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Abstract: Numerical simulations were performed to study the long-distance evolution of irregular
waves in deep water. It was observed that some solitons, which are the theoretical solutions of the
nonlinear Schrödinger equation, emerged spontaneously as irregular wave trains propagated in
deep water. The solitons propagated approximately at a speed of the linear group velocity. All the
solitons had a relatively large amplitude and one detected soliton’s height was two times larger than
the significant wave height of the wave train, therefore satisfying the rogue wave definition. The
numerical results showed that solitons can persist for a long distance, reaching about 65 times the
peak wavelength. By analyzing the spatial variations of these solitons in both time and spectral
domains, it is found that the third-and higher-order resonant interactions and dispersion effects
played significant roles in the formation of solitons.

Keywords: nonlinear Schrödinger equation; soliton; high-order spectral method; numerical simula-
tion; nonlinear water waves

1. Introduction

Rogue waves or freak waves in the ocean are one of the most destructive phenom-
ena resulting in damage to ships and marine structures [1,2], while the mechanisms of
the occurrence of rouge waves have not been fully explained so far [3]. Among those
explanations, the most fundamental nonlinear theory is based on modulation instability.
This instability was first discovered by Lightill [4], and later demonstrated by Benjamin
and Feir [5] and by Zakharov [6] independently. The cubic nonlinear Schrödinger (NLS)
equation is capable of describing the basic features of modulation instability and the evo-
lution of modulated waves. Due to the integrability, the nonlinear Schrödinger equation
has exact localized envelope soliton solutions. Solitons resulting from a balance between
dispersion and nonlinear effects are permanent envelope pulses, which remain stable when
they interact with other waves. This solution has a sech-shaped profile propagating with
a linear group velocity [7–9]. It is well known that in the framework of NLS, the initial
wave packet will eventually evolve into a number of envelope solitons [9]. Breather is
another kind of exact solution of the nonlinear Schrödinger equation. Adopting the inverse
scattering method to analyze the surface displacement, a wave breather can be considered
as a superposition of an envelope soliton and the plane wave background [10,11]. The
Akhmediev Breather solution can describe well the process of modulation instability and
the Fermi–Pasta–Ulam-Tsingou recurrence [12]. Another so-called Peregrine Breather (PB),
localized both in time and space, can describe a single wave that appears suddenly and
disappears without a trace, and thus can be considered as a porotype of rogue waves in the
ocean [13]. Recently, solitons and breathers have been observed and studied in a diverse
range of physical subjects including ocean waves, plasma waves, condensed matter waves,
electromagnetic and optical waves [14–19].

Regarding water waves, Clamond and Grue [20] numerically studied the interactions
between envelope solitons and compared fully nonlinear models with the NLS and the
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Dysthe equations. The results showed that the NLS model underestimates the occurrence
of freak waves. Dyachenko and Zakharov [21] demonstrated the existence of quasi-solitons
in numerical experiments using the Euler equations. Slunyaev [22] numerically found
that the analytic soliton solution is accurate even when the wave steepness approaches 0.3.
Later, Slunyaev et al. [23] verified the previous numerical results with experiments and
continued the experimental study on the interaction between envelope solitons in Slunyaev
et al. [24]. Ducrozet et al. [25] analytically studied the transform of an envelope soliton
over a bottom step and numerically demonstrated the amplitude amplification when an
envelope soliton propagates from shallow to deep water depth. However, only a few
studies have discussed solitons that emerge from random waves and a detailed analysis
with regard to the emergence process of solitons is absent. Viotti et al. [26] observed quasi-
solitons in random waves and found that large waves appear more organized in coherent
structures as the initial Benjamin-Feir index increases (representing a ratio between wave
steepness and spectral bandwidth). Recently, Cazaubiel et al. [27] performed experiments
on the propagation of unidirectional random waves, and identified the appearance of
solitons and breathers when nonlinearity is weak. However, probes were installed sparsely
in the experiment; therefore, detailed information of the propagation and transformation
of the solitons was therefore absent. Where did these solitons come from and end to? What
is the lifetime of solitons? How do nonlinearity and dispersion affect the emergence of
solitons? These questions are still to be answered. Numerical simulation is a powerful
tool to answer the above questions. The high-order spectral (HOS) method is an efficient
numerical method to simulate wave evolution without restrictions on spectral bandwidth
and can retain full wave nonlinearity [28]. In this study, the HOS model [29,30] was adopted
to simulate irregular wave propagation in deep water.

