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Abstract: The analysis of offshore fishing capacity is of great significance and practical value to
the sustainable utilization and conservation of marine fishery resources. Based on the 2004–2020
China Fishery Statistical Yearbook, data envelopment analysis (DEA) was applied for measuring fishing
capacity using a number of fishing vessels, total power, total tonnage, and the number of professional
fishermen as the input measures and the annual catch as the output measure. Capacity utilization
had a calculated range from 80.7 to 100%, and its average is 93.5%. In the first four years of 2003–2007,
the excess investment rate of fishing vessels, total tonnage, total power, and fishermen was low (<5%).
There was a consistent sharp upward trend in 2007, a gradual downward trend from 2007 to 2015,
and an upward trend after reaching a low point in 2015, with the highest gross tonnage of fishing
vessels reaching 25.5%. Four regression models that incorporate machine learning algorithms are
used, including Lasso, Ridge, KNN, and Polynomial Features. The goodness of fit for the four models
was used as the evaluation index, and the offshore annual catch based on the evaluation index was
proposed. The forecasting annual catch of the polynomial model can reach 0.98. Furthermore, a
comparative simulation of the DEA incorporating the polynomial model was carried out. The results
show that DEA can evaluate input factors under the conditions of a given range, and the polynomial
model has more advantages in forecasting annual catches. Furthermore, the combined application of
DEA and polynomial model was used to analyze and discuss the management policies of China’s
offshore fishery, which can provide help and reference for future management.

Keywords: fisheries; China offshore; fishing capacity; data envelopment method; machine learn-
ing algorithm

1. Introduction

In 2018, the total global capture of fisheries reached the highest level on record,
reaching 96.4 million tons, which is an increase of 5.4% over the average level of the
previous three years. China is the world’s largest fishing nations in terms of its fishing
fleet, the number of employees in the fishing industry, and marine capture production. Its
annual marine catch in 2018 accounted for 15% of the world’s total production [1]. However,
roughly 57% of marine fish stock is overexploited or collapsed in China, and the rapid
development of coastal cities has placed tremendous pressure on marine ecosystems [2].
Protecting offshore fishery resources, reducing fishing intensity, and strengthening fishing
capacity are the core requirements for the sustainable development of marine fisheries.
Overcapacity is a key factor contributing to decline in many of the world’s fisheries. The
FAO International Plan of Action for the Management of Fishing Capacity (IPOA-Capacity)
encourages addressing this problem by utilizing capacity management that aligns fishing
capacity with the sustainable use of their fish stocks (FAO) [3]. Therefore, the analysis and
evaluation of fishing capacity is an important subject and task of supervision in offshore
capture fisheries.
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Fishing capacity is usually considered by fishery scientists in terms of effort and
resulting fishing mortality. Fishing effort includes all the inputs used in the harvesting
process. In practice, it is generally not possible to measure all inputs; thus, proxy measures
are used such as the total days fished and the number of pots or kilometers of nets deployed.
Fisheries managers generally have a similar view of fishing capacity, but they often link
the concepts of capacity more directly to the number of fishing vessels in a fishery. This
view is particularly common when the fishery is managed using input controls, because
fleet size and effort level are the main control variables [4]. Therefore, fishing capacity
usually considers measures related to gross tonnage. For example, it expresses total effort
as a specific capacity metric multiplied by the number of fishing days per ship in the entire
fleet. FAO (2000) suggested that fishing capacity may be defined with reference either to
fishing inputs (vessels and potential effort) or to fishing output (potential catch) [5].

Quantitative methods for measuring fishing capacity include the following: rapid
appraisal (RA) techniques, peak-to-peak analysis, stochastic production frontier (SPF), and
data envelopment analysis (DEA). Moreover, biological, bioeconomic, and multi-objective
modelling has been developed and widely used [6–8]. Peak-to-peak analysis is a relatively
simple method that compares catch rates in different time periods and estimates potential
catches based on peak catch rates on either sides of the year examined. The minimum
information requirement is a time series of total output (i.e., total catch) and total inputs
(e.g., days fished or vessels numbers). Although it is simple to calculate, it does not allow
changes in stock conditions. Both DEA and SPF are frontier-based methods. That is, they
are based on estimating the production possibility frontier, which is the maximum level of
output that might be expected given a set of inputs. These can be used for the estimation
of both capacity utilization and technical efficiency. The techniques require catch and input
information on individual vessels, and they can be used to estimate the potential catch
of each vessel separately. This requires more detailed information than that required by
peak-to-peak analysis but provides a more reliable estimate. The DEA and SPF estimates
of capacity are estimated using different procedures. DEA is a (non-parametric) linear
programming-based approach, whereas SPF is a (parametric) statistical based approach.
The methods recommended by countries such as Canada, Denmark, and the United States
mainly include SPF and data envelopment analysis (DEA) [9].

There have been many scientific studies applying the above methods to assess fishing
capacity. Vestergaard used the DEA-Malmquist model to analyze and study fishing capac-
ity utilization of the Danish gillnet fleet [10]. In order to analyze the offshore fishing input
by the data of the China Fishery Statistical Yearbook from 1979 to 2016 by using the DEA
method, they believed that since the implementation of China’s “dual control policy” for
fishing vessels, it has not achieved the expected results due to many factors [11]. Tingley
used the DEA-C2R model and SPF method to conduct a comparative study on the technical
efficiency of the fleet. They found that DEA is more adaptable than SPF under certain cir-
cumstances [12]. Zheng used DEA to analyze the utilization of offshore fishing and pelagic
fishing capacity in China from 1994 to 2005 [13]. Rao used DEA to analyze the fishing
capacity of the East China Sea, the Yellow Sea, and the South China Sea [14]. Vassdal used
the DEA-BC2 model to study the capacity utilization of the Norwegian Atlantic salmon
fishing fleet from 2001 to 2008 [15]. Lim used a DEA-Malmquist model and SPF method
to analyze the impact of the installation of echo sounders in Malaysian trawl and seine
fleets on fishing technical efficiency [16]. Liang used a stochastic frontier analysis method
to study the impact of multiple fishery control policies on the efficiency of the country’s
offshore fishing technology, which is based on the offshore fishing data of 11 provinces in
China from 2008 to 2011 [17]. Asche used the DEA-Malmquist model to study the changes
in total factor production efficiency of Norwegian salmon aquaculture enterprises [18]. Jo
used the DEA method to study the impact of the technological development of trawlers
from 1960 to 2010 on fishing capacity in Korea [19].

