of meeting the target network parameter update frequency Cu, the “soft” target update
method is used to update the parameters of the Actor target network and Critic target
network. The target network parameters are updated as shown in Equations (15) and (16):

θ′µ = τθµ + (1− τ)θ′µ (15)

θ′Q = τθQ + (1− τ)θ′Q (16)

Lines 7–16 of Algorithm 1 describe the learning process of the algorithm and the
process of updating network parameters in detail; the above processes correspond to the
orange dashed arrow in Figure 3. Figure 4 illustrates the entire algorithm process more
clearly in the form of a flowchart.

Algorithm 1. Solving AGV scheduling based on CDA algorithm.

Input: Hyperparameters M, BS, α, β, γ, τ, lr, itmax, Cu, ls, the automated terminal horizontal
transportation map of path network G, transport time function Dis(., .)
Output: The optimal strategy π∗ is the optimal Actor estimation network parameter θµ

1: Initialize estimated network and target network parameters, including θµ, θQ, θ′µ, θ′Q
2: For episode: = 1 to itmax
3: Scheduling system obtains state information from the AGV scheduling terminal environment
4: The Actor estimation network gives the decision action ∆k = πθµ

(sk) based on the state
variable sk
5: After the AGV completes the container transportation, the scheduling system gets the new
state variable sk′ and reward rk, and determines if the task is completed

6: Store the state transfer sequence
[
sj, ∆j, sj′ , rj

]
into the experience replay memory

7: If ls meets the conditions, start training the network
8: For j: = 1 to BS
9: Sample

[
sj, ∆j, sj′ , rj

]
from the experience replay memory, and calculate the state action target

value Q
(

sj, ∆j

∣∣∣θ′Q)
10: Calculate the mean square error loss function L

(
θQ
)

and update the Critic estimation network
parameters θQ by the gradient descent algorithm
11: Use the backpropagation of the policy gradient ∇J

(
θµ
)

to update the Actor target network
parameters θµ

12: End for
13: End if
14: If the condition of Cu is met
15: Update the parameters θ′µ and θ′Q using the “soft” target update method
16: End if
17: End for

J. Mar. Sci. Eng. 2021, 9, 1439 16 of 29

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 16 of 28

Lines 7–16 of Algorithm 1 describe the learning process of the algorithm and the pro-
cess of updating network parameters in detail; the above processes correspond to the or-
ange dashed arrow in Figure 3. Figure 4 illustrates the entire algorithm process more
clearly in the form of a flowchart.

Algorithm 1. Solving AGV scheduling based on CDA algorithm.
Input: Hyperparameters 𝑀, 𝐵𝑆, 𝛼, 𝛽, 𝛾, 𝜏, 𝑙𝑟, 𝑖𝑡௠௔௫, 𝐶௨, 𝑙௦, the automated terminal horizontal trans-
portation map of path network 𝐺, transport time function 𝐷𝑖𝑠(. , .)
Output: The optimal strategy π∗ is the optimal Actor estimation network parameter 𝜃ఓ
1: Initialize estimated network and target network parameters, including θஜ, θ୕, θஜᇱ , θᇱ୕
2: For episode: = 1 to 𝑖𝑡௠௔௫
3: Scheduling system obtains state information from the AGV scheduling terminal environment
4: The Actor estimation network gives the decision action Δ௞ = 𝜋ఏഋ(𝑠௞) based on the state vari-
able 𝑠௞
5: After the AGV completes the container transportation, the scheduling system gets the new
state variable 𝑠௞ᇲ and reward 𝑟௞, and determines if the task is completed
6: Store the state transfer sequence ൣs୨, Δ୨, s୨ᇲ , r୨൧ into the experience replay memory
7: If 𝑙௦ meets the conditions, start training the network
8: For 𝑗: = 1 to 𝐵𝑆
9: Sample ൣs୨, Δ୨, s୨ᇲ , r୨൧ from the experience replay memory, and calculate the state action target
value Q൫𝑠௝, Δ௝|𝜃ொᇱ ൯
10: Calculate the mean square error loss function 𝐿(𝜃ொ) and update the Critic estimation net-
work parameters 𝜃ொ by the gradient descent algorithm
11: Use the backpropagation of the policy gradient 𝛻𝐽൫𝜃ఓ൯ to update the Actor target network
parameters 𝜃ఓ
12: End for
13: End if
14: If the condition of 𝐶௨ is met
15: Update the parameters 𝜃ఓᇱ and 𝜃ொᇱ using the “soft” target update method
16: End if
17: End for

Start

Is the 𝐶௨eligible ?

Initialize estimated network and target network parameters 𝜃ఓ, 𝜃ொ, 𝜃ఓᇱ , 𝜃ொᇱ
Output the optimal strategy 𝜋∗

End

Obtain the state variable 𝑠௞

Is the AGV idle?

Whether there is a container?

Actor estimates the network calculation 𝑄(𝑠௞, Δ୩|𝜃ఓ) and selects the best scheduling rule to match the best AGV

According to the assignment rule, the AGV transports the designated containerAfter the AGV completed the container transportation, the scheduling system gets the new state variable 𝑠௞ᇲand reward 𝑟௞

episode >𝑖𝑡௠௔௫

Save transfer sequence 𝑠௞, Δ௞, 𝑟௞𝑠௞ᇱ
Update evaluation network and target network parameters 𝜃ఓᇱ , 𝜃ொᇱ

Is the 𝑙௦eligible ?

𝑗 = 1
Sample 𝑠௝, 𝛥௝, 𝑟௝, 𝑠௃ᇱ from experience playback memory

𝑗 ൑ 𝐵𝑆

Calculate the target value of the action 𝑄 𝑠௃, Δ௝|𝜃ொᇱCalculate the mean square error loss function 𝐿(𝜃ொ), update the Critic estimation network parameters 𝜃ொCalculate the policy gradient ∇𝐽(𝜃ఓ), update the Actor evaluation network parameters 𝜃ఓ

𝑗 = 𝑗 + 1
𝑙௦ = 0, 𝑐௨ = 𝑐௨ + 1Enter the next stage, 𝑘 = 𝑘 + 1

𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 + 1

𝑐௨ = 0

𝑙௦ = 𝑙௦ + 1

the scheduling process of AGV

the training process of the algorithm
Yes

NoNo
Yes

Yes
Yes

Yes

Yes

No

No

No

No

Initialize hyperparameters𝑀, 𝐵𝑆, 𝛼, 𝛽, 𝛾, 𝜏, 𝑙𝑟, 𝑖𝑡௠௔௫, 𝑐௨, 𝑙௦, 𝐺, 𝐷𝑖𝑠(. , .)

Figure 4. Dynamic scheduling process of AGV based on CDA algorithm.

4.3. Implementation of AGVs Dynamic Scheduling

The implementation of AGVs dynamic scheduling using CDA algorithm is basically
the same as the algorithm update process. However, at this time only the algorithm-trained
optimal policy is needed to guide the scheduling system to choose the optimal heuristic
assignment rules as well as the best AGV in different states, and the training of the CDA
algorithm is no longer needed.

As shown in the Figure 5, a certain decision-making stage in an episode is taken as
an example to visually illustrate the decision-making process and state variable transition
process. The task situation is set in the current state as shown in the Table 6, and the
loading and unloading time of 10 s for a task is assumed on both the sea side and the shore
side. First, the current state variable sk is calculated according to the definition of the state
variable (Part 3 Section 3), marked with a light-yellow rectangular box. At this time, AGV 2
is idle, indicated as “0”, and marked with a green filled rectangle; AGV 1 and AGV 3
are busy, indicated as “1”, marked with a red filled rectangle. Then, the state variable sk
is used as the input to the optimal action estimation network. Under the premise that
there are tasks, the idle AGV is specified and the task assignment rule is predicted. In this
example, the action is ∆k = (mr11, AGV 2). According to the definition of the assignment
rule mr11, there are three tasks in the task sequence of QC 3 and the task numbered 3-1
is the most urgent; therefore, AGV 2 considers the task numbered 3-1 first. Finally, after
AGV 2 completes the task numbered 3-1, the delay time and the travel time of the task
numbered 3-1 transported by AGV 2 are calculated by Formulas (2) and (3), which are
15 s and 20 s, respectively. The state variable sk′ at the end of the task numbered 3-1 is
obtained by a calculation, which is marked by a light-blue rectangular box in the figure.
The above task assignment process is repeated until all tasks are executed, and then the
reshaping reward rk is calculated based on Equations (4)–(8), and the transfer sequence
tuple [sk, ∆k, rk, sk′] of each decision stage is stored in the experience replay memory for the
training of the algorithm; the algorithm training process is shown in the previous section.

J. Mar. Sci. Eng. 2021, 9, 1439 17 of 29J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 18 of 28

0 0 44

0 0 32

0 44 20

100 0 0

95 0 0

135 0 0

1 20 12 10 24 20 32

0 24 12 0 44 32 20

0 20 32 24 12 32 24

1 0 1

0 0 1

1 1 0

0 0 75

0 0 65

0 15 85

Task type Task urgency Estimated load travel time Task completion time

QC 1

QC 2

QC 3

AGV 1

AGV 2

AGV 3

QC 1 QC 2 QC 3 B 1 B 2 B 3

Optimal actor estimation nework

After AGV 2 has performed the
task 3-1, the delay time of task
transported by AGV 2 and the
travel time of task transported by
AGV 2 are calculated as 15s, 20s.

Figure 5. The decision stage demonstration in an episode.

5. Numerical Experiments
This section details the factors affecting the scheduling performance of AGVs. First,

the optimal value of the parameter 𝛽𝛽 in Equations (6) and (7) is determined empirically
to ensure that the CDA algorithm has a reliable convergence as well as scheduling accu-
racy. Second, the scheduling results of a single assignment rule and other scheduling al-
gorithms are compared and analyzed in different instances to verify the reliability and
validity of the model and algorithm proposed in this paper. Finally, the simulation exper-
iment is carried out under the double-cycle operation mode. The implementation of the
AGVs dynamic scheduling simulation experiment consists of two parts: to build a simu-
lation terminal environment for AGVs scheduling, and to implement the CDA algorithm
architecture based on the deep framework, Tensorflow. To achieve this, all experiments
were conducted on Windows 10, Intel(R) Core(TM) i5-10200H CPU @ 2.40 GHz, 16 GB
RAM NVIDIA GeForce GTX 1650 Ti, python2019 Professorial. Each test case result is the
average of five results.

