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Abstract: This work aims at defining in a probabilistic manner objectives and constraints typically
considered in route optimization systems. Information about weather-related uncertainties is in-
troduced by adopting ensemble forecast results. Classical reliability methods commonly used in
structural analysis are adopted, allowing to achieve a simple yet effective evaluation of the probability
of failure and the variability associated with the predicted fuel consumption and time of arrival. A
quantitative example of application is provided, taking into consideration one of the main North
Atlantic routes.

Keywords: uncertainties; multi-objective optimization; ensemble weather forecast

1. Introduction

The selection of the most appropriate path for a ship to sail towards the destination
has been a concern since the ancient times of maritime history. The degrading effect
of environmental loads on vessel performance and their potential risk to its operability
has been known since the early stages of navigation. Systematic collection of weather
information has helped seafarers since the 18th century to reduce voyage time, but it is
only in the second half of the 20th century that formal numerical techniques, initially
based on the isochrone method [1], have been proposed to automatically identify the most
favourable path.

Several approaches have been developed along the decades, with a sharp increase
since the beginning of the new century as thoroughly depicted in [2,3]. The main concern
has been on keeping the multi-objective nature of the optimization problem [4–6]. The
objectives to be optimized typically encompass fuel consumption, voyage duration, and
an index representing navigation safety. A common aspect of almost all of the proposed
methods is to consider the prediction of environmental loads along the route as deter-
ministic, even if the voyage may take several days. Nevertheless, the weather forecast is
affected by uncertainties [7], which are nowadays to be mostly attributed to the inaccurate
and partial knowledge about the initial conditions as third-generation numerical weather
prediction models have achieved a high level of model accuracy. Only uncertainties related
to the significant wave height and the wave period are accounted in this work for the
sake of clarity, however, effortless extensions are possible, such as considering the effect of
wind [8].

Ensemble forecasts [9–11] represent an effective technique to both improve the long
term (more than 4–6 days) weather prediction and to assess its uncertainties, also providing
their integral quantification in terms of standard deviations of the weather parameters. In
its standard form, ensemble forecast consists of multiple runs of the numerical prediction
models applying small perturbations to the initial conditions in order to evaluate their
impact on the forecast. If not properly accounted for, the difference between the predicted
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and the actual weather conditions may counteract the effort made in the optimization of
the route.

Pioneering work in this direction has been presented in [12], making use of ensemble
forecasts to select the final route; however, ensemble forecasts were only used to evaluate
the robustness of the selected route, ensuring that the constraints were not violated in a
pre-defined number of cases. Applications to specific shipping sectors can be found in [13]
for long term scheduling of LNG ships and in [14] which accounts for weather uncertainties
for the development of speed optimization strategies in planning the operations of offshore
supply vessels. In [15], uncertainties related to weather were considered on a two stage-
optimization process: firstly, considering a classical multi-objective optimization of fuel
and expected time of arrival (ETA), and secondly, selecting the route that minimizes the
fuel consumption with a given probability of arriving on time. In [16], the effect of the
uncertainty of weather forecasts in ship fuel consumption has been quantified along the
ship routes.

A comprehensive and flexible way to incorporate uncertainties in the optimisation
process is still missing, and the present work aims at filling this gap by proposing a method,
potentially applicable to any voyage optimization algorithm, to evaluate uncertainties
in the objectives and constraints typically accounted in ship routing. Section 2 presents
the probabilistic approach considered, Section 3 describes the method to obtain the risk
associated with a specific route, the required fuel consumption, and the expected voyage
duration, each represented by a single value (similarly to the ones used in deterministic
approaches) but accounting for weather uncertainties. An example of application on a
north Atlantic crossing route is provided in Section 4, while conclusions and final remarks
are discussed in Section 5.

2. Probabilistic Approach

The method assumes the knowledge of the mean values and the variances (or stan-
dard deviations) of the uncertain weather parameters along the route, e.g., significant
wave height HS, mean period Tm (or peak period TP), and mean relative wave direction
χm, as well as the availability of a tool to estimate the required seakeeping responses,
the fuel consumption, and the ship speed in the given weather conditions and for the
imposed engine settings (typically RPM). The uncertain variables are considered normally
distributed. Other sources of uncertainties not due to weather conditions are, for instance,
model uncertainties in the estimation of ship responses [17–19], but also related to the
attitude of the shipmaster and the engine control strategy adopted [20–22].