For fishery managers, the forecast of annual catches is very important. With the devel-
opment of computer technology in recent years, machine learning algorithms have been
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widely used. In particular, a regression analysis incorporating machine learning methods
to predict the dependent variable by an optimal combination of multiple independent vari-
ables was well developed. Currently, a few studies on the application of machine learning
regression method in marine fishery exist, but the method is widely used in agriculture,
enterprise production, and other fields [20,21].

Using DEA can effectively estimate input and output efficiency values. However,
it is affected by certain factors in DEA-calculated output values (annual catch), which is
quite different from the actual annual catch value. Regression analysis using machine
learning algorithms can more accurately reflect the trend of the output value (annual catch).
The DEA method is used to analyze the utilization degree of the input factors of China’s
offshore fishing capacity, and the utilization rate of each input factor index can be obtained.
On this basis, the machine learning algorithm is used to establish a regression model of the
annual catch in China’s offshore waters, which can predict the annual catch in the future.
For this reason, the respective advantages of machine learning regression and DEA are
combined. The fusion of the two methods can realize the calculation of the reasonable
input value. It can also improve the accuracy of fishing yield forecasts, and the obtained
values can also be mutually revised.

Management methods include resource management, total amount control and quota
management, fishing moratorium, and reducing fishing vessel plans, restrictions, and
fishing gear, etc. The management measures of each country are different, and this is due
to the country’s fishery resources distribution, number of fishermen and fishing vessels,
and economic and social development levels of science and technology and decisions, such
as national differences in various aspects. As a result, the conclusions of various studies
cannot be completely copied but can only be referred to, and the results of each study can
be supported according to the characteristics of their own country.

The purpose of this study is to analyze the utilization status of input indicator factors
in China’s offshore fishery in the past 17 years. At the same time, the study aims to explore
the procedure for annual catch prediction by using a regression model combined with
the machine learning algorithm. The relevant management policies of China’s offshore
fishery are analyzed and discussed. In this paper, DEA and fitting regressions were
combined in order to comprehensively investigate the management policies adapted to the
characteristics of Chinese fishery situation in order to provide support for the management
of the fishery industry, the utilization statuses of each factor and annual catch change were
considered simultaneously.

This mechanism can help fishery managers in formulating plans for national and
regional fishing capacity management actions and provide optimization references for the
next step in offshore fishing management decisions.

2. Materials and Methods
2.1. Literature and Research Structure
2.1.1. Literature

Combined with the research literature of the preface, DEA, stochastic frontier method,
and regression method are conducive in carrying out relevant research in the fishery field
internationally, which mainly includes the following: guiding the sustainable development
of fishery population in terms of fishery resources and population [22–26]; studying the
efficiency of fishing capacity of fishing vessels and fleets [27–33]; studying production
efficiency, technical efficiency, and economic efficiency of fisheries [34,35]; studying quota
and fishing effort [36,37]; and studying the performance of fishery enterprises and the
capacity levels of fishermen [38,39]. Table 1 summarizes the relevant literature.
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Table 1. Literature Summary.

Category Literature Main Methods and Brief Content

Fishery
resources
and population

Grosskopf S. (2001)
Wade L. Griffin (2011)
Ashley M. Apel (2013)
Thi Duy Thanh Pham (2014)
S. Gómez (2020)

DEA method was used to calculate the production
capacity of single and multi-species fisheries, analyze
the sustainable yield boundary, examine economic
surplus boundary and other issues, and guide the
sustainable management of fish population.

Fishing vessel
and fleet and
fishing capacity

Niels Vestergaard (2003)
Vestergaard N. (2003)
Tingley, D. (2005)
Luc Van Hoof (2005)
EfthymiaVtsttsika (2008)
M.M. Oliveira (2009)
Vassdal, T. (2011)
Collier T. C. (2014)
Castilla-Espino D. (2014)
Daniel Quijano (2018)
Zhang, Z.L. (2018)
Jo, H.S. (2020)
Tunca S. (2021)

By means of DEA, DEA-Malmquist, and stochastic
frontier analysis, the efficiency, sustainable level and
capacity utilization rate of multi-species, and different
types of fleets were evaluated and tested, and regulatory
policies were discussed.

Technical
production and
Economic efficiency

Diana Tingley (2005)
Lim, G. (2012)
Vazquez-Rowe I. (2013)
Pham T. (2014)
Chun-Jie Li (2020)
Rao, X. (2016)
Liang, S. (2016)

SPF and DEA methods were used to carry out
regression, and the main factors affecting fishery
technical efficiency, production efficiency, economic
performance, capacity efficiency, and inefficiency caused
by the “captain effect” were analyzed.

Quotas and effort
Duy N. N. (2016)
Asche, F. (2013)
Pascoe S. (2013)

DEA was used to analyze quota management and
random production frontier (SPF), and data
envelopment analysis (DEA) was used to analyze
fishing unit effort (CPUE); there was no difference
among efficiency scores.

Fishery enterprise
and fishermen

Quynh C. N. T. (2018)
JI, X. (2020)
Chia-Nan Wang (2021)

DEA and endogenous conversion regression models
were used to analyze the degree of overcapacity at the
level of the individual fishermen. The performance of
fishery companies was analyzed, and the influence of
operator participation in monitoring the level of
overcapacity was investigated.