5.1. Experimental Parameters Setting
There are complexities and uncertainties in the container handling and transporta-

tion environments of the automated terminal. In order to reflect the real automated termi-
nal environment as accurately as possible, some important experimental parameters and
constraints are set in this paper, as described below.
(1) The number of container tasks considered in each episode |𝑁𝑁| ∈ [50,500], where 50–

100 containers are considered for the small-scale problem and 100–500 containers for
the large-scale problem; the number of QCs on the sea side |𝑄𝑄| ∈ [2,8] and the num-
ber of YCs on the land side |𝑌𝑌| ∈ [4,10]; and the number of AGVs |𝑉𝑉| ∈ [5,15] are
considerations of this study.

(2) Studying the adaptability of the scheduling algorithm in dynamic situations by in-
troducing uncertainty in the operation time of QCs and YCs, is a consideration of this
study. It is assumed that the operation time of QC, loading containers onto or un-
loading containers from the AGV obeys uniform distribution 𝑡𝑡𝑖𝑖

𝑞𝑞 = 𝑈𝑈(20 − 30)s; the
time of the AGV loading and unloading containers at YC obeys uniform distribution
𝑡𝑡𝑖𝑖𝑏𝑏 = 𝑈𝑈(15 − 25)s.

(3) This experiment takes the port operation values obtained from Xiamen Yuanhai Con-
tainer Automation Terminal as a reference. The length and width of the horizontal
transport area are set to 240 m and 100 m, respectively, and the speed of AGV is 5
m/s [30].

(4) According to the containers and the task sequence arranged before the ship berthing,

Figure 5. The decision stage demonstration in an episode.

Table 6. Detailed description of the parameters of the CDA algorithm.

QC
ID

Task
ID Type From

Location
To

Location
Earliest Event

Time
Estimated Load

Travel Time
Whether to Be

Executed
Task Competition

Time

QC 1
1-1 1 B 2 QC 1 70 32 Y
1-2 0 QC 1 B 1 130 20 N
1-3 1 B 3 QC 1 210 44 N

QC 2
2-1 0 QC 2 B 3 60 32 Y 95
2-2 0 QC 2 B 2 140 20 Y
2-3 1 B 1 QC 2 200 32 N

QC 3
3-1 1 B 2 QC 3 80 32 N
3-2 0 QC 3 B 1 150 44 N
3-3 1 B 3 QC 3 220 20 N

Note: Y means the task has been assigned or executed; N means the task has not yet been assigned.

5. Numerical Experiments

This section details the factors affecting the scheduling performance of AGVs. First,
the optimal value of the parameter β in Equations (6) and (7) is determined empirically to
ensure that the CDA algorithm has a reliable convergence as well as scheduling accuracy.
Second, the scheduling results of a single assignment rule and other scheduling algorithms
are compared and analyzed in different instances to verify the reliability and validity of the
model and algorithm proposed in this paper. Finally, the simulation experiment is carried
out under the double-cycle operation mode. The implementation of the AGVs dynamic
scheduling simulation experiment consists of two parts: to build a simulation terminal
environment for AGVs scheduling, and to implement the CDA algorithm architecture
based on the deep framework, Tensorflow. To achieve this, all experiments were conducted
on Windows 10, Intel(R) Core(TM) i5-10200H CPU @ 2.40 GHz, 16 GB RAM NVIDIA
GeForce GTX 1650 Ti, python2019 Professorial. Each test case result is the average of
five results.

5.1. Experimental Parameters Setting

There are complexities and uncertainties in the container handling and transportation
environments of the automated terminal. In order to reflect the real automated terminal
environment as accurately as possible, some important experimental parameters and
constraints are set in this paper, as described below.

J. Mar. Sci. Eng. 2021, 9, 1439 18 of 29

(1) The number of container tasks considered in each episode |N| ∈ [50, 500], where
50–100 containers are considered for the small-scale problem and 100–500 containers
for the large-scale problem; the number of QCs on the sea side |Q| ∈ [2, 8] and the
number of YCs on the land side |Y| ∈ [4, 10]; and the number of AGVs |V| ∈ [5, 15]
are considerations of this study.

(2) Studying the adaptability of the scheduling algorithm in dynamic situations by
introducing uncertainty in the operation time of QCs and YCs, is a consideration of
this study. It is assumed that the operation time of QC, loading containers onto or
unloading containers from the AGV obeys uniform distribution tq

i = U(20− 30)s; the
time of the AGV loading and unloading containers at YC obeys uniform distribution
tb
i = U(15− 25)s.

(3) This experiment takes the port operation values obtained from Xiamen Yuanhai Container
Automation Terminal as a reference. The length and width of the horizontal transport
area are set to 240 m and 100 m, respectively, and the speed of AGV is 5 m/s [30].

(4) According to the containers and the task sequence arranged before the ship berthing,
the earliest possible event time for each container task is set. The earliest possible event
interval of the preceding and following tasks in the tasks sequence obeys a normal
distribution N(60, 80), e.g., if container j is the successor of container i in the tasks
sequence, then the earliest possible event time of container j is elj = eli + N(60, 80).

In general, the hyperparameter in the DRL algorithm plays a significant role in the
convergence and training effect of the algorithm. However, due to a large number of
hyperparameters and the large search space of parameters in the DRL algorithm, it is
difficult to find the optimal value. In this paper, we refer to the hyperparameters given
by Liu D. et al. [31] and obtain the final CDA algorithm-related parameters through
preliminary experiments, as shown in Table 7.

Table 7. Detailed description of the parameters of the CDA algorithm.

Parameters Parameter Values Description of Parameters

lr 0.001 Learning rate of Actor network and Critic network.
M 10,000 Experience replay memory capacity.
BS 32 Batch size.

itmax 1500 Maximum number of episodes.
Cu 100 Target network parameter update frequency.
ls 80 Algorithm training time step.
τ 0.01 Target network parameter soft update coefficient.
γ 0.9 The discount coefficient of accumulative reward.

5.2. Parameter Experiment

In order to alleviate the difficulty of convergence of the CDA algorithm due to the
unstable transition of the scheduling environment, the scaling factor of the differential
term is introduced in the reward reshaping, and the setting of the scaling factor β has an
impact on the accuracy and convergence speed of the algorithm solution. To address the
above problem, the experimental arithmetic case is designed with the number of containers
|N| = 100, the number of QCs |Q| = 4, the number of YCs |Y| = 6, and the number of
AGVs |V| = 20, and the experiment is carried out with β taking values of 0.1, 0.3, 0.5, 0.7,
and 0.9. The results are shown in Table 8. Figures 6–8 show the cumulative rewards of
the algorithm, the delay time of containers tasks, and the total travel time of the AGVs,
respectively. It can be seen that β at different values can ensure that the objectives of
optimization tend towards the direction of minimization, but values of β that are too high
or too low lead to the difficulty of the convergence of the algorithm, and an unsuitable
value of β leads to the unideal objectives after the convergence of the algorithm. Considered
comprehensively, the scaling factor β in this paper is set to 0.5.

J. Mar. Sci. Eng. 2021, 9, 1439 19 of 29

Table 8. Scheduling results of CDA algorithm with different values of β.

β Reward Delay Time of Tasks (s) Total Travel Time of the AGV (s)

0.1 135.57 3194 7722
0.3 135.37 3264 7727
0.5 136.83 2848 7585
0.7 135.91 3103 7680
0.9 135.80 3133 7696

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 20 of 28

Figure 6. CDA algorithm for cumulative discount rewards for different values of 𝛽.

Figure 7. Task delay time of CDA algorithm with different values of 𝛽.

Figure 8. AGV travel time of CDA algorithm with different values of 𝛽.

5.3. Comparison of Experimental Results
In implementing the CDA algorithm proposed in this paper for AGVs dynamic

scheduling, the scheduling system assigns tasks to the specified AGVs based on the de-
signed heuristic assignment rules, and the optimal policy learned by this algorithm is the
task assignment rules in different states. The results obtained in this way are better than
the single rule [19]. It is necessary to compare the scheduling results of the CDA algorithm
and the single assignment rule to verify the effectiveness of the model algorithm. In addi-
tion to using the proposed task delay time and AGVs travel time as evaluation metrics,
the container task delay rate and the tasks completion time are also introduced for the
comprehensive evaluation of the CDA algorithm and the single assignment rule. The con-
tainer task delay rate is calculated as follows: 𝐷௥ = 𝑁௥𝑁 (17)

Experiments are designed for small-scale container tasks and the number of AGVs in
cases 1–10. Tables A1–A4 in Appendix A show the scheduling results for 18 single heuris-
tic rules and the scheduling results of the CDA algorithm on different metrics; the optimal
solutions of the CDA algorithm and scheduling rules on different metrics are marked in

Figure 6. CDA algorithm for cumulative discount rewards for different values of β.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 20 of 28

Figure 6. CDA algorithm for cumulative discount rewards for different values of 𝛽.

Figure 7. Task delay time of CDA algorithm with different values of 𝛽.

Figure 8. AGV travel time of CDA algorithm with different values of 𝛽.

5.3. Comparison of Experimental Results
In implementing the CDA algorithm proposed in this paper for AGVs dynamic

scheduling, the scheduling system assigns tasks to the specified AGVs based on the de-
signed heuristic assignment rules, and the optimal policy learned by this algorithm is the
task assignment rules in different states. The results obtained in this way are better than
the single rule [19]. It is necessary to compare the scheduling results of the CDA algorithm
and the single assignment rule to verify the effectiveness of the model algorithm. In addi-
tion to using the proposed task delay time and AGVs travel time as evaluation metrics,
the container task delay rate and the tasks completion time are also introduced for the
comprehensive evaluation of the CDA algorithm and the single assignment rule. The con-
tainer task delay rate is calculated as follows: 𝐷௥ = 𝑁௥𝑁 (17)

Experiments are designed for small-scale container tasks and the number of AGVs in
cases 1–10. Tables A1–A4 in Appendix A show the scheduling results for 18 single heuris-
tic rules and the scheduling results of the CDA algorithm on different metrics; the optimal
solutions of the CDA algorithm and scheduling rules on different metrics are marked in

Figure 7. Task delay time of CDA algorithm with different values of β.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 20 of 28

Figure 6. CDA algorithm for cumulative discount rewards for different values of 𝛽.

Figure 7. Task delay time of CDA algorithm with different values of 𝛽.