2.1. Navigational Risk

A probabilistic approach to navigational risk requires a robust methodology to es-
timate, at any given location along the route, the probability that any of the possible
occurring risks will exceed a determined acceptable level l.

Consider a generic hazard (e.g., a seakeeping response) quantitatively definable
by a value y. The value y may represent, for instance, a significant vertical accelera-
tion at the bridge, the root mean square of roll angle [23], or the probability of green
water [24]. The response y can be expressed as a function of a set of deterministic vari-
ables X =

(
x1, . . . , xi, . . . , xnd

)
(e.g., ship main dimensions) and a set of uncertain variables

X̃ = (x̃1, . . . , x̃i, . . . , x̃nu) (e.g., weather parameters), and a black-box model for the estima-
tion of y is available:

y = y
(

X, X̃
)

(1)

By expanding in Taylor series around the mean values of the uncertain variables
X̃m =

(
x̃m1, . . . , x̃mi, . . . , x̃mnu

)
, the response can be approximated in the first order as:

y
(

X, X̃
)
= y

(
X, X̃m

)
+ ∑

∂y
∂x̃i

(x̃i − x̃mi ) (2)
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The ship operations are considered safe if the response y does not exceed a limit value
l. A limit state function can thus be defined as:

g =
l − y

l
(3)

The navigation is to be considered unsafe if the limit state function is negative g < 0.
Assuming l to be constant for a given response, from the Taylor approximation it is
straightforward to obtain an estimation of the expected value and the variance for the limit
state function:

µg = E[g] ≈ g
(

X̃m, X
)

σ2
g = Var[g] = ∑

(
∂g
∂x̃i

)2
σ2

x̃i
+ ∑

i 6=j

∂g
∂x̃i

∂g
∂x̃j

ρijσx̃i
σx̃j

(4)

where ∂g
∂x̃i

is the partial derivative of the limit state function with respect to the uncertain
variables, and σx̃i

is the standard deviation of the variables.
If only uncertainties in the significant wave height HS and a reference wave period

(e.g., TP) are considered, while all other variables are deterministic and included in X̂, the
previous equations reduce to:

µg = E[g] ≈ g
(

HSm, TPm, X̂
)

σ2
g = Var[g] =

(
∂g

∂HS

)2
σ2

HS
+
(

∂g
∂TP

)2
σ2

TP
+ 2 ∂g

∂HS

∂g
∂TP

ρσHS σTP

(5)

where the correlation coefficient ρ between HS and TP can be estimated, for instance, from
the scatter diagram of the North Atlantic, resulting in ρ = 0.575.

Assuming Gaussian distribution of the uncertainties in the input variables, as a
consequence of the first-order approximation approach adopted, the limit state function
can also be described by a Gaussian distribution. Thus, the probability of unsafe operations
p(g < 0) can then be estimated as:

p(g ≤ 0) = Φ
(
−

µg

σg

)
(6)

where Φ(x) is the normal cumulative density function [25].
It is worth noting that, since the method lacks formulation invariance, another defi-

nition of the limit state function with respect to Equation (3) may lead to different results
when analytical solutions are not available.

In this work, considerations on navigation safety are limited to seakeeping responses,
such as vertical acceleration at the bridge, lateral acceleration at a critical cargo location,
roll, green water, and slamming, as is typical [26]. However, the concepts can be easily
extended to other types of risk unrelated or limitedly related with weather, e.g., risk of
collision or grounding, as far as an estimation model is available. Moreover, methods
developed in the field of structural reliability also allow us to consider the limit value l as
an uncertain variable, though this is not considered in the present work.

2.2. Navigation Performance

In order to evaluate the voyage performance, two parameters are relevant to ensure
efficient operations of the ship are typically accounted for: duration and fuel consumption.
The essential preliminary step to assess the voyage performance and the associated uncer-
tainties is to evaluate the time and fuel required to sail an elementary portion of the route
(navigation performance) and their variabilities related to the uncertain input variables.