By using the above analysis, existing research and application either use the DEA
method or fitting regression method. Factor utilization and technical efficiency and so on
were studied, including the lack of convergence analysis of annual catch changes. The DEA
method accounts for most of the research attributed to the DEA method recommended
by FAO. Therefore, most of the support for fishery management is reflected in a certain
aspect (such as fishing vessel, population, and technical efficiency and so on). The annual
catch model is obtained by using a fitting regression algorithm. The factor utilization
rate is studied by DEA, and the parameter values calculated by DEA are brought into the
catch model for verification. Combined with the two results, the management of offshore
fishing in China was analyzed. This study uses the integrated application of DEA and
regression and conducts comprehensive investigation into factors while predicting the
amount of annual fishing; the advantage of the combination is reflected. At the same time,
the comprehensive analysis of the measures of China’s offshore fishery management is
discussed by using the obtained results; this is the special feature and innovation of this
study. The results offer help for the next steps in fishery management decision making
and optimization.
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2.1.2. Research Structure

Initially, we explained the source and collection of data. In this study, DEA was used
in fishing efficiency evaluation, and input and output analysis on fishery management
was conducted. We compared four regressions and chose the better regression model.
Furthermore, DEA and improved regression models were used for data simulation. Finally,
fishery management plans and strategies were proposed based on this. The flowchart of
the methodology used in this paper is shown in Figure 1.

Figure 1. The method flow chart of this paper. Section 2.2 Material and Data.

The data come from the data on offshore fishing operations in China obtained from
the China Fishery Statistical Yearbook published from 2004 to 2020. Related factor data [40],
including the North Sea, Yellow Sea, East China Sea, Taiwan Strait, the South China Sea,
inland sea, coastal sea, adjacent sea, and the exclusive economic zone and other fishery
operations areas, are collectively referred to as offshore operations areas and offshore
marine fishing data. At the same time, the data of the “National Fishery Statistics Data
Website” was compared [41]. The annual offshore fishing data from 2003 to 2019 were
extracted, including the total number of fishing vessels (ship), total ton of fishing vessels
(ton), total power of fishing vessels (kw), professional fisherman (number), and annual
catch (t) (Table 1), which are detailed in the records and statistics of the China Fishery
Statistical Yearbook.

By taking the number of fishing vessels, total tonnage of fishing vessels, total fishing
boat power, and professional fishing labor as input measures and annual catch as output
measure, the data in Table 2 were compiled.

From Figure 2, it can be observed that (1) the number of fishing vessels and fisher-
men has experiencing a downward trend, and the power of fishing vessels has shown a
upward trend and downward trend after 2015, which reflects the effect of China’s policy.
(2) Although the power of fishing vessels has been reduced, the total tonnage of fishing
boats has shown an upward trend. According to the fishing boat design theory, in order to
obtain a certain sailing speed, fishing boats will have large machines and small standards
in the fishing industry. (3) With the rising trend of total tonnage, there is also a reduction
in fishing boats. Small and medium-sized fishing boats account for a relatively large pro-
portion, while large-scale fishing boats have a relatively small reduction. (4) Since 2013,
the number of offshore fishers has shown a downward trend, reflecting the effect of the
implementation of the policy of conversion of fishermen. (5) The annual catch of offshore
fishery has shown a downward trend year by year. In 2019, the catch was 10 million tons,
achieving the goal of controlling the annual catch of offshore fisheries within 10 million
tons by the end of 2020.
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Table 2. China’s offshore fishing data from 2003 to 2019.

Year
Total Number of
Fishing Vessels

(Ship)

Total ton of
Fishing

Vessels (ton)

Total Power
of Fishing

Vessels (kw)

Professional
Fishermen
(Number)

Annual
Catch (t)

2003 224,843 5,635,555 12,384,435 1,148,298 14,323,121
2004 220,342 5,559,435 12,338,132 1,119,726 14,510,858
2005 214,560 5,547,974 12,363,850 1,102,630 14,532,984
2006 211,314 5,463,309 12,433,501 1,076,206 14,160,007
2007 207,353 5,527,675 12,394,224 1,074,398 11,360,329
2008 199,949 5,776,472 12,950,657 1,073,879 11,496,270
2009 206,923 5,838,599 13,058,326 1,071,080 11,786,109
2010 204,456 6,010,919 13,040,623 1,066,329 12,035,946
2011 201,694 6,182,268 13,255,855 1,032,175 12,419,386
2012 194,240 6,517,469 13,270,770 1,054,191 12,671,891
2013 196,803 6,887,624 13,614,004 1,089,526 12,643,822
2014 191,944 7,294,059 14,087,583 1,060,566 12,808,371
2015 187,211 7,572,484 14,417,390 1,025,807 13,147,811
2016 179,688 7,684,810 14,308,795 1,002,122 11,872,029
2017 166,349 7,649,188 13,782,628 990,325 11,124,203
2018 156,018 7,820,086 13,701,490 960,345 10,444,647
2019 146,951 7,917,408 13,547,244 921,283 10,001,515

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Four factors fluctuating in China’s offshore fisheries from 2003 to 2019.

2.2. Methods
2.2.1. Data Development Analysis (DEA)

Data envelopment analysis (DEA) is a mathematical programming approach for
estimating the relative technical efficiency (TE) of production activities. The term DEA was
originally proposed by Charnes et al. [42]. Since the early study of Charnes et al., DEA has
been developed and expanded to include a wide variety of applications. DEA can conduct
input and output analysis on different issues in a targeted manner. Multi-layer system
models have been developed, including C2R, C2W, C2WH, and C2GS2 models [43,44].
Among them, the C2R model was the first model widely used in marine fisheries assessment
and was recommended by the World Food and Agriculture Organization [45].

It is assumed that there are M decision-making units (DMU) from the C2R model. Each
unit contains G kinds of inputs and N kinds of outputs. Then, the quantity of the first DMU
is expressed as xi and yi, and the input data and output data of the DMU can be formed
into a G*K matrix and a N*K matrix separately. These two matrices are denoted as X and
Y [46]. In addition, if the return to scale is set as a constant (CRS), a linear programming
model for the i-th DMU can be established.