Figure 8. AGV travel time of CDA algorithm with different values of 𝛽.

5.3. Comparison of Experimental Results
In implementing the CDA algorithm proposed in this paper for AGVs dynamic

scheduling, the scheduling system assigns tasks to the specified AGVs based on the de-
signed heuristic assignment rules, and the optimal policy learned by this algorithm is the
task assignment rules in different states. The results obtained in this way are better than
the single rule [19]. It is necessary to compare the scheduling results of the CDA algorithm
and the single assignment rule to verify the effectiveness of the model algorithm. In addi-
tion to using the proposed task delay time and AGVs travel time as evaluation metrics,
the container task delay rate and the tasks completion time are also introduced for the
comprehensive evaluation of the CDA algorithm and the single assignment rule. The con-
tainer task delay rate is calculated as follows: 𝐷௥ = 𝑁௥𝑁 (17)

Experiments are designed for small-scale container tasks and the number of AGVs in
cases 1–10. Tables A1–A4 in Appendix A show the scheduling results for 18 single heuris-
tic rules and the scheduling results of the CDA algorithm on different metrics; the optimal
solutions of the CDA algorithm and scheduling rules on different metrics are marked in

Figure 8. AGV travel time of CDA algorithm with different values of β.

5.3. Comparison of Experimental Results

In implementing the CDA algorithm proposed in this paper for AGVs dynamic
scheduling, the scheduling system assigns tasks to the specified AGVs based on the
designed heuristic assignment rules, and the optimal policy learned by this algorithm is
the task assignment rules in different states. The results obtained in this way are better
than the single rule [19]. It is necessary to compare the scheduling results of the CDA
algorithm and the single assignment rule to verify the effectiveness of the model algorithm.
In addition to using the proposed task delay time and AGVs travel time as evaluation
metrics, the container task delay rate and the tasks completion time are also introduced for

J. Mar. Sci. Eng. 2021, 9, 1439 20 of 29

the comprehensive evaluation of the CDA algorithm and the single assignment rule. The
container task delay rate is calculated as follows:

Dr =
Nr

N
(17)

Experiments are designed for small-scale container tasks and the number of AGVs
in cases 1–10. Tables A1–A4 in Appendix A show the scheduling results for 18 single
heuristic rules and the scheduling results of the CDA algorithm on different metrics; the
optimal solutions of the CDA algorithm and scheduling rules on different metrics are
marked in bold. The experimental results show that the algorithm performs well in all
10 cases. Overall, the CDA algorithm improves the average performance on the metrics of
task completion time, the delay time of tasks, total delay time of AGVs, and delay rate of
container tasks by 15.63%, 56.16%, 16.36%, and 30.22%, respectively.

The training process of the algorithm in case 8 is shown in Figure 8. As the training
proceeds, the cumulative reward quickly converges to a maximum value, as shown in
Figure 9a–d, which shows the trends of tasks completion time, tasks delay time, and
travel time of the AGVs with the training process, respectively, exactly the opposite of the
cumulative reward. Figures A1–A4 in Appendix A clearly show the scheduling results
of the CDA algorithm and the single assignment rule in case 8. The CDA algorithm
outperforms the single task assignment rule in terms of both tasks completion time and
AGVs travel time, while it is slightly inferior to the GUT rule and the LQ-GUT rule in the
two metrics of task delay rate and task delay time. Since these two rules always assign
the urgent task to AGV for execution first, this will lead to the growth of AGVs travel
time, and thus the overall operational efficiency of terminal AGVs scheduling decreases.
Comparing Figures A2 and A3 in Appendix A, we can find that CDA is better than the
GUT rule in reducing the delay rate of tasks, but slightly inferior to the LQ-GUT rule. In
conclusion, improving the overall efficiency of dock-level transportation lies in the fact that
the optimal task assignment rules can be selected according to different situations during
AGVs scheduling.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 21 of 28

bold. The experimental results show that the algorithm performs well in all 10 cases. Over-
all, the CDA algorithm improves the average performance on the metrics of task comple-
tion time, the delay time of tasks, total delay time of AGVs, and delay rate of container
tasks by 15.63%, 56.16%, 16.36%, and 30.22%, respectively.

The training process of the algorithm in case 8 is shown in Figure 8. As the training
proceeds, the cumulative reward quickly converges to a maximum value, as shown in
Figure 9a–d, which shows the trends of tasks completion time, tasks delay time, and travel
time of the AGVs with the training process, respectively, exactly the opposite of the cu-
mulative reward. Figures A1–A4 in Appendix A clearly show the scheduling results of
the CDA algorithm and the single assignment rule in case 8. The CDA algorithm outper-
forms the single task assignment rule in terms of both tasks completion time and AGVs
travel time, while it is slightly inferior to the GUT rule and the LQ-GUT rule in the two
metrics of task delay rate and task delay time. Since these two rules always assign the
urgent task to AGV for execution first, this will lead to the growth of AGVs travel time,
and thus the overall operational efficiency of terminal AGVs scheduling decreases. Com-
paring Figures A2 and A3 in Appendix A, we can find that CDA is better than the GUT
rule in reducing the delay rate of tasks, but slightly inferior to the LQ-GUT rule. In con-
clusion, improving the overall efficiency of dock-level transportation lies in the fact that
the optimal task assignment rules can be selected according to different situations during
AGVs scheduling.

(a) (b)

(c) (d)

Figure 9. Training process of CDA algorithm on case 8. (a) Convergence of cumulative discount rewards; (b) Convergence
of tasks delay time; (c) Convergence effect of AGV travel time; (d) Convergence effect of completion time.

To further verify the superiority of the algorithms in solving large-scale problems,
this paper sets up a comparison experiment of different algorithms, including the adap-
tive genetic algorithm (AGA) [1], which is commonly used for dock scheduling, and the
rolling time-domain algorithm (RHPA) [32], which is used for dynamic scheduling. To
measure the difference in scheduling results between the CDA algorithm and other algo-
rithms, the GPA value of the maximum completion time is used, and the GAP value of
the CDA algorithm and AGA are calculated as shown in Equation (18):

Figure 9. Training process of CDA algorithm on case 8. (a) Convergence of cumulative discount rewards; (b) Convergence
of tasks delay time; (c) Convergence effect of AGV travel time; (d) Convergence effect of completion time.

J. Mar. Sci. Eng. 2021, 9, 1439 21 of 29

To further verify the superiority of the algorithms in solving large-scale problems, this
paper sets up a comparison experiment of different algorithms, including the adaptive
genetic algorithm (AGA) [1], which is commonly used for dock scheduling, and the rolling
time-domain algorithm (RHPA) [32], which is used for dynamic scheduling. To measure
the difference in scheduling results between the CDA algorithm and other algorithms,
the GPA value of the maximum completion time is used, and the GAP value of the CDA
algorithm and AGA are calculated as shown in Equation (18):

GPACDA−AGA =
tAGA
m − tCDA

m

tCDA
m

× 100% (18)

where tCDA
m , tAGA

m are the maximum completion times of the CDA algorithm and AGA,
respectively. For the evaluation criterion of completion time, if the GAP value is positive,
it means that the CDA algorithm is superior; otherwise, AGA is superior. Similar to
Equation (18), the GAP values of the CDA algorithm and RHPA are calculated as follows:

GPACDA−AGA =
tAGA
m − tCDA

m

tCDA
m

× 100% (19)

In this experiment, three algorithms are used to solve cases 11–30, and the results are
shown in Table A5 in Appendix A. From the experimental results, it can be seen that the
proposed CDA algorithm can obtain the approximate optimal solutions for different scales
of the arithmetic cases. By calculating GAPCDA−AGA and GAPCDA−RHPA, and plotting
the curves of GAP, as shown in Figure 10, both curves have a slow rising trend, and the
performance of the CDA algorithm on scheduling problems is close to that of AGA and
RHPA when the size of the arithmetic cases is relatively small. As shown in Table A5
in Appendix A, for example, in Case 13, GAPCDA−AGA is − 1.50%, the CDA algorithm
has slightly worse scheduling results than AGA in this case; in Case 16 and Case 17, the
GAPCDA−RHPA values are −1.92% and −1.34%, respectively, and RHPA has better results
than the CDA algorithm in solving these two cases. The scheduling performance of the
CDA algorithm becomes significantly better as the size of the cases increases (the number
of container tasks ≥ 300). In conclusion, the CDA algorithm is slightly less capable of
solving small-scale problems compared to large-scale problems, since the state space of
large-scale problems provides a larger optimization space for the algorithmic network to
learn and reduce training errors. Analyzing the results of cases 11–30, it can be seen that
the CDA algorithm improves by 3.10% and 2.40% in average performance over AGA and
RHPA, respectively.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 22 of 28

𝐺𝑃𝐴஼஽஺ି஺ீ஺ = 𝑡௠஺ீ஺ − 𝑡௠஼஽஺𝑡௠஼஽஺ × 100% (18)

where 𝑡௠஼஽஺, 𝑡௠஺ீ஺ are the maximum completion times of the CDA algorithm and AGA,
respectively. For the evaluation criterion of completion time, if the GAP value is positive,
it means that the CDA algorithm is superior; otherwise, AGA is superior. Similar to Equa-
tion (18), the GAP values of the CDA algorithm and RHPA are calculated as follows: 𝐺𝑃𝐴஼஽஺ି஺ீ஺ = 𝑡௠஺ீ஺ − 𝑡௠஼஽஺𝑡௠஼஽஺ × 100% (19)

In this experiment, three algorithms are used to solve cases 11–30, and the results are
shown in Table A5 in Appendix A. From the experimental results, it can be seen that the
proposed CDA algorithm can obtain the approximate optimal solutions for different
scales of the arithmetic cases. By calculating 𝐺𝐴𝑃஼஽஺ି஺ீ஺ and 𝐺𝐴𝑃஼஽஺ିோு௉஺, and plotting
the curves of GAP, as shown in Figure 10, both curves have a slow rising trend, and the
performance of the CDA algorithm on scheduling problems is close to that of AGA and
RHPA when the size of the arithmetic cases is relatively small. As shown in Table A5 in
Appendix A, for example, in Case 13, 𝐺𝐴𝑃஼஽஺ି஺ீ஺ 𝑖𝑠 − 1.50%, the CDA algorithm has
slightly worse scheduling results than AGA in this case; in Case 16 and Case 17, the 𝐺𝐴𝑃஼஽஺ିோு௉஺ values are −1.92% and −1.34%, respectively, and RHPA has better results
than the CDA algorithm in solving these two cases. The scheduling performance of the
CDA algorithm becomes significantly better as the size of the cases increases (the number
of container tasks ≥ 300). In conclusion, the CDA algorithm is slightly less capable of solv-
ing small-scale problems compared to large-scale problems, since the state space of large-
scale problems provides a larger optimization space for the algorithmic network to learn
and reduce training errors. Analyzing the results of cases 11–30, it can be seen that the
CDA algorithm improves by 3.10% and 2.40% in average performance over AGA and
RHPA, respectively.