This paper aims to identify and characterize the emergence of solitons in irregular
waves. The evolution and the dynamics of these solitons are analyzed in detail. The
remainder of this paper is organized as follows. A brief introduction of the soliton is
introduced in Section 2. Section 3 describes the numerical wave model adopted in this
paper. In Section 4, a validation of the numerical model against experiments is made. A
detailed discussion of the numerical results is presented in Section 5. The last section
summarizes the conclusions.

2. Brief Introduction of Solitons

The nonlinear Schrödinger equation describes the evolution of weakly nonlinear
narrow-band wave trains. In deep water conditions, it was first derived by Zakharov [6]:
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where A(x, t) denotes the complex wave envelopes; x and t are spatial and time coordinates.
The surface displacement η(x, t) is represented as:

η = Re(A exp i(ω0t− k0x)) (2)

where ω0 and k0 are the cyclic frequency and wavenumber of the carrier wave, and they are
related according to the linear dispersion relation. As the NLS equation is always focusing
in the deep water (it becomes de-focusing when k0h < 1.363), it admits a localized bright
soliton solution given in the form [9]:
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where Asol is the maximum of the envelope soliton and cg = ω0 /2k0, cg is the linear group
velocity corresponding to the carrier wave frequency. In the NLS framework, the envelope
solitons are stable when propagating and interacting with other waves, including other
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solitons. A soliton has a sech-shaped profile and the theoretical surface displacement of
envelope soliton can be derived from Equations (2) and (3):

η(x, t) = Asolsech
(√

2k2
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))
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k2
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2

4
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This equation indicates that the envelope of the soliton propagates at a speed of
linear group velocity; however, the phase velocity of individual waves within the soliton
takes into account the third-order nonlinear effects. Figure 1 shows two examples of the
theoretical solitons with different amplitudes. It can be seen that the length of a soliton is
inversely proportional to its height. The full width at half maximum of a soliton can be
written as:

Lsol =

√
2

Asolk2
0

arcsech
(

1
2

)
(5)

and the corresponding duration is Tsol = Lsol/cg.

Figure 1. Theoretical envelope soliton of Equation (4) with ω0 = 2π rad/s; (a) Asol = 0.02 m;
(b) Asol = 0.01 m.

3. High-Order Spectral Model

The numerical simulations were performed using the HOS method which was first
put forward by Dommermuth and Yue [31] and West et al. [28]. This method has been
found to be an accurate and efficient numerical tool for direct phase-resolved simulation
of nonlinear wave evolution [29,32]. The HOS method retains the full nonlinearity in the
free surface conditions. In addition, this method has the ability to account for nonlin-
ear interactions up to an arbitrary order M in steepness, using a number of free wave
modes N to represent the sea-state. As in Zakharov [6], the potential on the free surface
Φ(x, t) ≡ ϕ(x, η(x, t), t) is introduced to the free surface boundary conditions:
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where v denotes the vertical velocity evaluated at the free surface. The main problem is to
express v as a function of potential ϕ(x, z, t). To achieve this, the first step is to calculate
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the potential from the boundary–value problem through the pseudo-spectral method. The
next step is to expand v in a Taylor series about the mean free surface z = 0:

v(x, t) =
M

∑
m=1

v(m)(x, t) =
M

∑
m=1

m−1

∑
k=0

ηk

k!
∂k+1
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∣∣∣∣∣
z=0

(8)

v(m) and ϕ(m) indicate the quantity to be mth order in steepness and M is the desired
order of nonlinearity. Substituting Equation (8) into Equations (6) and (7), the evolution
equation for η and Φ is obtained. Given the initial values of η and Φ, unknowns of the
next time step (η and Φ) can be obtained from the fourth order Runge–Kutta integration in
time. In order to generate waves in the numerical wave tank, the wave maker condition is
expanded to the second order. An additional potential that accounts for the wave maker is
introduced and solved by the spectral method [33,34]. An absorbing layer is implemented
on the opposite side of the wave maker to minimize the wave reflections. To achieve this, a
term acting as a modification of the pressure [34] is added to Equation (7).