Minθ, λθ
s.t.
−yi + Yλ ≥ 0
θxi − Xλ ≥ 0
λ ≥ 0

(1)

Among them, λ is a constant vector of N × 1, and θ is the utilization rate of the i-th
DMU input (0 ≤ θ ≤ 1). If θ = 1, the utilization rate is 100%. On this basis, the surplus rate
of investment in the literature is used for calculations [13]. The DEA algorithm uses the
optimal output as a reference and calculates the minimum theoretical input value required
when the catch in each year remains unchanged. Based on this output result, the excess
rate of a certain input variable in that year can be obtained. The specific calculation method
is described as follows.

Excess (%) =
Actual input value− Input direction value

Actual input value
× 100% (2)
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The DEAP2.0 software is used in the calculation process, and the multi-part method is
used to deal with slack variables.

2.2.2. Regression Analysis Incorporating Machine Learning

Regression analysis that incorporate machine learning algorithms has been widely
used, such as Lasso, Ridge, KNN, and Polynomial Features. Among them, Lasso regression
is a biased estimation method for dealing with multicollinearity data. Ridge regression is
one of the most commonly used methods for studying collinearity data, which is modified
from the least square method and is a method of partial estimation regression. The
KNN algorithm is a classic data processing method of machine learning, which has the
advantages of no estimation and no training. The Polynomial Features method can have
a good effect in the field of predicting the outcome of a dependent variable based on the
characteristics of the independent variable of the data [47–49].

Lasso Regression

The Lasso method is a regression analysis method that performs both variable selec-
tion and regularization in order to enhance prediction accuracy and interpretability of the
resulting statistical model [50]. It is characterized by least absolute shrinkage and selec-
tion operator, which has been widely used in statistics and machine learning. Although
originally defined for linear regression, lasso regularization is easily extended to other
statistical models including generalized linear models, generalized estimating equations,
proportional hazards models, and M-estimators [51,52].

The idea that Lasso uses for estimation is based on the cross-validation method
proposed by Efron and Tibshirani in 1993 [53]. The specific description is described
as follows.

Set p independent variables, x1, x2, . . . , xp, and dependent variable y; the model is
defined as follows:

y = α + β1x1 + β2x2 + . . . + βpxp + ε (3)

where a is a constant term, β1, β2, . . . βp is a regression coefficient, and ε is a random
error term.

Suppose (xi1, . . . xin, yi); i = 1, 2, . . . , n are the n sets of observations of variables.
Existing data were centralized and standardized as follows.

n
∑

i=1
yi = 0,

n
∑

i=1,j=1
xij = 0,

n
∑

i=1,j=1
xij

2 = 1, j = 1, 2, . . . , p, then β = (β1, β2, . . . , βp)
Y.

The parameters α and β are defined by Lasso’s estimation.

(α̂, β̂) = argmin =

 n

∑
i=1

(
yi − α−

p

∑
j=1

β jxij

)2
 (4)

They also obey
p
∑

j=1
|βi| ≤ s.

Among them, s ≥ 0 is the penalty parameter. β̂0 is the least square solution, s0 =
p
∑

i=1
|βi|.

When s > s0, the equation becomes the following: (α̂, β̂) = argmin = n
∑

i=1

(
yi − α−

p
∑

j=1
β jxij

)2
.

The optimal solution obtained in the equation is a least square solution.
When s < s0, some regression coefficients shrink or approach zero or will even equal

to zero. Variables equal to zero are eliminated, and then the variable is chosen.
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For standardized and centralized data, for any s > 0, Equation (4) is stated as follows.

(α̂, β̂) = argmin =

 n
∑

i=1

(
yi − α−

p
∑

j=1
β jxij

)2
.

α̂ = 0; the original formula can be changed to the following.

β̂ = argmin =

 n

∑
i=1

(
yi − α−

p

∑
j=1

β jxij

)2
 (5)

For all values s ≥ 0, a Lasso solution is obtained by using the above equation, and the
difference can be obtained after calculation. All Lasso solutions are under the s value.

The advantage of Lasso is to add the penalty limit of
p
∑

j=1
|βi| ≤ s. By compressing

the coefficients of some meaningless or extremely small independent variables to zero,
more meaningful independent variables are screened out, and the model determination
coefficient R2 is larger [54].

Lasso can also be expressed by the minimum of the residual sum of squares plus a
penalty function for regression coefficients [55].

min
β

n

∑
i=1

(yi −
p

∑
j=1

β jxij)
2, s.t

p

∑
j=1

∣∣β j
∣∣ ≤ λ (6)

The estimated coefficient of this method is described as follows.

β̂lasso = arg min =

{
||yi −

p

∑
j=1

Xijβ j||2 + λ
p

∑
j=1
|β j|
}

, s.t.
p

∑
j=1
|β j| ≤ λ (7)

Among them, λ is the adjustment parameter (λ > 0). As λ increases, the
p
∑

j=1
|βi| term

decreases. At this time, the coefficients of some independent variables must be gradually
compressed to zero in order to reduce dimensionality of high-dimensional data.

Ridge Regression

Ridge regression is a biased estimation regression method dedicated to collinearity
data analysis (Hoerl and Kennard, 1970) [53,54]. Its characteristic is to modify the estimated
coefficient derived from this regression based on the least squares principle in order
introduce more stability. In order to reduce variance and to introduce some bias, this
method is called regularization, which is beneficial for the predictive performance of
the model. Although some information is lost and accuracy is reduced, the regression
coefficients obtained are more realistic and more reliable. Normally, the fit to ill-conditioned
data is stronger than the least square method. Ridge regression is a frequently used method
when the independent variables are highly correlated. Therefore, it is widely used in many
fields, including econometrics, chemistry, engineering, and fisheries.

When multicollinearity occurs between the independent variables of the equation, it
is ”|X′X|≈ 0 .” In the process of obtaining parameters in multiple regression models, the
stability of parameter β̂ = (|X′X|−1)X′Y is very poor. At the same time, the mean square
error of the β estimator, β̂, becomes very large when the least square estimation method is
used. Therefore, the ridge regression method standardizes data in order to obtain design
matrix X, and its expression is as follows:

β(k) = (X′X + kIm)
−1X′Y

where k is the ridge parameter; that is, a non-negative factor k was added to the main
diagonal element of the matrix X’X, where Im is the unit matrix of order m, and k > 0 is
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called the collar parameter or the partial parameter. If k takes a constant that is unrelated
to experimental data Y, then β(k) is a non-linear estimation.