Figure 10. The curve of GAP value under different arithmetic cases.

For different numbers of AGVs, the scheduling results of the CDA algorithm are
compared with those of RHPA and AGA. The number of pre-considered tasks is set to
300; the number of QCs and the number of YCs are set to 4 and 8, respectively; and the
number of AGVs is assigned to 10, 12, 14, 16, 18, and 20, in that order. The results of the
above six groups of experiments are shown in Table 9. Figures 11–13 depict the trends of
tasks delay time, AGVs travel time, and tasks completion time, respectively. The follow-
ing conclusions can be drawn: (1) the travel time of the AGVs maintains almost constant
values as the number of AGVs increases; (2) the three algorithms are sensitive to the metric
of tasks delay time, and all of them decrease with the number of increasing AGVs; (3) The
sensitivity of AGA to this indicator is greater, followed by RHPA, and the sensitivity of
the CDA algorithm to this indicator is the least; (4) The sensitivity of the three algorithms
to the indicator of the task completion time is similar to the conclusion (2); it reflects the
fact that the optimization of task completion times depends to a greater extent on the de-
gree of equipment synergy; (5) In terms of task delay times and completion times, the

-4
-2
0
2
4
6
8

10
12

G
AP

(%
)

Cases

RHPA

AGA

Figure 10. The curve of GAP value under different arithmetic cases.

For different numbers of AGVs, the scheduling results of the CDA algorithm are
compared with those of RHPA and AGA. The number of pre-considered tasks is set to
300; the number of QCs and the number of YCs are set to 4 and 8, respectively; and
the number of AGVs is assigned to 10, 12, 14, 16, 18, and 20, in that order. The results
of the above six groups of experiments are shown in Table 9. Figures 11–13 depict the

J. Mar. Sci. Eng. 2021, 9, 1439 22 of 29

trends of tasks delay time, AGVs travel time, and tasks completion time, respectively. The
following conclusions can be drawn: (1) the travel time of the AGVs maintains almost
constant values as the number of AGVs increases; (2) the three algorithms are sensitive
to the metric of tasks delay time, and all of them decrease with the number of increasing
AGVs; (3) The sensitivity of AGA to this indicator is greater, followed by RHPA, and the
sensitivity of the CDA algorithm to this indicator is the least; (4) The sensitivity of the
three algorithms to the indicator of the task completion time is similar to the conclusion (2);
it reflects the fact that the optimization of task completion times depends to a greater
extent on the degree of equipment synergy; (5) In terms of task delay times and completion
times, the difference between the CDA algorithm, and AGA and RHPA, is significant
when the number of AGVs is small, when the number of AGVs is greater than 16, and
the difference between task delay duration and task completion time between the CDA
algorithm and other algorithms gradually decreases as the number of AGVs increases, and
the overall scheduling performance of the CDA algorithm is significantly better than that
of AGA and RHPA.

Table 9. Scheduling results of three algorithms with different number of AGVs.

|N|×|V|×|Q|×|Y|
Tasks Completion Time (s) Tasks Delay Time (s) AGVs Travel Time (s)

CDA RHPA AGA CDA RHPA AGA CDA RHPA AGA

300-10-4-8 2273 2325 2332 23,134 36,705 23,505 23,357 23,492 23,016
300-12-4-8 1960 2011 1994 17,319 23,110 13,921 23,070 23,873 23,567
300-14-4-8 1679 1735 1739 10,731 19,670 12,810 23,635 23,902 23,492
300-16-4-8 1527 1552 1574 4620 75,215 7691 23,534 23,606 23,353
300-18-4-8 1331 1352 1371 4946 9494 6631 22,792 22,752 23,684
300-20-4-8 1234 1232 1214 5755 7466 6652 22,701 22,949 23,475

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 23 of 28

difference between the CDA algorithm, and AGA and RHPA, is significant when the
number of AGVs is small, when the number of AGVs is greater than 16, and the difference
between task delay duration and task completion time between the CDA algorithm and
other algorithms gradually decreases as the number of AGVs increases, and the overall
scheduling performance of the CDA algorithm is significantly better than that of AGA
and RHPA.

Table 9. Scheduling results of three algorithms with different number of AGVs.

|𝑵| × |𝑽| × |𝑸| × |𝒀| Tasks Completion Time (s) Tasks Delay Time (s) AGVs Travel Time (s)
CDA RHPA AGA CDA RHPA AGA CDA RHPA AGA

300-10-4-8 2273 2325 2332 23,134 36,705 23,505 23,357 23,492 23,016
300-12-4-8 1960 2011 1994 17,319 23,110 13,921 23,070 23,873 23,567
300-14-4-8 1679 1735 1739 10,731 19,670 12,810 23,635 23,902 23,492
300-16-4-8 1527 1552 1574 4620 75,215 7691 23,534 23,606 23,353
300-18-4-8 1331 1352 1371 4946 9494 6631 22,792 22,752 23,684
300-20-4-8 1234 1232 1214 5755 7466 6652 22,701 22,949 23,475

Figure 11. Curve of task delay time with the number of AGVs.

Figure 12. Curve of AGVs travel time with the number of AGVs.

1,000

11,000

21,000

31,000

41,000

51,000

61,000

71,000

81,000

91,000

10 12 14 16 18 20

Ta
sk

s d
el

ay
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

21,000

31,000

41,000

51,000

61,000

71,000

81,000

10 12 14 16 18 20

A
G

V
s t

ra
ve

l t
im

e(
s)

The number of AGVs

AGA
RHPA
CDA

1000

2000

3000

4000

5000

6000

7000

10 12 14 16 18 20

Ta
sk

s c
om

pl
rti

on
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

Figure 11. Curve of task delay time with the number of AGVs.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 23 of 28

difference between the CDA algorithm, and AGA and RHPA, is significant when the
number of AGVs is small, when the number of AGVs is greater than 16, and the difference
between task delay duration and task completion time between the CDA algorithm and
other algorithms gradually decreases as the number of AGVs increases, and the overall
scheduling performance of the CDA algorithm is significantly better than that of AGA
and RHPA.

Table 9. Scheduling results of three algorithms with different number of AGVs.

|𝑵| × |𝑽| × |𝑸| × |𝒀| Tasks Completion Time (s) Tasks Delay Time (s) AGVs Travel Time (s)
CDA RHPA AGA CDA RHPA AGA CDA RHPA AGA

300-10-4-8 2273 2325 2332 23,134 36,705 23,505 23,357 23,492 23,016
300-12-4-8 1960 2011 1994 17,319 23,110 13,921 23,070 23,873 23,567
300-14-4-8 1679 1735 1739 10,731 19,670 12,810 23,635 23,902 23,492
300-16-4-8 1527 1552 1574 4620 75,215 7691 23,534 23,606 23,353
300-18-4-8 1331 1352 1371 4946 9494 6631 22,792 22,752 23,684
300-20-4-8 1234 1232 1214 5755 7466 6652 22,701 22,949 23,475

Figure 11. Curve of task delay time with the number of AGVs.

Figure 12. Curve of AGVs travel time with the number of AGVs.

1,000

11,000

21,000

31,000

41,000

51,000

61,000

71,000

81,000

91,000

10 12 14 16 18 20

Ta
sk

s d
el

ay
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

21,000

31,000

41,000

51,000

61,000

71,000

81,000

10 12 14 16 18 20

A
G

V
s t

ra
ve

l t
im

e(
s)

The number of AGVs

AGA
RHPA
CDA

1000

2000

3000

4000

5000

6000

7000

10 12 14 16 18 20

Ta
sk

s c
om

pl
rti

on
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

Figure 12. Curve of AGVs travel time with the number of AGVs.

J. Mar. Sci. Eng. 2021, 9, 1439 23 of 29

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 23 of 28

difference between the CDA algorithm, and AGA and RHPA, is significant when the
number of AGVs is small, when the number of AGVs is greater than 16, and the difference
between task delay duration and task completion time between the CDA algorithm and
other algorithms gradually decreases as the number of AGVs increases, and the overall
scheduling performance of the CDA algorithm is significantly better than that of AGA
and RHPA.

Table 9. Scheduling results of three algorithms with different number of AGVs.

|𝑵| × |𝑽| × |𝑸| × |𝒀| Tasks Completion Time (s) Tasks Delay Time (s) AGVs Travel Time (s)
CDA RHPA AGA CDA RHPA AGA CDA RHPA AGA

300-10-4-8 2273 2325 2332 23,134 36,705 23,505 23,357 23,492 23,016
300-12-4-8 1960 2011 1994 17,319 23,110 13,921 23,070 23,873 23,567
300-14-4-8 1679 1735 1739 10,731 19,670 12,810 23,635 23,902 23,492
300-16-4-8 1527 1552 1574 4620 75,215 7691 23,534 23,606 23,353
300-18-4-8 1331 1352 1371 4946 9494 6631 22,792 22,752 23,684
300-20-4-8 1234 1232 1214 5755 7466 6652 22,701 22,949 23,475

Figure 11. Curve of task delay time with the number of AGVs.

Figure 12. Curve of AGVs travel time with the number of AGVs.

1,000

11,000

21,000

31,000

41,000

51,000

61,000

71,000

81,000

91,000

10 12 14 16 18 20

Ta
sk

s d
el

ay
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

21,000

31,000

41,000

51,000

61,000

71,000

81,000

10 12 14 16 18 20

A
G

V
s t

ra
ve

l t
im

e(
s)

The number of AGVs

AGA
RHPA
CDA

1000

2000

3000

4000

5000

6000

7000

10 12 14 16 18 20

Ta
sk

s c
om

pl
rti

on
 ti

m
e

(s
)

The number of AGVs

AGA
RHPA
CDA

Figure 13. Curve of task completion time with the number of AGVs.