A tool to obtain the ship speed VS and the fuel consumption per nautical mile FCnmi,
given a set of deterministic variables X and a set of uncertain variables X̃, is here assumed
to be available and considered as a black-box (e.g., [27]). Thus, for each track k in which
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the route is divided, one can always obtain the time dk and the fuel FCk required to sail
the track:

dk

(
X, X̃

)
= lk/VS

(
X, X̃

)
FCk

(
X, X̃

)
= FCnmi

(
X, X̃

)
lk

(7)

where lk is the length of the track in nautical miles. As for the case of navigational
risk described in Section 2.1 that have in general complex, nonlinear, and not readily
available analytical form, duration and consumptions can be linearized in a neighbour of
the estimated value of the uncertain input variables, as:

dk

(
X, X̃

)
= dk

(
X, X̃m

)
+ ∑ ∂dk

∂x̃i
(x̃i − x̃m)

FCk

(
X, X̃

)
= FCk

(
X, X̃m

)
+ ∑ ∂FCk

∂x̃i
(x̃i − x̃m)

(8)

Assuming that the uncertain variables are normally distributed, with known variances
σ2

x̃i
and correlation coefficients ρij, the linearization allows the adoption of simple equations

to compute the estimates µk and the variances σ2
k of the parameters, as:

µdk
= E[dk] ≈ dk

(
X̃m, X

)
µFCk = E[FCk] ≈ FCk

(
X̃m, X

)
σ2

dk
= Var[dk] = ∑

(
∂dk
∂x̃i

)2
σ2

x̃i
+ ∑

i 6=j

∂dk
∂x̃i

∂dk
∂x̃j

ρijσx̃i
σx̃j

σ2
FCk

= Var[FCk] = ∑
(

∂FCk
∂x̃i

)2
σ2

x̃i
+ ∑

i 6=j

∂FCk
∂x̃i

∂FCk
∂x̃j

ρijσx̃i
σx̃j

(9)

3. Definition of Optimization Objectives and Constraints

The previous section has discussed how to obtain a probabilistic estimation of the most
significant quantities related to navigation performance and safety. A route optimisation
software requires, however, integral quantities to define global objectives, enabling us to
rank different route alternatives [28].

3.1. Safety Constraint

Risk constraints typically are defined in the form:{
i f y ≥ l → c = f alse
else → c = true

(10)

where y and l are the value assumed by the generic hazard and is the maximum accept-
able limit as previously defined, and c is a Boolean that indicates whether the condition
is acceptable (“true”) or not (“false”). This approach assumes a deterministic quantifi-
cation of the hazard y. However, if uncertainties are affecting the quantification of the
hazard, such an approach may be misleading. A hazard may assume the same mean value
ym, corresponding to the deterministic estimation but being affected by a different level
of uncertainty.

In the graphical example in Figure 1, two probabilistic distributions of a hazard with
the same mean value, but different standard deviation, are shown, as well as the limiting
value l. Distributions are, in a first approximation, assumed as symmetric with respect to
the mean value. For the narrower bell, corresponding to a lower level of uncertainty, the
probability of y ≥ l is about 1.6%, while for the other case, the probability exceeds 10%.
The latter may be unacceptable, but the deterministic approach is not able to identify such
a dangerous situation. An extreme case happens when ym approaches l and, consequently,
the probability of y ≥ l approaches 50%.
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The probabilistic approach offers much more flexibility in the definition of the con-
straints, which can be expressed in the form:{

i f p(y ≥ l) > pR → c = f alse
else → c = true

(11)

where pR is the risk-acceptable probability that the hazard will occur. For symmetric
probabilistic distributions of the hazard, as in the previous example, pR = 0.5 the results
are analogous to those of the deterministic approach. Typically, the acceptable risk differs
depending, for instance, on the ship type. For instance, the acceptable risk pR of a passenger
ship is lower than for a cargo ship, and this is lower than for a navy ship. The parameter c
can readily be used as a Boolean constraint to discard unsafe alternatives.