KNN Regression

The K-Nearest Neighbors algorithm (KNN) is a lazy learning, non-parametric algo-
rithm and is one of the most used learning algorithms. With respect to KNN regression, its
essence is that it approximates the correlation between independent variables and continu-
ous results by averaging observations in the same neighborhood. The distance function
between the sample to be classified, x, and each training sample was calculated by KNN
regression. The K samples are selected for the smallest distance from the sample to be
classified as the K nearest neighbors of x and finally judges the category of x based on the
K nearest neighbors of x (Cover and Hart, 1968) [55]. The distance formulaa in Euclidean
two-dimensional and three-dimensional space are described as follows.

Two-dimensional: ρ =
√
(x2 − x1)

2 + (y2 − y1)
2,
∣∣∣X∣∣∣= √x22 + y22 ;

Three-dimensional: ρ =
√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2,
∣∣∣X∣∣∣= √x22 + y22 + z22 .

Among them, ρ is the distance between points (x2, y2) and (x1, y1), and X is the distance
from (x2, y2) to the origin.

Polynomial Features Algorithm

The Polynomial Features algorithm can also obtain good results for small samples
data in order to study the influence of compound independent variables on dependent
variables. It is a construction method used to express independent variables. The essence of
this method is to use a polynomial method for data processing. Among them, polynomial
regression can be transformed into multiple linear regressions by using variables. Let
x1 = x, x2 = x2, . . . , xn = xn, then y = b0 + b1x + b2x2 + . . . +bnxn is transformed into an
n-array linear regression equation: y’ = b0 + b1x + b2x2 + . . . +bnxn.

In the process of polynomial regression analysis, testing whether the regression co-
efficient bi is significant is conducted in order to judge whether the i-th power term of
the independent variable x has a significant impact on the dependent variable y. By anal-
ogy, the multivariate quadratic polynomial regression equation is defined as follows. Let
z1,i = x1,i, z2,i = x2,i, z3,i = x3,i, . . . , zk,i = xk,i; in order to increase the regression accuracy
of the regression equation, add z1,i = x1,i, z2,i = x2,i, . . . , zk,i = xk,i, where εi is the residual
term [56–60].

The regression equation is described as follows.
yi = b0 + b1z1,i + b2z2,i + · · ·+ bkzk,i + x1,i + x2,i + · · ·+ xk,i + εi, where (i = 1, 2, . . . , n)

Method Calculation Tool

The software environment comprises the Windows64 operating system, Pycharm20.1,
Python3.8.8, torch 1.9.0+cu111, CUDA11.1, and CUDNN v8.0.5.

Model Identification Parameters

In this study, the above-mentioned four regression models were used to calculate the
predicted value of the annual catch. At the same time, mean square error (MSE), mean
absolute error (MAE), and the coefficient of determination R2 were used as indicators to
measure the pros and cons of the model.

3. Results
3.1. Data Envelopment Analysis

Using DEA to calculate offshore fishing capacity in 17 years, the results are shown in
Table 2. According to formula (1), the average capacity utilization rate is 93.5%, and the
range is 80.7–100%. From 2007 to 2010, it showed low efficiency. The results are shown in
Table 3.
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Table 3. Calculation of fishing capacity in China from 2003 to 2019.

Year

Actual Input Value DEA Calculate the Value
(Output Direction)

DEA Calculate the Value
(Input Direction)

Annual
Production(t)

Number of
Vessels Total ton Total Power Number of

Fisherman
Capacity

Utilization (%)
Fishing Capacity

Production (t)
Number of

Vessels Total ton Total Power The Number
of Fisherman

A B C D E F G H I J K

2003 14,323,121 224,843 5,635,555 12,384,435 1,148,298 98.3 14,570,825 217,491 5,487,509 12,178,505 1,105,239
2004 14,510,858 220,342 5,559,435 12,338,132 1,119,726 100 14,510,858 220,342 5,559,435 12,338,132 1,119,726
2005 14,532,984 214,560 5,547,974 12,363,850 1,102,630 100 14,532,984 214,560 5,547,974 12,363,850 1,102,630
2006 14,160,007 211,314 5,463,309 12,433,501 1,076,206 99.8 14,188,384 209,053 5,405,590 12,046,542 1,074,332
2007 11,360,329 207,353 5,527,675 12,394,224 1,074,398 80.7 14,077,235 167,381 4,462,103 9,823,327 863,305
2008 11,496,270 199,949 5,776,472 12,950,657 1,073,879 84.2 13,653,527 168,437 4,866,102 10,384,671 877,518
2009 11,786,109 206,923 5,838,599 13,058,326 1,071,080 83.8 14,064,569 173,308 4,757,648 10,353,912 897,082
2010 12,035,946 204,456 6,010,919 13,040,623 1,066,329 86.2 13,962,814 176,237 5,134,336 10,922,545 919,152
2011 12,419,386 201,694 6,182,268 13,255,855 1,032,175 91.3 13,602,832 183,356 4,741,107 10,565,719 942,270
2012 12,671,891 194,240 6,517,469 13,270,770 1,054,191 94.5 13,409,408 183,517 6,157,657 12,451,590 976,045
2013 12,643,822 196,803 6,887,624 13,614,004 1,089,526 92.8 13,624,808 182,658 6,311,135 12,635,546 975,733
2014 12,808,371 191,944 7,294,059 14,087,583 1,060,566 95.7 13,383,878 183,595 6,926,402 13,474,826 994,334
2015 13,147,811 187,211 7,572,484 14,417,390 1,025,807 100 13,147,811 187,211 7,572,484 14,417,390 1025,807
2016 11,872,029 179,688 7,684,810 14,308,795 1,002,122 94.1 12,616,396 169,045 6,837,697 13,018,416 926,269
2017 11,124,203 166,349 7,649,188 13782,628 990,325 95.2 11,685,087 158,397 6,406,987 12,198,378 867,923
2018 10,444,647 156,018 7,820,086 13,701,490 960,345 95.3 10,959,756 148,721 6,015,596 11,453,203 814,903
2019 10,001,515 146,951 7,917,408 13,547,244 921,283 96.9 10,321,481 142,411 5,760,374 10,967,281 780,329

Average value: 93.5
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The results of excess investment rates of various factors are obtained, including
the total number of fishing vessels, gross tonnage, total power, and the total number
of professional fishing (Figure 3). Regarding the trends of the four factors, there was a
common trend during the period from 2003 to 2015. However, after 2015, the total number
of fishing vessels showed a decline differently from the other three. During the first four
years of this period, excess investment rate was low (<5%). There was a sharp upward
trend in 2007, then a gradual downward trend from 2007 to 2015, reaching a low point
in 2015, and then an upward trend, with the highest gross tonnage of fishing vessels
reaching 25.5%.