6. Conclusions and Future Research Direction

This article discusses how to choose the AGV and container assignment method to
improve the synchronization of handling equipment and transportation equipment in the
automated terminal, and transforms the dynamic scheduling problem into a sequential
decision problem. The scheduling state, represented as a matrix of multiple channels,
heuristic assignment rules, and reward functions, is introduced to simplify the complex
AGVs dynamic scheduling process. A reinforcement learning algorithm using deep convo-
lutional networks and hybrid heuristic rules is proposed to optimize the mapping space
from the state–action space to the optimal policy. The real AGVs horizontal transporta-
tion scenario is simulated, and uncertain task loading and unloading time is considered.
In order to obtain the optimal hybrid scheduling rules for AGVs in different states, a large
number of experimental cases are designed, and, in this paper, the CDA algorithm is
trained for these cases. Comparing the scheduling results of the CDA algorithm with each
single scheduling rule defined in this paper, and other solution algorithms including AGA
and RHPA, the effectiveness and superiority of the proposed algorithm are verified; the
scheduling performance of the CDA algorithm improves by 29.59% on average over a
single scheduling rule, and this algorithm can reduce the task operation time by about
3.10% and 2.40% in AGA and RHPA, respectively. A sensitivity test on the number of AGVs
further demonstrates the performance of the CDA algorithm. The results show that as the
number of containers and AGVs increases, the advantages of CDA become more apparent.

In the future research, in addition to the dynamic scheduling of AGVs, the dynamic
path planning problem of AGVs can also be studied. Multiple AGVs share a road network
in the automated terminal, not only to ensure the shortest path for the AGVs transportation
of containers, but also to consider whether the AGV driving trajectory cross or overlap
results in AGVs collision, congestion and other conflict issues. If the AGVs path conflict
is not handled properly, it will not only prolong the travel time of the AGVs, but also
increase the waiting time of QCs or YCs, resulting in a decrease in operational efficiency
and a significant increase in the operation cost. Therefore, AGVs dynamic scheduling
combined with AGVs dynamic path planning is one of the main directions for future
research. At present, the application of the DRL algorithm to AGVs dynamic scheduling
and AGVs dynamic path planning requires further research and exploration in the actual
automated terminal. In addition to the synchronous operation of QCs and AGVs, the
task delivery efficiency between AGVs and YCs also urgently must be resolved. In the
future, the coupling constraints between AGVs and YCs can be considered, such as the
shortage of AGV mates in the yard area that delays the tasks. In the new U-shape trafficked
automated terminal [33], Both the internal AGVs and the external trucks are delivery tasks
directly with the YCs. There is no buffering function in the multiple material handling
equipment, and the synchronized operation of AGVs and YCs needs to be considered.
Therefore, DRL-based algorithms need to be improved to adapt to the more complex
operating environment of the automated terminal.

J. Mar. Sci. Eng. 2021, 9, 1439 24 of 29

Author Contributions: Conceptualization, resources, review, editing, supervision and funding
acquisition, Z.-H.H.; methodology, software, validation, formal analysis, writing and project ad-
ministration, C.C.; resources, L.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is funded by the National Natural Science Foundation of China (NSFC) under
the project of Panoramic Modeling and Experiments on the Spatial Pattern Evolution of Maritime
Corridors in the South China Sea in the Context of Belt and Road and Big Data (71871136).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

Appendix A

Table A1. Tasks completion time of CDA algorithm and assignment rules under different cases.

Cases
Tasks Completion Time (s)

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 933 917 985 912 956 904 945 958 983 963 937 1034 991 962 959 1031 964 1008 826
2 609 575 659 627 625 601 592 581 632 638 625 648 565 654 619 651 578 610 513
3 938 973 1020 959 933 912 939 907 1014 999 979 1030 951 941 996 1031 946 1004 760
4 909 919 1015 932 913 884 926 959 978 985 954 984 954 975 959 990 912 953 809
5 723 780 782 749 747 737 734 767 773 755 719 761 748 753 733 764 724 733 691
6 759 787 844 755 765 776 811 805 772 806 760 773 806 772 774 769 785 754 662
7 918 907 1009 904 909 936 911 943 950 989 906 957 897 949 910 942 905 946 799
8 928 993 1064 960 982 935 938 957 984 989 965 994 940 996 974 989 953 978 806
9 756 809 868 761 781 774 776 768 760 808 748 792 766 797 750 761 761 783 637

10 781 804 884 792 800 785 786 815 823 806 818 822 776 837 818 826 809 775 680

Note: The size |N| × |V| × |Q| × |B| of the cases 1–10 are 50 × 5 × 2 × 4, 50 × 8 × 2 × 4, 80 × 8 × 2 × 4, 80 × 8 × 4 × 4,
80× 10× 4× 4, 80× 10× 4× 6, 100× 10× 4× 4, 100× 10× 4× 6, 100× 12× 4× 4, 100× 12× 4× 6.

Table A2. Tasks delay time of CDA algorithm and assignment rules under different cases.

Cases
Tasks Delay Time (s)

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 4228 1924 4809 3713 367 3585 6239 1423 4333 2451 3417 3234 4089 1861 3175 3107 2917 3209 1328
2 902 1435 1472 188 355 1450 2915 205 1774 1526 1420 1372 938 1583 1109 1228 297 1717 491
3 3841 2839 4898 3890 384 4122 7071 145 3559 3664 3177 2963 3269 2768 2693 2801 1203 2506 1360
4 7760 5092 9244 6425 1002 9376 12,254 1669 7252 5368 6334 6270 7098 6170 6147 6145 5886 6921 2731
5 3732 4167 4623 4019 522 5998 7732 412 5222 2940 4211 4579 3821 4260 4136 4519 2391 4459 2648
6 4779 5266 5147 5954 725 5622 8823 975 4983 4413 4301 4275 4469 5124 4242 4225 3543 6313 1633
7 6269 6158 8639 7111 829 9513 12,695 918 7410 6083 6338 6375 6523 5643 5990 6398 4580 6739 3345
8 6447 6771 8114 6861 1017 10,016 12,952 2810 5799 5537 4891 4692 7550 6570 4693 4441 7535 10453 2746
9 4899 3627 6896 4255 707 6973 9717 337 4881 2650 4174 4279 5274 3430 4162 3972 4096 4793 1739

10 6316 3261 6989 5772 587 6163 8672 931 5640 3153 5233 4931 5546 3010 5319 4720 4930 5366 1800

Note: The size |N| × |V| × |Q| × |B| of the cases 1–10 are 50× 5× 2× 4, 50× 8× 2× 4, 80× 8× 2× 4, 80× 8× 4× 4, 80× 10× 4× 4,
80× 10× 4× 6, 100× 10× 4× 4, 100× 10× 4× 6, 100× 12× 4× 4, 100× 12× 4× 6.

J. Mar. Sci. Eng. 2021, 9, 1439 25 of 29

Table A3. AGVs travel time of CDA algorithm and assignment rules under different cases.

Cases
AGVs Travel Time (s)

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 4530 4379 4882 4380 4595 4294 4599 4637 4734 4746 4634 4862 4724 4565 4606 4874 4602 4730 3901
2 4483 4229 4853 4460 4609 4450 4431 4331 4616 4666 4604 4752 4336 4676 4604 4752 4387 4405 3779
3 7149 7212 8030 7291 7173 6991 7125 7013 7673 7605 7493 7833 7278 7199 7445 7913 7312 7493 5937
4 7025 6994 7921 7043 7077 6811 7108 7101 7384 7362 7330 7514 7210 7381 7300 7520 6983 7274 6048
5 6919 7061 7707 7033 7095 6982 6984 7043 7193 7097 7019 7219 7091 7093 7045 7223 6833 7033 6412
6 7041 7263 8064 7264 7311 7148 7452 7545 7350 7709 7295 7358 7396 7277 7239 7352 7277 7259 6093
7 8735 8685 9682 8691 8807 8620 8641 8953 8975 9309 8929 9135 8605 8933 8835 9141 8695 8733 7569
8 8999 9053 10,220 9101 9353 8988 9021 9103 9325 9509 9217 9417 9093 9234 9241 9323 9251 9304 7565
9 8628 8724 9815 8677 8809 8741 8883 8722 8735 8997 8645 8927 8719 8761 8631 8825 8756 8642 7325

10 8888 8785 9941 8823 8948 8824 8811 8960 9264 9835 9304 9334 8899 9168 9350 9308 9075 8795 7482

Note: The size |N| × |V| × |Q| × |B| of the cases 1–10 are 50× 5× 2× 4, 50× 8× 2× 4, 80× 8× 2× 4, 80× 8× 4× 4, 80× 10× 4× 4,
80× 10× 4× 6, 100× 10× 4× 4, 100× 10× 4× 6, 100× 12× 4× 4, 100× 12× 4× 6.

Table A4. Tasks delay rate of CDA algorithm and assignment rules under different cases.

Cases
Tasks Delay Rate

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 0.24 0.18 0.24 0.2 0.14 0.12 0.26 0.10 0.22 0.18 0.18 0.24 0.22 0.14 0.20 0.22 0.16 0.22 0.10
2 0.12 0.14 0.16 0.10 0.10 0.10 0.20 0.06 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.10 0.10 0.08
3 0.123 0.14 0.15 0.14 0.09 0.09 0.19 0.04 0.10 0.15 0.09 0.09 0.14 0.14 0.08 0.09 0.09 0.10 0.08
4 0.29 0.21 0.34 0.28 0.28 0.21 0.34 0.13 0.26 0.25 0.24 0.26 0.30 0.24 0.24 0.25 0.25 0.24 0.20
5 0.19 0.21 0.24 0.21 0.19 0.15 0.25 0.09 0.21 0.22 0.20 0.19 0.16 0.18 0.20 0.19 0.18 0.21 0.18
6 0.23 0.19 0.25 0.21 0.19 0.15 0.28 0.13 0.20 0.21 0.20 0.20 0.24 0.21 0.20 0.20 0.19 0.23 0.13
7 0.22 0.18 0.22 0.22 0.19 0.15 0.29 0.07 0.21 0.20 0.22 0.20 0.25 0.17 0.20 0.20 0.19 0.21 0.15
8 0.20 0.18 0.27 0.22 0.20 0.17 0.28 0.12 0.22 0.18 0.20 0.20 0.20 0.19 0.20 0.18 0.20 0.22 0.14
9 0.18 0.16 0.17 0.15 0.15 0.14 0.25 0.08 0.18 0.14 0.15 0.17 0.19 0.17 0.15 0.17 0.17 0.16 0.12

10 0.22 0.14 0.20 0.20 0.15 0.13 0.24 0.09 0.20 0.14 0.20 0.18 0.20 0.13 0.20 0.18 0.20 0.20 0.12

Note: The size |N| × |V| × |Q| × |B| of the cases 1–10 are 50× 5× 2× 4, 50× 8× 2× 4, 80× 8× 2× 4, 80× 8× 4× 4, 80× 10× 4× 4,
80× 10× 4× 6, 100× 10× 4× 4, 100× 10× 4× 6, 100× 12× 4× 4, 100× 12× 4× 6.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 26 of 28

Table A4. Tasks delay rate of CDA algorithm and assignment rules under different cases.