3.2. Risk Objective Function

The probability of the occurrence of an unsafe condition obtained in Equation (6) only
refers to one of the possible r hazards and to a specific location k along the route, so it can
be hereafter referred as pk,r.

By assuming that the hazards are perfectly correlated, the probability of being caught
in unsafe situations in a specific location can be estimated as the highest probability among
the hazards considered. On the other hand, if the events are considered statistically
independent, such probability could be obtained by the expression 1 −∏nr

i=1(1− pk,i),
where nr is the number of hazards. In the general case, it can be said that the probability of
failure of the system falls between the range expressed in Equation (12). With a conservative
approach, the upper bound can be taken [25]:

max(pk,i)
∣∣
i=1:nr

≤ pk ≤ 1−
nr

∏
i=1

(1− pk,i) (12)

It is then clear that pk represents the probability of occurrence of any of the considered
hazards in a given location along the route. Once pk is computed for all the control points
along the route, these risk probabilities must be gathered in a single risk index as to be
effectively used as an objective function to be minimized.

Depending on the requirements, different considerations may be done:
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1. If the strategic objective is to prevent the ship to operate in conditions close to the
maximum acceptable limit even for short periods, minimizing the highest pk is desired,
thus a suitable risk index can be:

risk1 = max
(

pj
)
, j = 1 : nk (13)

where nk is the number of control points.
When comparing risk1 of two different routes, one alternative with smooth navigation

for the greatest part of the voyage, but a short, particularly demanding event would have a
higher risk index than a route where conditions are worse for most of the voyage.

This approach may be considered when the focus is on safety and the ultimate stresses
of the system. However, if the constraints are appropriately set (e.g., a higher pR on
Equation (11)), these can be sufficient to prevent dangerous conditions.

2. If, instead, comfort [29] is of primary importance, the average conditions along
the route appear to be a more relevant indicator. In this case, a weighted average can
be applied:

risk2 =
∑ dk pk

d
(14)

where dk refers to the time the ship takes to sail the track identified by the k control point
and d is the duration of the voyage, being d = ∑ dk. When comparing risk2 of the two
routes described at the previous point, the opposite would occur and the second route
would have a higher risk index. The short passage through a storm is, in this case, hidden
by the averaging, which may result in unexpected and undesired situations onboard

3. As to account for both the average conditions along the route and the most demand-
ing ones, a generalized expression can be expressed in the following form:

risk3 = w1risk1 + w2risk2 (15)

where w1 and w2 are weights to be defined depending on the ship type and strategy. As a
default setting, w1 = w2 = 0.5 can be considered.

4. None of the previous methods appears adequate to reflect the level of severity felt
onboard. A more appropriate solution could be obtained by assuming that the voyage
results are less comfortable and more demanding if more challenging ship responses are
faced for a relevant period, with respect to the duration of the route. Consequently, the
navigation safety can be judged by analysing a restricted set of tracks that encompass a
certain duration characterized by the higher probabilities of failure (higher values of pk).
The duration of the “relevant period” of time is arbitrarily set as equal to one-third of the
voyage duration, though investigations have been carried out to adjust such a proportion
by obtaining the feedback of experienced seafarers.

Similarly to case 2, a weighted average is performed, but in this case over the most
severe cases, which account for 1/3 of the voyage duration. Being k̂ the most severe control
point for which ∑ dk̂ = d/3:

risk4 =
∑ dk̂ pk̂

d/3
(16)

3.3. Performance Objective Functions

Differently from the risk objective function that has been consistently defined as
a probability of failure R, to express voyage performance, physical quantities must be
maintained. Thus, a different approach is required. Using Equation (9), the estimates and
variances of the fuel consumption and sailing time can be calculated for all the tracks.
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The corresponding integral values for the whole voyage µ and σ2 can be obtained by
summation of the previous, such as:

µ =
n_tracks

∑
k=1

µk

σ2 =
n_tracks

∑
i=1

σ2
k +

n_tracks
∑

k=1

n_tracks
∑

j = 1
j 6= k

ρkjσkσj
(17)

where ρkj is, in this case, the correlation coefficient between the performance parameter
(e.g., fuel consumption) on two different tracks.