Figure 3. The fluctuation of excess investment rate from 2003 to 2019.

3.2. Comparison of Four Regression Models

Four prediction curves of the annual catch were estimated using Polynomial Features,
Lasso, Ridge, and KNN methods, respectively. Ridge and KNN are derived from the least
square method, and they show the same trend. Both real data and predicted data are
plotted and used for comparison, as shown in Figures 4–7.

Figure 4. Polynomial regression.
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Figure 5. Lasso regression.

Figure 6. Ridge regression.

Figure 7. KNN regression.
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According to Figures 4–7, all four predicted curves can effectively reflect the trend of
true data. In order to compare the goodness of fit of the four models, average absolute error,
mean square error, and the coefficient of determination (R2) were calculated respectively.
The results are shown in Table 4. The Polynomial model performed significantly better
than the other three models. Therefore, it shows that it has more advantages in forecasting
annual catches.

Table 4. Comparison of four regression models.

Model Average Absolute
Error (MAE)

Mean Square Error
(MSE)

Coefficient of
Determination (R2)

Polynomial model 981,481.421 600,119.141 0.984
Lasso model 3.156 × 106 2.389 × 106 0.813
Ridge model 3.156 × 106 2.389 × 106 0.813
KNN model 3.918 × 106 2.921 × 106 0.721

In short, the Polynomial model is better than the other models. A regression model
for the annual catch of China’s offshore fishery was established based on the Polynomial
model, as shown in formula (8).

y = −0.077x0
2 − 0.006x0x1 − 0.001x0x2 + 0.002x0x3 + 76371.773x0 − 1.67× 10−4x1

2+
1.41× 10−4x1x2 + 3.38× 10−4x1x3 + 1061.77x1 − 1.376x2

2 + 5.98× 10−4x2x3 − 933.856x2+
0.005x3

2 − 21008.513x3 + 6.288e + 09
(8)

Among them, y represents the annual catch; x0 represents the number of fishing
vessels; x1 represents the total tonnage of fishing vessels; x2 represents the total power of
fishing vessels; and x3 represents the total number of professional fishermen.

3.3. Combination of Polynomial Model and DEA Method

If the amount of input factors is reduced, the total number of fishing vessels would
be reduced by 10,000, the total tonnage of fishing vessels would be reduced by 200,000
tons, the total power of fishing vessels would be reduced by 400,000 KW, and the number
of professional fishermen would be reduced by 40,000. The annual catch by using the
Polynomial model was calculated, and the results are shown in Table 5. By using the
above-mentioned DEA method, the degrees of input, capacity utilization, and the amount
of catch output are calculated. The above values were substituted into the DEA method for
efficiency calculation, and the results are shown in Table 6.

Table 5. Calculation of Polynomial model.

Time
Total Number of
Fishing Vessels

(Ship)

Total ton of
Fishing

Vessels (t)

Total Power of
Fishing

Vessels (kw)

Professional
Fishermen
(Number)

Annual
Catch (t)

2019 136,951 7,717,408 13,147,244 881,283 9,554,489

Furthermore, the values of the total number of fishing vessels, gross tonnage, total
power, and number of professional fishermen are calculated by the DEA method. Then,
these data are used as independent variables of the Polynomial model to calculate the
forecasted annual catch in offshore waters. This is the annual catch under the condition of
100% utilization, as shown in Table 7.
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Table 6. Calculation of DEA.

Year

Assume Actual Input Value The Value of DEA
(Output Direction)

The Value of DEA
(Input Direction)

Annual
Production (t)

Number of
Vessels Total ton Total Power Number of

Fishermen
Capacity

Utilization (%)
Fishing Capacity

Production(t)
Number of

Vessels Total ton Total Power The Number
of Fishermen

A’ B’ C’ D’ E’ F’ G’ H’ I’ J’ K’

Assume
a value 9,554,489 136,951 7,717,408 13,147,244 881,283 95.4 10,015,187 121,377 5,788,056 10,649,267 731,464

Average value: 95.4
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Table 7. Prediction of characteristic Polynomial model.

Time
Total Number of
Fishing Vessels

(Ship)

Total ton of
Fishing
Vessels

Total Power of
Fishing

Vessels (kw)

Professional
Fishermen
(Number)

Annual
Catch of
Model (t)

2019 121,377 5,788,056 10,649,267 731,464 9,053,687

In summary, the combined application of the Polynomial model and the DEA method
enhanced the analysis effect of offshore fishing capacity. The combined applications can
improve the accuracy of fishing output prediction while obtaining a reasonable investment
value for fishing capacity. It also provides a reference for the pre-judgment of the next
regulatory measures.

4. Discussion
4.1. Data Envelopment Analysis

The DEA method proposes two solutions to the problem of slack variables of input
and output: “two-step method” and “multi-step method”. Although the multi-step method
is more complicated in processing difficulty, it minimizes the sum of slack variables when
dealing with slack variables. Moreover, it does not cause changes in the optimal solution
value due to changes in the measurement units of input and output. Based on the above
reasons, the “total number”, “total power”, “gross tonnage”, and “professional fishermen”
of offshore fishing vessels as input independent variables are used. With “annual catch”
as the output dependent variable, the slack variable uses the degree step method for data
evaluation and analysis. The parameters and model selection of DEA used in this paper
refer to the methods of [13,14,44]; thus, the results obtained are correct and feasible [14].