Cases
Tasks Delay Rate

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 0.24 0.18 0.24 0.2 0.14 0.12 0.26 0.10 0.22 0.18 0.18 0.24 0.22 0.14 0.20 0.22 0.16 0.22 0.10
2 0.12 0.14 0.16 0.10 0.10 0.10 0.20 0.06 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.10 0.10 0.08
3 0.123 0.14 0.15 0.14 0.09 0.09 0.19 0.04 0.10 0.15 0.09 0.09 0.14 0.14 0.08 0.09 0.09 0.10 0.08
4 0.29 0.21 0.34 0.28 0.28 0.21 0.34 0.13 0.26 0.25 0.24 0.26 0.30 0.24 0.24 0.25 0.25 0.24 0.20
5 0.19 0.21 0.24 0.21 0.19 0.15 0.25 0.09 0.21 0.22 0.20 0.19 0.16 0.18 0.20 0.19 0.18 0.21 0.18
6 0.23 0.19 0.25 0.21 0.19 0.15 0.28 0.13 0.20 0.21 0.20 0.20 0.24 0.21 0.20 0.20 0.19 0.23 0.13
7 0.22 0.18 0.22 0.22 0.19 0.15 0.29 0.07 0.21 0.20 0.22 0.20 0.25 0.17 0.20 0.20 0.19 0.21 0.15
8 0.20 0.18 0.27 0.22 0.20 0.17 0.28 0.12 0.22 0.18 0.20 0.20 0.20 0.19 0.20 0.18 0.20 0.22 0.14
9 0.18 0.16 0.17 0.15 0.15 0.14 0.25 0.08 0.18 0.14 0.15 0.17 0.19 0.17 0.15 0.17 0.17 0.16 0.12

10 0.22 0.14 0.20 0.20 0.15 0.13 0.24 0.09 0.20 0.14 0.20 0.18 0.20 0.13 0.20 0.18 0.20 0.20 0.12
Note: The size |𝑁| × |𝑉| × |𝑄| × |𝐵| of the cases 1–10 are 50 × 5 × 2 × 4, 50 × 8 × 2 × 4, 80 × 8 × 2 × 4, 80 × 8 × 4 ×4, 80 × 10 × 4 × 4, 80 × 10 × 4 × 6, 100 × 10 × 4 × 4, 100 × 10 × 4 × 6, 100 × 12 × 4 × 4, 100 × 12 × 4 × 6.

Figure A1. Curve of tasks completion time of CDA algorithm and assignment rules under different
cases.

Figure A2. Curve of tasks delay time of CDA algorithm and assignment rules under different cases.

Figure A3. Curve of AGVs travel time of CDA algorithm and assignment rules under different cases.

700

750

800

850

900

950

1000

1050

1100

Ta
sk

s c
om

pl
et

io
n

tim
e

(s
)

CDA algorithm and heuristic rules

1,000

3,000

5,000

7,000

9,000

11,000

13,000

15,000

Ta
sk

s d
el

ay
 ti

m
e

(s
)

CDA algorithm and heuristic rules

7,000

7,500

8,000

8,500

9,000

9,500

10,000

10,500

A
G

V
s t

ra
ve

l t
im

e
(s

)

CDA algorithm and heuristic rules

Figure A1. Curve of tasks completion time of CDA algorithm and assignment rules under different
cases.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 26 of 28

Table A4. Tasks delay rate of CDA algorithm and assignment rules under different cases.

Cases
Tasks Delay Rate

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 0.24 0.18 0.24 0.2 0.14 0.12 0.26 0.10 0.22 0.18 0.18 0.24 0.22 0.14 0.20 0.22 0.16 0.22 0.10
2 0.12 0.14 0.16 0.10 0.10 0.10 0.20 0.06 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.10 0.10 0.08
3 0.123 0.14 0.15 0.14 0.09 0.09 0.19 0.04 0.10 0.15 0.09 0.09 0.14 0.14 0.08 0.09 0.09 0.10 0.08
4 0.29 0.21 0.34 0.28 0.28 0.21 0.34 0.13 0.26 0.25 0.24 0.26 0.30 0.24 0.24 0.25 0.25 0.24 0.20
5 0.19 0.21 0.24 0.21 0.19 0.15 0.25 0.09 0.21 0.22 0.20 0.19 0.16 0.18 0.20 0.19 0.18 0.21 0.18
6 0.23 0.19 0.25 0.21 0.19 0.15 0.28 0.13 0.20 0.21 0.20 0.20 0.24 0.21 0.20 0.20 0.19 0.23 0.13
7 0.22 0.18 0.22 0.22 0.19 0.15 0.29 0.07 0.21 0.20 0.22 0.20 0.25 0.17 0.20 0.20 0.19 0.21 0.15
8 0.20 0.18 0.27 0.22 0.20 0.17 0.28 0.12 0.22 0.18 0.20 0.20 0.20 0.19 0.20 0.18 0.20 0.22 0.14
9 0.18 0.16 0.17 0.15 0.15 0.14 0.25 0.08 0.18 0.14 0.15 0.17 0.19 0.17 0.15 0.17 0.17 0.16 0.12

10 0.22 0.14 0.20 0.20 0.15 0.13 0.24 0.09 0.20 0.14 0.20 0.18 0.20 0.13 0.20 0.18 0.20 0.20 0.12
Note: The size |𝑁| × |𝑉| × |𝑄| × |𝐵| of the cases 1–10 are 50 × 5 × 2 × 4, 50 × 8 × 2 × 4, 80 × 8 × 2 × 4, 80 × 8 × 4 ×4, 80 × 10 × 4 × 4, 80 × 10 × 4 × 6, 100 × 10 × 4 × 4, 100 × 10 × 4 × 6, 100 × 12 × 4 × 4, 100 × 12 × 4 × 6.

Figure A1. Curve of tasks completion time of CDA algorithm and assignment rules under different
cases.

Figure A2. Curve of tasks delay time of CDA algorithm and assignment rules under different cases.

Figure A3. Curve of AGVs travel time of CDA algorithm and assignment rules under different cases.

700

750

800

850

900

950

1000

1050

1100

Ta
sk

s c
om

pl
et

io
n

tim
e

(s
)

CDA algorithm and heuristic rules

1,000

3,000

5,000

7,000

9,000

11,000

13,000

15,000

Ta
sk

s d
el

ay
 ti

m
e

(s
)

CDA algorithm and heuristic rules

7,000

7,500

8,000

8,500

9,000

9,500

10,000

10,500

A
G

V
s t

ra
ve

l t
im

e
(s

)

CDA algorithm and heuristic rules

Figure A2. Curve of tasks delay time of CDA algorithm and assignment rules under different cases.

J. Mar. Sci. Eng. 2021, 9, 1439 26 of 29

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 26 of 28

Table A4. Tasks delay rate of CDA algorithm and assignment rules under different cases.

Cases
Tasks Delay Rate

LTT STT LPT SPT GUT LUT LQ-
LUT

LQ-
GUT

SQ-
LUT

SQ-
GUT

SQ-
LPT

SQ-
SPT

LQ-
LPT

LQ-
SPT

SQ-
LTT

SQ-
STT

LQ-
LTT

LQ-
STT CDA

1 0.24 0.18 0.24 0.2 0.14 0.12 0.26 0.10 0.22 0.18 0.18 0.24 0.22 0.14 0.20 0.22 0.16 0.22 0.10
2 0.12 0.14 0.16 0.10 0.10 0.10 0.20 0.06 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.10 0.10 0.08
3 0.123 0.14 0.15 0.14 0.09 0.09 0.19 0.04 0.10 0.15 0.09 0.09 0.14 0.14 0.08 0.09 0.09 0.10 0.08
4 0.29 0.21 0.34 0.28 0.28 0.21 0.34 0.13 0.26 0.25 0.24 0.26 0.30 0.24 0.24 0.25 0.25 0.24 0.20
5 0.19 0.21 0.24 0.21 0.19 0.15 0.25 0.09 0.21 0.22 0.20 0.19 0.16 0.18 0.20 0.19 0.18 0.21 0.18
6 0.23 0.19 0.25 0.21 0.19 0.15 0.28 0.13 0.20 0.21 0.20 0.20 0.24 0.21 0.20 0.20 0.19 0.23 0.13
7 0.22 0.18 0.22 0.22 0.19 0.15 0.29 0.07 0.21 0.20 0.22 0.20 0.25 0.17 0.20 0.20 0.19 0.21 0.15
8 0.20 0.18 0.27 0.22 0.20 0.17 0.28 0.12 0.22 0.18 0.20 0.20 0.20 0.19 0.20 0.18 0.20 0.22 0.14
9 0.18 0.16 0.17 0.15 0.15 0.14 0.25 0.08 0.18 0.14 0.15 0.17 0.19 0.17 0.15 0.17 0.17 0.16 0.12

10 0.22 0.14 0.20 0.20 0.15 0.13 0.24 0.09 0.20 0.14 0.20 0.18 0.20 0.13 0.20 0.18 0.20 0.20 0.12
Note: The size |𝑁| × |𝑉| × |𝑄| × |𝐵| of the cases 1–10 are 50 × 5 × 2 × 4, 50 × 8 × 2 × 4, 80 × 8 × 2 × 4, 80 × 8 × 4 ×4, 80 × 10 × 4 × 4, 80 × 10 × 4 × 6, 100 × 10 × 4 × 4, 100 × 10 × 4 × 6, 100 × 12 × 4 × 4, 100 × 12 × 4 × 6.

Figure A1. Curve of tasks completion time of CDA algorithm and assignment rules under different
cases.

Figure A2. Curve of tasks delay time of CDA algorithm and assignment rules under different cases.