4. Numerical Flume Set-Up and Validation

The validation of the model was made by a comparison with the experimental re-
sults [35]. The experiments were conducted in a wave flume located at the State Key
Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian,
China. The validation was intended to show the accuracy of the model to reproduce the
evolution of long-crested irregular waves. The wave flume is 69.0 m long and 2.0 m wide
with a water depth of 1.2 m. The experimental setup is shown in Figure 2. The flume was
equipped with a piston-type wave maker and the origin of the horizontal coordinate was
located at the mean position of the wave maker. A wave absorber was installed on the
opposite side to minimize wave reflections. The random wave field was characterized by
the Joint North SeaWave Project (JONSWAP) spectrum with different combinations of the
bandwidth and steepness. The parameters of the wave conditions are specified in Table 1.
The time series of the surface elevation measured at the first probe was decomposed into a
number of independent harmonics and used to generate the input boundary conditions for
numerical simulations. The experiments were reproduced with the following numerical
settings: total duration T = 300 s and number of discretization nodes N = 2048. Although
M = 3 is accurate enough for most cases [30], in order to guarantee almost fully nonlinear
interactions, realizations were simulated with M = 6 in the present study.

Figure 2. Experimental setup.

Table 1. Wave parameters measured at the first location x = 5.0 m.

Hs (m) Tp (s) kph ε = kpHs/2 γ ∆f /fp

Case A 0.064 1.0 4.82 0.12 3.3 0.10
Case B 0.03 1.0 4.82 0.06 7.0 0.07

Note: Hs: significant wave height; Tp: peak period; kp: wavenumber corresponding to the peak period;
kph: relative water depth; ε: wave steepness; γ: peak enhancement factor of the spectrum; ∆f : full width
at half maximum of the spectrum; ∆f /fp: relative bandwidth.
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Figure 3 shows the comparisons of the surface elevations between the numerical and
experimental results at specified locations. The numerical simulations agreed well with the
experiment. The wave amplitude and phase were correctly predicted by the HOS method.
As fluid was assumed to be irrotational, inviscous, and bottom friction were neglected, the
experiment was not perfectly reproduced. Minor differences were observed but they were
acceptable. The successful comparisons with the experiments further validate the ability of
the HOS method to simulate the evolution of long-crested random waves.

Figure 3. Comparisons of the surface elevations between the experimental data (black solid lines) and the numerical results
(red solid lines) for Case A (left), and Case B (right).

5. Results and Discussion
5.1. Identification of Solitons

After the accuracy of the HOS method was confirmed, we performed simulations
with various initial conditions. Simulations of the wave group evolution were conducted
in a numerical wave tank of 120 m long discretized with 2048 points. Each realization
was simulated for 330 s with a time step of 0.02 s. The spatial domain contained about
100 individual waves and the duration of each simulation was about 330 wave periods.
From the numerical results, we identified three typical solitons that emerged from the
irregular wave trains.

A unidirectional random wave train was generated using the parameters of Case B.
Figure 4 shows the evolution of the water surface elevations and the wave amplitude along
the propagation direction; τ = t-x/cg was the coordinate in the frame that moved with
the linear group velocity, and the group velocity corresponded to waves with a frequency
equal to 1 Hz. There were many wave groups that emerged from this wave train. By visual
inspection, three of the wave groups resembled soliton solutions, and required further
analysis. These three solitons were labelled from 1 to 3 from left to right. It was noted
that the length of these three wave groups was shortened during the formation of solitons,
indicating a wave energy focusing process and resulting in high amplitude events. Then
these wave groups developed into independent solitons and retained their shapes in a
long-distance during propagation, while other groups dispersed due to the unbalance of
the dispersion and the nonlinearity effects. Soliton 3 had a larger amplitude and it seems
that this soliton existed from the beginning. Soliton 1 and Soliton 3 persisted for a relatively
longer distance compared to Soliton 2. It was found that the group velocity of solitons
nearly coincided with the linear group velocity, consistent with the expectation of the
analytical solution.
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Figure 4. Left: Temporal evolution of the surface elevations at different locations (Case B: γ = 7.0, Hs = 0.03 m). Right: Spatiotem-
poral diagram of the wave envelope amplitude (Case B: γ = 7.0, Hs = 0.03 m).