The difference is that the statistical data used in the study [13] is dated up to 2005,
that is, data up to China’s “Tenth Five-Year Plan” period. The statistical data used in
the literature [14] id dated during the period of the “Twelfth Five-Year Plan” in 2014. In
existing research, the statistical data used lacked summary and analysis of China’s offshore
fishing capacity during the 13th Five-Year Plan period. The statistics used in this article
are dated up to 2019. In other words, at of the end of “13th Five-Year Plan”, 2021 is the
first year of the “14th Five-Year Plan”. We use complete statistical data to summarize and
analyze China’s offshore fishing capacity during the 13th Five-Year Plan and before, which
will help accumulate excellent experience and results.

From 2003 to 2019, the average utilization of the four input factors was 93.5%. It shows
that the four indicators are all in excess. Since 2016, the surplus rate of the number of fishing
vessels has been brought under control and has shown a downward trend. The surplus of
gross tonnage and total power of fishing vessels is relatively large, and the surplus of gross
tonnage shows an upward trend; the upward trend is greater than the total power of fishing
vessels. The number of professional fishermen is also on the rise, but it has been relatively
stable since 2018. For this reason, we suggest that corresponding implementations should
be taken in the next step in order to control and reduce the four investments.

4.2. Comparison of Four Regression Models

The comparison of four regression models is shown in Figures 4–7. We think that the
trends obtained among the four models are consistent with the true catch trends, indicating
that the four models are appropriate. According to Table 4, the range of the coefficient
of determination R2 is between [0,1]. The value of R2 is close to 1, which means that the
regression effect of the model is better and vice versa. Comparing the effects of the four
models, R2 of the Polynomial model is 0.984, and it is much better than the Lasso model
(0.813), Ridge model (0.813), and KNN model (0.721). Moreover, it is higher than the model
predictive index 0.86. By comparing the mean absolute error (MAE) and mean square
error (mse) of the four models, the mean square error of the Polynomial model is much
smaller than the other three methods. Therefore, the regression model established by the
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Polynomial method has a better fitting ability. However, the Polynomial model seems to be
closer to the real value, showing its superiority.

The results of DEA theoretical calculations obtained from formula (8) are shown in
Figure 8a for comparison purposes. The curves of the Polynomial model and real values are
shown to be closer than the curve of DEA theoretical calculations. The other comparison
is shown in Figure 8b, the difference between the actual results and Polynomial model is
counted as Z1, and the difference between the actual results and DEA theoretical calculation
is counted as Z2. The average of Z1 and Z2 is also counted. It shows that the difference in
the DEA theoretical calculation seems larger than the difference in the Polynomial model.
This also verifies the effectiveness and superiority of the model. We believe that the use
of the Polynomial model can provide help and reference for subsequent calculations and
predictions of annual catches in offshore fisheries.

Figure 8. The contrast figure of data envelope and the fitting model with actual results.
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4.3. Combination of Polynomial Model and DEA Method

The DEA method is often used to compare the input measure and output measure
between different decision-making units. However, DEA also has the limitations of anti-
interference ability and low accuracy of estimating dependent variables [13].

Regression analysis can perform accurate prediction. As the data sample size increases,
the regression method can continuously optimize prediction accuracy by using algorithms.
Under the given range conditions, regression analysis only reflects the relationship of the
independent variable on the dependent variable and cannot evaluate and analyze input
factors [53–56]. In this study, the results show that the DEA method can evaluate the
utilization status of input factors and calculate the excess rate of each input factor under the
conditions of a given range. We believe that it has more advantages for analyzing offshore
fishing capacities while the DEA in combination with machine learning regression analysis.

In this paper, a simulation was conducted based on the data given; the total number
of fishing vessels is 136,951, the total tonnage of fishing vessels is 7,717,408, the total power
of fishing vessels is 13,147,244 kilowatts, and the number of professional fishermen is
881,283 (Table 5). By using the Polynomial model, the annual catch was calculated to be
9,554,489 tons. Then, the above values are used as inputs and are substituted into the
DEA method for calculation. We set the average utilization rate of input factors to 95.4%,
and the results are shown in Table 6. If the utilization rate of the above factors reaches
100%, the theoretical values are calculated repeatedly by the DEA, and the number of
fishing vessels available is 121,377, the gross tonnage is 5,788,056, the total power of fishing
vessels is 10,649,267 kilowatts, and the number of professional fishermen is 731,464. Then,
this parameter is brought into the Polynomial model, and the available annual catch is
9,053,687 tons. Based on the above calculations, the simulated annual catch is 9.0537 million
tons, as shown in Table 7.

By comparing the input factors two times, they are able to reduce the total number of
fishing vessels by 11.4%, the total tonnage to 25.0%, and the power to 19.0%. Using DEA
incorporating regression models, the utilization status of each input factor can be obtained,
and the fishing output under 100% utilization rate of the input factor can be predicted. It
provides help, reference for the next step of input factor control, and catch limit.

4.4. Support for the Management of the China Fishery

Estimation of harvesting capacity in fisheries is becoming increasingly important as
nations address the problems associated with overharvesting. Acceptable and practical
methods for estimating capacity have to be developed [61]. In this paper, we demonstrated
how the utilization status of each input factor could be estimated using the DEA.

Since the “13th Five-Year Plan” period, based on improving fishery law and adhering
to the fishing licensing system, China’s management policy for offshore fishery has mainly
been placed in input-based management mode. Major policies were implemented, includ-
ing implementing total management of marine fishery resources in 2017 and implementing
quota management for the offshore annual catch. A “dual control” policy was implemented
for offshore fishing vessels, which means that the number and power of offshore fishing
vessels are controlled, and the number and power of fishing vessels were reduced within
five years [62–64]. These two policies explicitly put forward for the first time intended
to reduce the amount and power of offshore fishing vessels with a specific number and
offshore annual quota in the history of Chinese fishery management [65,66].