Figure A3. Curve of AGVs travel time of CDA algorithm and assignment rules under different cases.

700

750

800

850

900

950

1000

1050

1100

Ta
sk

s c
om

pl
et

io
n

tim
e

(s
)

CDA algorithm and heuristic rules

1,000

3,000

5,000

7,000

9,000

11,000

13,000

15,000

Ta
sk

s d
el

ay
 ti

m
e

(s
)

CDA algorithm and heuristic rules

7,000

7,500

8,000

8,500

9,000

9,500

10,000

10,500

A
G

V
s t

ra
ve

l t
im

e
(s

)

CDA algorithm and heuristic rules

Figure A3. Curve of AGVs travel time of CDA algorithm and assignment rules under different cases.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 27 of 28

Figure A4. Curve of tasks delay rate of CDA algorithm and assignment rules under different
cases.

Table A5. Scheduling results of different algorithms with different cases.

Cases |𝑵| × |𝑽|× |𝑸| × |𝑩| Tasks Completion
Time (s)

Tasks Delay Time (s) AGVs Travel Time (s) Delay Rate of Tasks 𝑮𝑷𝑨𝑪𝑫𝑨ି𝑨
(%)

𝑮𝑷𝑨𝑪𝑫𝑨ି𝑹𝑯𝑷𝑨
(%)

AGA RHPA CDA AGA RHPA CDA AGA RHPA CDA AGA RHPA CDA
11 200-10-4-6 1591 1618 1584 7694 12,876 7604 15,871 15,433 15,513 0.1085 0.14 0.11 0.44 2.15
12 200-10-4-8 1618 1645 1616 10,282 12,112 8343 15,834 15,518 15,636 0.1072 0.14 0.12 0.12 1.79
13 200-12-4-6 1310 1345 1330 9288 11,509 8533 15,588 15,106 15,467 0.1186 0.15 0.12 −1.50 1.13
14 200-12-4-8 1315 1327 1305 5952 12,973 8439 15,406 15,327 15,163 0.1117 0.13 0.12 0.77 1.69
15 300-12-4-8 1994 2011 1960 13,921 23,110 17,319 22,567 22,873 23,070 0.1057 0.12 0.12 1.73 2.60
16 300-12-6-10 2065 1991 2030 28,736 29,521 32,325 24,067 22,915 23,694 0.1886 0.16 0.18 1.72 −1.92
17 300-12-6-10 2062 1983 2010 23,991 36,527 31,237 24,026 23,262 23,446 0.1699 0.18 0.20 2.59 −1.34
18 300-13-6-8 1838 1821 1803 23,171 25,389 20,073 23,424 22,654 22,548 0.1557 0.16 0.14 1.94 1.00
19 300-13-6-10 1846 1890 1779 29,140 32,153 24,933 23,676 22,499 22,682 0.1683 0.19 0.17 3.77 6.24
20 300-13-8-10 1828 1829 1807 26,471 36,714 26,131 22,993 22,922 22,872 0.2014 0.21 0.21 1.16 1.22
21 400-13-6-8 2398 2435 2320 43,908 47,248 35,032 30,865 29,290 29,538 0.1,455 0.17 0.14 3.36 4.96
22 400-13-6-10 2471 2459 2384 37,124 52,999 47,076 30,935 30,198 31,038 0.1501 0.18 0.17 3.65 3.15
23 400-13-8-10 2374 2379 2337 55,548 64,424 57,329 30,011 30,033 29,902 0.243 0.24 0.19 1.58 1.80
24 400-14-6-8 2270 2224 2188 27,675 42,383 27,089 31,515 30,096 29,943 0.126 0.14 0.12 3.75 1.65
25 400-14-6-10 2282 2187 2083 32,490 43,594 34,507 30,617 29,822 29,820 0.1397 0.15 0.14 9.55 4.99
26 400-14-8-10 2265 2228 2175 58,538 48,992 44,950 31,033 30,217 29,870 0.2191 0.18 0.21 4.13 2.44
27 500-14-6-8 2817 2775 2649 46,780 75,977 66,679 37,914 37,388 38,196 0.1315 0.17 0.15 6.34 4.76
28 500-14-6-10 2832 2794 2708 55,802 64,888 41,159 38,436 38,102 38,247 0.1461 0.15 0.13 4.58 3.18
29 500-14-8-10 2764 2705 2611 68,922 94,360 73,322 37,949 36,953 37,204 0.1852 0.2 0.2 5.86 3.60
30 500-15-8-10 2722 2632 2558 73,674 78,205 76,810 38,937 38,548 37,876 0.1691 0.2 0.19 6.41 2.98

References
1. Luo, J.; Wu, Y. Scheduling of container-handling equipment during the loading process at an automated container terminal.

Comput. Ind. Eng. 2020, 149, 106848, https://doi.org/10.1016/j.cie.2020.106848.
2. Saidi-Mehrabad, M.; Dehnavi-Arani, S.; Evazabadian, F.; Mahmoodian, V. An Ant Colony Algorithm (ACA) for solving the

new integrated model of job shop scheduling and conflict-free routing of AGVs. Comput. Ind. Eng. 2015, 86, 2–13,
https://doi.org/10.1016/j.cie.2015.01.003.

3. Xu, B.; Jie, D.; Li, J.; Yang, Y.; Wen, F.; Song, H. Integrated scheduling optimization of U-shaped automated container terminal
under loading and unloading mode. Comput. Ind. Eng. 2021, 162, 107695, https://doi.org/10.1016/j.cie.2021.107695.

4. Li, J.; Yang, J.; Xu, B.; Yang, Y.; Wen, F.; Song, H. Hybrid Scheduling for Multi-Equipment at U-Shape Trafficked Automated
Terminal Based on Chaos Particle Swarm Optimization. J. Mar. Sci. Eng. 2021, 9, 1080, https://doi.org/10.3390/jmse9101080.

5. Kim, K.H.; Bae, J.W. A look-ahead dispatching method for automated guided vehicles in automated port container terminals.
Transp. Sci. 2004, 38, 224–234, https://doi.org/10.1287/trsc.1030.0082.

6. Iris, Ç.; Christensen, J.; Pacino, D.; Ropke, S. Flexible ship loading problem with transfer vehicle assignment and scheduling.
Transp. Res. Part B Methodol. 2018, 111, 113–134, https://doi.org/10.1016/j.trb.2018.03.009.

7. Iris, Ç.; Lam, J.S.L. Recoverable robustness in weekly berth and quay crane planning. Transp. Res. Part B Methodol. 2019, 122,
365–389. https://doi.org/10.1016/j.trb.2019.02.013.

8. Degris, T.; White, M.; Sutton, R.S. Off-policy actor-critic. arXiv 2012, arXiv:1205.4839.
9. Rashidi, H.; Tsang, E.P.K. A complete and an incomplete algorithm for automated guided vehicle scheduling in container ter-

minals. Comput. Math. Appl. 2011, 61, 630–641, https://doi.org/10.1016/j.camwa.2010.12.009.
10. Grunow, M.; Günther, H.O.; Lehmann, M. Strategies for dispatching AGVs at automated seaport container terminals. In Con-

tainer Terminals and Cargo Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 155–178.

0.1

0.15

0.2

0.25

0.3

Ta
sk

s d
el

ay
 ra

te

CDA algorithm and heuristic rules

Figure A4. Curve of tasks delay rate of CDA algorithm and assignment rules under different cases.

J. Mar. Sci. Eng. 2021, 9, 1439 27 of 29

Table A5. Scheduling results of different algorithms with different cases.

Cases |N|×|V|×|Q|×|B|
Tasks Completion Time (s) Tasks Delay Time (s) AGVs Travel Time (s) Delay Rate of Tasks

GPACDA−AGA(%) GPACDA−RHPA(%)
AGA RHPA CDA AGA RHPA CDA AGA RHPA CDA AGA RHPA CDA

11 200-10-4-6 1591 1618 1584 7694 12,876 7604 15,871 15,433 15,513 0.1085 0.14 0.11 0.44 2.15
12 200-10-4-8 1618 1645 1616 10,282 12,112 8343 15,834 15,518 15,636 0.1072 0.14 0.12 0.12 1.79
13 200-12-4-6 1310 1345 1330 9288 11,509 8533 15,588 15,106 15,467 0.1186 0.15 0.12 −1.50 1.13
14 200-12-4-8 1315 1327 1305 5952 12,973 8439 15,406 15,327 15,163 0.1117 0.13 0.12 0.77 1.69
15 300-12-4-8 1994 2011 1960 13,921 23,110 17,319 22,567 22,873 23,070 0.1057 0.12 0.12 1.73 2.60
16 300-12-6-10 2065 1991 2030 28,736 29,521 32,325 24,067 22,915 23,694 0.1886 0.16 0.18 1.72 −1.92
17 300-12-6-10 2062 1983 2010 23,991 36,527 31,237 24,026 23,262 23,446 0.1699 0.18 0.20 2.59 −1.34
18 300-13-6-8 1838 1821 1803 23,171 25,389 20,073 23,424 22,654 22,548 0.1557 0.16 0.14 1.94 1.00
19 300-13-6-10 1846 1890 1779 29,140 32,153 24,933 23,676 22,499 22,682 0.1683 0.19 0.17 3.77 6.24
20 300-13-8-10 1828 1829 1807 26,471 36,714 26,131 22,993 22,922 22,872 0.2014 0.21 0.21 1.16 1.22
21 400-13-6-8 2398 2435 2320 43,908 47,248 35,032 30,865 29,290 29,538 0.1,455 0.17 0.14 3.36 4.96
22 400-13-6-10 2471 2459 2384 37,124 52,999 47,076 30,935 30,198 31,038 0.1501 0.18 0.17 3.65 3.15
23 400-13-8-10 2374 2379 2337 55,548 64,424 57,329 30,011 30,033 29,902 0.243 0.24 0.19 1.58 1.80
24 400-14-6-8 2270 2224 2188 27,675 42,383 27,089 31,515 30,096 29,943 0.126 0.14 0.12 3.75 1.65
25 400-14-6-10 2282 2187 2083 32,490 43,594 34,507 30,617 29,822 29,820 0.1397 0.15 0.14 9.55 4.99
26 400-14-8-10 2265 2228 2175 58,538 48,992 44,950 31,033 30,217 29,870 0.2191 0.18 0.21 4.13 2.44
27 500-14-6-8 2817 2775 2649 46,780 75,977 66,679 37,914 37,388 38,196 0.1315 0.17 0.15 6.34 4.76
28 500-14-6-10 2832 2794 2708 55,802 64,888 41,159 38,436 38,102 38,247 0.1461 0.15 0.13 4.58 3.18
29 500-14-8-10 2764 2705 2611 68,922 94,360 73,322 37,949 36,953 37,204 0.1852 0.2 0.2 5.86 3.60
30 500-15-8-10 2722 2632 2558 73,674 78,205 76,810 38,937 38,548 37,876 0.1691 0.2 0.19 6.41 2.98

J. Mar. Sci. Eng. 2021, 9, 1439 28 of 29

References
1. Luo, J.; Wu, Y. Scheduling of container-handling equipment during the loading process at an automated container terminal.