Once the height and phase of a soliton is fixed, the theoretical envelope soliton
profile can be determined. Therefore, a Hilbert transform was applied to obtain the local
maxima of the envelope. The comparisons of the surface elevations and the corresponding
instantaneous phases between the solitons emerged from the irregular waves and the
theoretical envelope soliton profiles are presented in Figure 5 (left). The fit was considered
to be successful when the correlation of the surface elevations was better than 80% [27]. The
correlation coefficient is defined as the ratio between the covariance of the two compared
soliton’s profile and the product of their standard deviations. We found that these three
solitons agreed well with the theoretical soliton solution (Equation (4)) both for the surface
elevations and the instantaneous phases [36]. The maximum wave heights of these three
solitons remained nearly unchanged. We can also see, from the comparison of surface
elevations, that the wave phase was in good agreement with the theoretical soliton solution
for a long spatial evolution. The theoretical envelope soliton travelled at a speed of linear
group velocity which again verifies that the simulated solitons propagated with the linear
group velocity as well. The detected soliton’s envelope also matched the envelope of the
theoretical soliton (Equation (3)). We noticed that, compared to the theoretical solitons, the
detected soliton’s envelope was horizontal asymmetry. The asymmetry can be explained
by the nonlinear effects which are not considered in the cubic NLS equation. Dysthe
equations [37] with higher-order terms can account for the asymmetry features. This
type of asymmetry was also observed in Feir’s experiments [38] and was confirmed by
numerical simulations using the Dysthe equations [39]. Another striking phenomenon
was that the emergence of Soliton 3 clearly resulted from a self-focusing process described
in [40] and the envelope profile also resembled the Peregrine breather. However, the
instantaneous phase heavily deviated from the theoretical Peregrine breather solution, and
the remarkable feature of the Peregrine breather, the π jump, was not presented in Soliton 3.
In addition, this soliton had a large amplitude from the beginning to the end, which also
contradicts with the Peregrine breather whose energy is localized both in time and space.
Compared to the experiments performed by Michel et al. [40], the steepness was smaller in
this case, which indicates a weaker self-focusing process. Therefore, it was more similar to
a soliton instead of a Peregrine breather.
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Figure 5. Left: Comparison between the detected soliton (blue solid line) and the theoretical envelope soliton profile (red
dashed line). The black dashed line is the envelope of theoretical soliton. The green dashed line is the envelope of detected
soliton. Right: Correlation coefficient between three wave groups and the theoretical solitons (red solid line) and the
threshold to be successful solitons (black dashed line).

These three typical solitons had different heights, and one soliton was identified as a
freak wave. A freak wave is defined as a wave whose crest-to-trough excursion is twice as
high as the significant wave height. The maximum wave height of Soliton 3 reached about
0.075 m and the amplification factor Hmax/Hs = 2.5 satisfied the rogue wave definition. It
was also found that the taller the soliton was, the narrower its width was, consistent with
Equation (5). All these three solitons had an amplitude larger than 1.4 times the significant
wave height, which indicates that the formation of solitons is highly affected by wave
amplitudes.

5.2. Persistence Distance of Solitons

The correlation coefficient between the simulated solitons and the theoretical solitons
along the flume is presented in Figure 5 (right). The black dashed lines indicate the 80%
threshold. The persistence distance of the soliton is the interval above the black dashed
lines, and it can be clearly identified from Figure 5 (right). There are remarkable differences
between the three solitons in terms of persistence distance.

For Soliton 1, the wave group already exhibited a soliton shape from the wave maker
side and remained a qualified soliton till the end of the numerical tank. The correlation
coefficient grew and reached its maximum of about 0.96 at x = 46.8 m, and then decreased;
the persistence distance was the whole length of the wave tank which contained about
65 times the peak wavelength. For Soliton 2, it was hard to predict whether this wave
group could evolve to a soliton in prior, since at the beginning there were no similarities
between the shape of this wave group and a soliton. The wave group evolved progressively
to a soliton at about x = 39.0 m, and the correlation coefficient attained its maximum at
about x = 46.4 m. This soliton persisted for a relative short distance (20 m) which contained
about 13 times the peak wavelength. For Soliton 3, the correlation coefficient increased to a
maximum, reaching as high as 0.99 at x = 63.6 m and the persistence distance was about
32 times the peak wavelength (50 m).