With “dual control” and end-of-year annual catch limitations, it also includes the
promotion of the standardization of mesh size, the implementation of fishing ban, pilot
fishing quota, and other corresponding policies and implementations [67–69]. In the next
five years period, the “14th Five-year Plan” includes the management of China’s offshore
fishery aims with respect to controlling fishing capacity and strengthening conservation
and sustainable utilization of resources. Therefore, according to the above-mentioned
management policies and the combined with the results of this paper, suggestions and
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support can be provided for the management of offshore fishery during the “14th Five-Year
Plan” period.

First, the problem is whether or not to continue to reduce the number and power of
offshore fishing vessels in the “dual controls” policy. According to the calculation results of
Table 3 and Figure 3, the capacity utilization had an annual average of 93.5%. The idle rate
of fishing vessels is one of the important indicators for the EU in inspecting overfishing in
member states [70]. During the period of the “13th Five-Year Plan”, the total number, the
total tonnage, total power of fishing vessels, and the number of fishermen were all in excess.
Therefore, during the “14th Five-Year Plan” period, we propose some suggestions with
respect to continuing to adhere to the “dual control” policy: 1. The number of fishing vessels
and power input should be continually reduced. 2. The renovation project of offshore
fishing vessels should continue to be implemented. 3. Reconstruction of environmentally
friendly resource-saving fishing vessels should be carried out. 4. Further improvements
in safety, comfort, energy saving, and environmental protection characteristics of ocean
fishing vessels should be performed. 5. Pelagic fishery production should be increased.
6. Fishermen’s landing and transfer of businesses, etc., should improve.

Secondly, there is a problem with respect to the quota of offshore fishing at the end
of the five-year plan. According to formula (8), a reduction in the above input factors can
cause the annual catch to decrease continuously and achieve the target of catch limitation
at the end of the “five-year period.” For example, the number of fishing vessels should
be further reduced by 20,000, the total power of fishing vessels should be further reduced
by 1.5 million kilowatts, and the number of fishing fishermen should be reduced by
200,000 in the next five-year plan period. Therefore, total tonnage needs will be reduced
to 4,999,077, and this will reduce 3 million tonnage from the current base. At this time,
the annual catch can reach 9,005,000. In the next five-year plan, the number of ships will
be reduced by 20,000, the power will be at 1.5 million kw, the total ton will be 3 million,
the number of fishermen will be 200,000, and the final catch amount will reach up to 9
million tons. According to the implementation during the “13th Five-Year Plan” period, if
the quantitative method continues to be adopted, the reduction in gross tonnage factor of
fishing vessels will a difficulty and focus of the implementation. Therefore, more effective
management has to be considered.

Thirdly, there is a problem related to the improvement and optimization of “dual
control” policy. At present, “dual controls” refers to controlling the number and power of
fishing vessels. Beneficial results have been achieved over the years, but there are still some
limitations. For example, the gross tonnage of fishing vessels has increased significantly,
and it is difficult to control the quantity of gross tonnage and its problems such as large
machines with error labels still existing. Therefore, according to the results of this paper,
DEA calculation shows that the factors affecting offshore fishing capacity include number,
power, and total ton of fishing vessels. Therefore, considering the next “dual control”
decree, we suggest adding the gross tonnage of fishing vessels based on the number and
power of fishing vessels.

Finally, the combination of input and output management in China’s Offshore Fishery
should strengthen. From the perspective of fishery management policies of developed
countries in the world, such as Europe and the United States, the balance between input
management and output management is achieved according to the characteristics of their
own fisheries. Most developed countries tend to adopt the mode of output management,
such as quota fishing, as the main mode, and input management is adopted as the sup-
plementary mode, which has achieved beneficial effects [1,71]. In this study, it has been
demonstrated that it is difficult to continually push forward the “dual control” idea and
a quantitative reduction in the number, power, gross tonnage, and final catch of fishing
vessels. Therefore, based on the experience of the pilot study on quota fishing, we suggest
strengthening output management in appropriate areas, including policies such as catch
limits and catch monitoring, and facilitating programs that facilitate production-based
management. For example, the limited fishing area should be encouraged and supported,
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and the management of catch should be improved to promote effective supervision of
catch, which needs continuous coordination with respect to balance and coordination be-
tween input-based management and output-based management of China’s offshore marine
fishery industry. Moreover, exerting joint efforts to realize the sustainable utilization of
offshore fishery resources will be necessary.

5. Conclusions

The importance and practical value of offshore fishing capacity analysis for sustainable
use and conservation of marine fishery resources cannot be overemphasized. DEA was
used to measure fishing capacity based on the 2004–2020 China Fishery Statistical Yearbook
and by using the number of fishing vessels, total power, total tonnage, and the number
of professional fishermen as input measures. Moreover, annual catch was used as the
output measure. Capacity utilization was calculated in a range from 80.7 to 100%, and
its average is 93.5%. The utilization status of each input index was obtained, especially
the large surplus of the total ton and power of fishing vessels, in order to investigate the
advantages and disadvantages of the management measures of China’s offshore marine
fishing industry in the past and present and to examine the key problems that have to
solved in the next step. Four regression models were compared, including Lasso, Ridge,
KNN, and Polynomial Features. The polynomial model shows a higher goodness of fit and
has more advantages in forecasting annual catches. Furthermore, the combined application
of DEA and Polynomial model was used to analyze and discuss the management policies of
China’s offshore fishery, which can provide help and reference for future management. The
final situation shows that gross tonnage and power of fishing boats have a large surplus,
and the rising trend of gross tonnage is greater than the total power. Obviously, “dual
control” and quantitative reduction in the number, power, gross tonnage, and final catch of
fishing vessels are difficult to achieve. Therefore, we recommend strengthening production
management in appropriate areas, including policies such as fishing restriction and fishing
monitoring, and promoting production-based management. The next step will focus on the
use of statistical data, catch data, and other multi-source data; using artificial intelligence
and machine learning algorithms; and conducting in-depth research on the management
and control of the fishing capacity of marine fishing vessels.
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