Comput. Ind. Eng. 2020, 149, 106848. [CrossRef]
2. Saidi-Mehrabad, M.; Dehnavi-Arani, S.; Evazabadian, F.; Mahmoodian, V. An Ant Colony Algorithm (ACA) for solving the new

integrated model of job shop scheduling and conflict-free routing of AGVs. Comput. Ind. Eng. 2015, 86, 2–13. [CrossRef]
3. Xu, B.; Jie, D.; Li, J.; Yang, Y.; Wen, F.; Song, H. Integrated scheduling optimization of U-shaped automated container terminal

under loading and unloading mode. Comput. Ind. Eng. 2021, 162, 107695. [CrossRef]
4. Li, J.; Yang, J.; Xu, B.; Yang, Y.; Wen, F.; Song, H. Hybrid Scheduling for Multi-Equipment at U-Shape Trafficked Automated

Terminal Based on Chaos Particle Swarm Optimization. J. Mar. Sci. Eng. 2021, 9, 1080. [CrossRef]
5. Kim, K.H.; Bae, J.W. A look-ahead dispatching method for automated guided vehicles in automated port container terminals.

Transp. Sci. 2004, 38, 224–234. [CrossRef]
6. Iris, Ç.; Christensen, J.; Pacino, D.; Ropke, S. Flexible ship loading problem with transfer vehicle assignment and scheduling.

Transp. Res. Part B Methodol. 2018, 111, 113–134. [CrossRef]
7. Iris, Ç.; Lam, J.S.L. Recoverable robustness in weekly berth and quay crane planning. Transp. Res. Part B Methodol. 2019, 122,

365–389. [CrossRef]
8. Degris, T.; White, M.; Sutton, R.S. Off-policy actor-critic. arXiv 2012, arXiv:1205.4839.
9. Rashidi, H.; Tsang, E.P.K. A complete and an incomplete algorithm for automated guided vehicle scheduling in container

terminals. Comput. Math. Appl. 2011, 61, 630–641. [CrossRef]
10. Grunow, M.; Günther, H.O.; Lehmann, M. Strategies for dispatching AGVs at automated seaport container terminals. In Container

Terminals and Cargo Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 155–178.
11. Pjevčević, D.; Vladisavljević, I.; Vukadinović, K.; Teodorović, D. Application of DEA to the analysis of AGV fleet operations in a

port container terminal. Procedia-Soc. Behav. Sci. 2011, 20, 816–825. [CrossRef]
12. Skinner, B.; Yuan, S.; Huang, S.; Liu, D.; Cai, B.; Dissanayake, G.; Pagac, D. Optimisation for job scheduling at automated container

terminals using genetic algorithm. Comput. Ind. Eng. 2013, 64, 511–523. [CrossRef]
13. Luo, J.; Wu, Y. Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container

terminals. Transp. Res. Part E Logist. Transp. Rev. 2015, 79, 49–64. [CrossRef]
14. Angeloudis, P.; Bell, M.G.H. An uncertainty-aware AGV assignment algorithm for automated container terminals. Transp. Res.

Part E Logist. Transp. Rev. 2010, 46, 354–366. [CrossRef]
15. Klerides, E.; Hadjiconstantinou, E. Modelling and solution approaches to the multi-load AGV dispatching problem in container

terminals. Marit. Econ. Logist. 2011, 13, 371–386. [CrossRef]
16. Cai, B.; Huang, S.; Liu, D.; Dissanayake, G. Rescheduling policies for large-scale task allocation of autonomous straddle carriers

under uncertainty at automated container terminals. Robot. Auton. Syst. 2014, 62, 506–514. [CrossRef]
17. Xin, J.; Negenborn, R.R.; Lodewijks, G. Rescheduling of interacting machines in automated container terminals. IFAC Proc. Vol.

2014, 47, 1698–1704. [CrossRef]
18. Kim, J.; Choe, R.; Ryu, K.R. Multi-objective optimization of dispatching strategies for situation-adaptive AGV operation in an

automated container terminal. In Proceedings of the 2013 Research in Adaptive and Convergent Systems, Montreal, QC, Canada,
1–4 October 2013; pp. 1–6. [CrossRef]

19. Han, B.A.; Yang, J.J. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 2020, 8,
186474–186495. [CrossRef]

20. Briskorn, D.; Drexl, A.; Hartmann, S. Inventory-based dispatching of automated guided vehicles on container terminals. In
Container Terminals and Cargo Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 195–214.

21. Choe, R.; Kim, J.; Ryu, K.R. Online preference learning for adaptive dispatching of AGVs in an automated container terminal.
Appl. Soft Comput. 2016, 38, 647–660. [CrossRef]

22. Fotuhi, F.; Huynh, N.; Vidal, J.M.; Xie, Y. Modeling yard crane operators as reinforcement learning agents. Res. Transp. Econ. 2013,
42, 3–12. [CrossRef]

23. Hu, H.; Jia, X.; He, Q.; Fu, S.; Liu, K. Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible
shop floor in industry 4.0. Comput. Ind. Eng. 2020, 149, 106749. [CrossRef]

24. Tang, X.; Qin, Z.; Zhang, F.; Wang, Z.; Xu, Z.; Ma, Y.; Ye, J. A deep value-network based approach for multi-driver order
dispatching. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 4–8 August 2019; pp. 1780–1790. [CrossRef]

25. Yao, Z.; Wang, Y.; Meng, L.; Qiu, X.; Yu, P. DDPG-Based Energy-Efficient Flow Scheduling Algorithm in Software-Defined Data
Centers. Wirel. Commun. Mob. Comput. 2021, 2021, 6629852. [CrossRef]

26. Luo, S.; Lin, X.; Zheng, Z. A novel CNN-DDPG based AI-trader: Performance and roles in business operations. Transp. Res. Part
E Logist. Transp. Rev. 2019, 131, 68–79. [CrossRef]

27. Ying, C.; Chow, A.H.F.; Chin, K.S. An actor-critic deep reinforcement learning approach for metro train scheduling with rolling
stock circulation under stochastic demand. Transp. Res. Part B Methodol. 2020, 140, 210–235. [CrossRef]

28. Yang, Y.; Zhong, M.; Dessouky, Y.; Postolache, O. An integrated scheduling method for AGV routing in automated container
terminals. Comput. Ind. Eng. 2018, 126, 482–493. [CrossRef]

http://doi.org/10.1016/j.cie.2020.106848
http://doi.org/10.1016/j.cie.2015.01.003
http://doi.org/10.1016/j.cie.2021.107695
http://doi.org/10.3390/jmse9101080
http://doi.org/10.1287/trsc.1030.0082
http://doi.org/10.1016/j.trb.2018.03.009
http://doi.org/10.1016/j.trb.2019.02.013
http://doi.org/10.1016/j.camwa.2010.12.009
http://doi.org/10.1016/j.sbspro.2011.08.090
http://doi.org/10.1016/j.cie.2012.08.012
http://doi.org/10.1016/j.tre.2015.03.006
http://doi.org/10.1016/j.tre.2009.09.001
http://doi.org/10.1057/mel.2011.22
http://doi.org/10.1016/j.robot.2013.12.007
http://doi.org/10.3182/20140824-6-ZA-1003.01305
http://doi.org/10.1145/2513228.2513277
http://doi.org/10.1109/ACCESS.2020.3029868
http://doi.org/10.1016/j.asoc.2015.09.027
http://doi.org/10.1016/j.retrec.2012.11.001
http://doi.org/10.1016/j.cie.2020.106749
http://doi.org/10.1145/3292500.3330724
http://doi.org/10.1155/2021/6629852
http://doi.org/10.1016/j.tre.2019.09.013
http://doi.org/10.1016/j.trb.2020.08.005
http://doi.org/10.1016/j.cie.2018.10.007

J. Mar. Sci. Eng. 2021, 9, 1439 29 of 29

29. Iqbal, S.; Sha, F. Actor-attention-critic for multi-agent reinforcement learning. International Conference on Machine Learning.
arXiv 2019, arXiv:1810.02912.

30. Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container
terminals. Comput. Ind. Eng. 2020, 142, 106371. [CrossRef]

31. Liu, D.; Wang, W.; Wang, L.; Jia, H.; Shi, M. Dynamic Pricing Strategy of Electric Vehicle Aggregators Based on DDPG
Reinforcement Learning Algorithm. IEEE Access 2021, 9, 21556–21566. [CrossRef]

32. Díaz-Madroñero, M.; Mula, J.; Jiménez, M.; Peidro, D. A rolling horizon approach for material requirement planning under fuzzy
lead times. Int. J. Prod. Res. 2017, 55, 2197–2211. [CrossRef]

33. Sun, Z.W. The world’s First! Zhenhua Heavy Industry Releases New Technology for Container Terminal Loading and Unloading,
China Water Transport Network 2019. Available online: http://app.zgsyb.com/news.html?aid=530549 (accessed on 25 November
2021).

http://doi.org/10.1016/j.cie.2020.106371
http://doi.org/10.1109/ACCESS.2021.3055517
http://doi.org/10.1080/00207543.2016.1223382
http://app.zgsyb.com/news.html?aid=530549

	Introduction
	Literature Review
	Mathematical Model
	Problem Description
	Notation of the Global Parameters
	AGVs Dynamic Scheduling Model
	System State Information
	Action Space Expression
	Reward Design and Reshaping
	Optimal Scheduling Strategy

	CDA Scheduling Algorithm
	CDA Algorithm Network Structure
	Algorithm Update Process
	Implementation of AGVs Dynamic Scheduling

	Numerical Experiments
	Experimental Parameters Setting
	Parameter Experiment
	Comparison of Experimental Results

	Conclusions and Future Research Direction
	
	References