In this sense, these three solitons were different considering the formation and per-
sistence distance. Next, the formation details will be explained, respectively, for the three
solitons.
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5.3. Formation of Solitons

To fully understand the formation process of solitons, the local wave groups at each
location were extracted. Each wave group was centered at the maximum height of the
soliton, and the time interval of the wave group was two times Tsol. The wave amplitude
spectra obtained by Fourier transform at different locations along the flume are presented
in Figure 6 for the three solitons. It is noted that for Soliton 1, the width of the spectrum
slightly decreased during the evolutionary process. However, for Soliton 2, the wave
spectrum underwent a significant change. The components at the higher sides of the
peak frequency gained energy, and the width of the spectrum was broadened at x = 45 m
and 55 m where the solitons emerged. When the solitons disappeared, the energy of the
higher components decreased, and the width of the spectrum narrowed. The spectrum
had a tendency of recurring back to the original state and the energy transfer seemed
to be reversible. For Soliton 3, as seen in Figure 6 (right), the results were similar: the
spectrum was also widened due to the emergence of solitons; as the soliton disappeared,
the spectrum returned to a narrow one.

Figure 6. The wave amplitude spectra at different locations along the flume for Soliton 1 (left), Soliton 2 (center), and
Soliton 3 (right).

Simulations with only the linear effects (M = 1), second-order effects (M = 2), and
third-order effects (M = 3) were also carried out in order to clarify what leads to the solitons
and variations in the amplitude spectrum. Figures 7–9 present the comparison of solitons
observed in simulations with different nonlinearity parameters. As the surface elevations
for M = 3 and M = 6 were almost identical, the time series for M = 3 is not pictured in
these figures. It was noticed that in simulations with M = 1 and M = 2, solitons were still
observed at the same location as M = 6. However, the solitons’ heights were lower than the
previously observed solitons for M = 6. The persistence distance for M = 1 and M = 2 can be
identified from the correlation coefficient curve in Figure 10. Due to the lack of nonlinearity,
the balance between nonlinearity and dispersion was broken and the soliton’s shape could
not hold as long as M = 6, so the persistence distance was shortened as well. The height and
persistence distance for solitons of different nonlinear orders are listed in Table 2 and these
indicate that nonlinearity has a positive effect on the stability of solitons. However, the
height and persistence distance of the solitons were the same for M = 3 and M = 6, which
means that nonlinear interactions higher than third order had no impact on the formation
and stability of solitons. It is also noted that Soliton 1 had a longer persistence distance
than the other two solitons. This was mainly because Soliton 1 had fewer surrounding
waves and nearly no interactions with other waves.
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Figure 7. Comparison of Soliton 1 between different nonlinear orders. The blue dashed lines
correspond to the simulation with only linear effects (M = 1). The red dashed dot lines correspond to
the simulation with second harmonic effects (M = 2). The black solid lines correspond to almost fully
nonlinear simulations (M = 6).

Figure 8. Comparison of Soliton 2 between different nonlinear orders. The blue dashed lines
correspond to the simulation with only linear effects (M = 1). The red dashed dot lines correspond to
the simulation with second harmonic effects (M = 2). The black solid lines correspond to almost fully
nonlinear simulations (M = 6).
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Figure 9. Comparison of Soliton 3 between different nonlinear orders. The blue dashed lines
correspond to the simulation with only linear effects (M = 1). The red dashed dot lines correspond to
the simulation with second harmonic effects (M = 2). The black solid lines correspond to almost fully
nonlinear simulations (M = 6).

Figure 10. Correlation coefficient between three wave groups and theoretical solitons. The red solid
lines correspond to the simulation with only linear effects (M = 1). The blue dashed lines correspond
to the simulation with second harmonic effects (M = 2). The green solid lines correspond to the
simulation with third-order nonlinear effects (M = 3). The black dashed lines correspond to the 80%
threshold.
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Table 2. The height and persistence distance of solitons for different nonlinear orders.

M = 1 M = 2 M = 3 M = 6

Soliton 1
Asol (m) 0.0196 0.0207 0.0225 0.0225

L/Lp 45.8 49.8 67.3 67.3

Soliton 2
Asol (m) 0.0268 0.0277 0.0285 0.0285

L/Lp 13.2 14.5 15.6 15.6

Soliton 3
Asol (m) 0.0293 0.0334 0.0404 0.0404

L/Lp 20.9 22.7 32.2 32.2
Note: Asol: soliton’s height; L: persistence distance of soliton; Lp: wavelength corresponding to the peak period.