Since all the other variables have been discussed in Section 2.2, the problem shifts to
the assignment of realistic values to the correlation coefficient ρkj. The problem is not trivial;
in fact, the interrelationship between, for instance, the fuel consumption on two different
locations along the route depends on a large number of factors, such as the intensity of the
atmospheric conditions affecting the area, the topography, and the manner in which the
Shipmaster conducts the navigation. Intuitively, it can be reasonably postulated that the
conditions of navigation are generally similar at a distance of a few miles, and therefore
the performance is also similar. After several miles, the presence of land, passage through
channels, and changes in weather conditions and engine settings can result in variations
in the performance, and possible similarities have no systematic nature. Consequently,
ρkj is qualitatively higher for neighbour tracks and progressively reduces if the locations
considered are far from one to the other.

Some preliminary analyses on routes in the North Atlantic suggested that the corre-
lation can be neglected if the distance dkj between the considered locations is larger than
150 nmi. Thus, a simple form for the correlation coefficient linearly dependent on the
distance is proposed as:

ρkj =

{
1− dkj

150 if dkj < 150
0 otherwise

(18)

By applying similar evaluations at different routes, it has been found that the cor-
relation vanishes at a higher distance in milder weather conditions, due to the fact that
weather-unrelated considerations prevail in those cases. The correlation coefficient did not
appear significantly influenced by the ship type. The influence of other factors, such as
weather severity and variability, must be studied in more detail to build a more generic
and robust model for the correlation.

The proposed method allows an estimation of µd, µFC, σ2
d and σ2

FC, where, within the
Gaussian assumption of the distribution of the uncertain variables, the means correspond
to the values obtained by a deterministic approach.

In practical terms, however, two values (mean and standard deviation) to define
a single objective function are not convenient. It is then possible to make use of the
additional information provided by the standard deviations to compute a predefined
percentile, namely the values of the voyage duration and consumption, which have a given
probability to be exceeded. The normal distribution assumption allows to readily obtain an
estimation of these values as:

dp = Φ−1(µd, σd, pd)
FCp = Φ−1(µFC, σFC, pFC)

(19)

where Φ−1 indicates the inverse Gaussian distribution, and pd and pFC the probability
of the parameters to be below the values dp and FCp. For instance, for pFC = 0.75, the
selected route will have 75% probability to consume less than FCp.

The percentiles dp and FCp can be used to rank the different alternatives and perform
optimizations, similarly to how it would be done by adopting a deterministic approach,
though carrying a higher degree of information.
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4. Example of Application

The process applied to implement the probabilistic approach discussed in the previous
sections for the evaluation of route optimization constraints and objective functions is
summarised in the flowchart in Figure 2.
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The method has been applied to a transatlantic route starting from the British Channel
with its destination on the east coast of the United States, as shown in Figure 3, being one
of the most travelled commercial routes in this area [30].
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Table 1. Main characteristics of the ship considered in the simulation.

Lpp 175.0 m

B 25.4 m
T 9.0 m
∆ 22,775 t

Engine MCR 28,864 kW
Prop. diameter 6.33 m

The departure time is at midnight on 25 April 2020 and the engine is set to operate at
90% of the maximum speed, corresponding to 129.6 RPM and a cruise speed of 24.35 kn in
still water. During the navigation, a constant RPM engine strategy is adopted [20] until the
engine overload curve is reached; when the resistance increases, the RPMs are progressively
reduced to prevent overloading and make the engine operate within acceptable working
conditions according to the load diagram provided by the manufacturer.

The mean weather conditions expected along the route and the relative uncertainties
are obtained from the NOAA GWES ensemble forecast [9], assuming the ship will travel
at the speed corresponding to the mean weather conditions [31]. Figure 4 describes the
significant wave height and the mean period forecasted during the navigation, including
all the ensemble members, and highlighting the mean values and 5th and 95th percentiles;
the encountered conditions are also depicted with dots.
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Figure 4. Ensemble forecasts of HS (a) and Tm (b) along the route: ensemble members, thin grey lines; mean of the ensembles,
thick black line; 5th and 95th percentiles, dashed lines; actual weather occurred, dots.

It can be noticed that the initial part of the route is subjected to milder weather
conditions, characterized by relatively low swells, and agreement among the ensembles
due to the short prediction range. After two days, an area of moderate waves is expected
with maximum HS reaching 4 m, though maintaining small variability among the members.
In the second half of the voyage, the situation becomes more uncertain due to the long
prediction range (>4 days) with some ensemble members showing values of HS close to
6 m. Indeed, these pessimistic predictions are those which more closely represent the actual
sea-states encountered by the ship. Moreover, the significant wave height is always within
the 90% confidence level, while the wave period exceeds the upper limit in some cases.

By applying the equations described in the previous sections based on the first-order
second-moment method, the uncertainties in the weather prediction have been propagated
in the model to estimate the uncertainties in the ship’s operational characteristics.

As shown in Figure 5, the variability of the speed is limited, with an average value
always higher than 22 kn. This is due to a sufficient sea margin of the engine and the fact
that the limits of the seakeeping responses are not exceeded, thus not requiring voluntary
speed reduction [32].
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Figure 5. Evolution of mean value of VS and 90% confidence interval along the route applying the
first-order second-moment method.

On the other hand, Figure 6 indicates a large variability in the estimation of the fuel
consumption, in this case represented in the form of fuel consumption per nautical mile.
This is mostly explained by an increase in the power required to face the increased resistance
due to more severe weather conditions, and the consequent decrease in speed [33].
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the first-order second-moment method.

The estimated value of the voyage fuel consumption, roughly corresponding to the
only result that could be obtained with a deterministic approach, is equal to 408.7 t, while
the 95th percentile is 418.4 t.

For what concerns safety, several seakeeping responses are taken into account, namely
vertical acceleration at the bridge, lateral acceleration at a critical cargo location, roll, green
water, and slamming, and the overall probability of failure is taken as the upper bound of
Equation (12). The probabilities of failure computed with the four methods described in
Section 3.2 are compared in Table 2.

Table 2. Comparison of risk objective function computed with different methods.

risk1 2.66× 10−5

risk2 1.45× 10−6

risk3 1.40× 10−5

risk4 4.23× 10−6

The probabilities of failure are small in all cases, since no extreme conditions that could
put the ship at risk are encountered in this voyage. However, the strength of the approach
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can be better estimated when used to rank different routes, as it provides a meaningful
way to aggregate navigation hazards and to evaluate the probability of the severity of the
entire voyage, accounting for uncertainties in the weather forecast.

5. Conclusions

A method has been proposed to exploit the additional information provided by en-
semble weather forecasts in the identification of the most favourable ship route. Several
assumptions are adopted with respect to the distribution of such uncertainties and their
propagation in the model. Nevertheless, the method proposed has the advantage of being
simple to adopt also on existing routing software, as it maintains the typical structures of
objectives and constraints, extending the amount of information provided to the ranking
method (and to the decision-maker) for a more aware selection. Prediction of route per-
formance, identified with fuel consumption and duration of the voyage, are accompanied
by the variance of such objectives, enabling the evaluation of the related percentiles, e.g.,
instead of a deterministic estimated time of arrival (ETA), the time within which the ship
will arrive with 90% of probability can be considered. Navigation safety, which typically gen-
erates difficulties in the aggregation of different hazards, is consistently represented by the
probability of system failure, which is the probability of exceeding predetermined thresholds
of all the considered hazards. The test case provides a numerical example of the application
of the method, highlighting the differences with a classical deterministic approach.

Further investigation will allow better appreciation of the strength of the proposed
approach in the ranking of different routes and compare the accuracy of the predictions.
Moreover, research is being conducted within the scope of the ROUTING project (http:
//routing-project.eu/ (accessed on 1 December 2021)) [34], aimed at obtaining the feedback
of experienced seafarers that will support the tuning of specific parameters, such as the
duration of severe conditions to compromise comfort and/or safety onboard and the
percentiles of the expected ship performance, to achieve trustworthy predictions without
assuming a too-conservative approach.
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