It can be noted from Figure 11 that there were no remarkable changes in the amplitude
spectrum for M = 1 and M = 2 during propagation, and again the spectrum was almost
the same for M = 3 and M = 6, indicating that the third-order resonant interactions played
a significant role in the formation of solitons [41,42]. Similar results have been observed
in the study of freak waves and Peregrine breathers [43,44]. The above demonstrates the
nonlinear wave energy transfer, especially the third-order resonant interactions were the
main reason for the formation of solitons.

Figure 11. The wave amplitude spectra at different locations along the flume for (a) Soliton 1, (b) Soliton 2, and (c) Soliton 3.
The blue dashed lines correspond to the simulation with only linear effects (M = 1). The red dashed dot lines correspond
to the simulation with second harmonic effects (M = 2). The green dashed dot lines correspond to the simulation with
third-order nonlinear effects (M = 3). The black solid lines correspond to almost fully nonlinear simulations (M = 6).

The spectral analysis only presented the energy variations within the wave group.
To clearly demonstrate the interactions between solitons and surrounding waves, the
time frequency analysis was also required. The wave energy distribution in the time and
frequency domain was obtained through wavelet transform. The Morlet wavelet [45] was
adopted in this study as the mother wavelet. The wavelet spectra at different locations are
presented in Figures 12–14. It is shown that the solitons gradually emerged from intense
wave groups in the wave trains. For Soliton 2, it was found that before the emergence of
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solitons (x = 9 m, t ∈ (145 s, 155 s)), the spectra showed a down-chirp shape indicating
that leading waves in the group had a higher frequency than the railing waves. When the
solitons emerged, the length of the wave group decreased and wave energy gathered. The
spectrum width also widened which is in accordance with previous results. At x = 60 m,
when the solitons disappeared, the spectrum showed an up-chirp shape and the wave
group dispersed. This process resembles a defocusing process. The analysis for Soliton 3
and Soliton 1 presented similar results. The above analysis shows the significance of linear
dispersion to the formation of solitons.

Figure 12. The time series and corresponding wavelet spectrum for Soliton 1 at three locations:
(a) x = 30.0 m; (b) x = 50.0 m; (c) x = 80.0 m.

Figure 13. The time series and corresponding wavelet spectrum for Soliton 2 at three locations:
(a) x = 9.0 m; (b) x = 42.0 m; (c) x = 60.0 m.
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Figure 14. The time series and corresponding wavelet spectrum for Soliton 3 at three locations:
(a) x = 25.0 m; (b) x = 65.0 m; (c) x = 95.0 m.

6. Conclusions

The envelope soliton is an exact solution of the nonlinear Schrödinger (NLS) equation.
It has a permanent and stable shape when propagating or interacting with other waves.
Solitons and breathers are believed to be prototypes of rogue waves. In the present study,
numerical simulations were performed to study soliton’s formation and evolution in a
wave tank with the HOS method. The model was first validated by comparisons with
experiments. In the numerical simulations, three solitons were identified during the
evolution of irregular waves. The maximum height of a soliton can reach as high as
Hmax/Hs = 2.5 satisfying the rogue wave definition. Solitons that emerged from irregular
waves fitted the theoretical solution both in amplitude and instantaneous phases. It is
verified that solitons travel at a speed of linear group velocity. Solitons in irregular waves
exhibit horizontal asymmetry. Solitons can persist for a long distance with the envelope
shape nearly unchanged. Wave groups that solitons located in were also analyzed by
Fourier transform. The spectra bandwidth broadened during the formation of solitons;
however, the spectra recurred back to a narrower one when the soliton disappeared. The
Morlet wavelet transform was performed to characterize the energy distribution in the
time–frequency domain. The wavelet spectra revealed that the peak frequency gradually
decreased from the front to the rear before the soliton emerged; with further evolution,
wave components were focused and energy gathered. When the solitons disappeared,
the instantaneous frequencies in front became lower than those behind it, indicating
a defocusing process. This whole process demonstrates that dispersive focusing also
contributes to the formation of solitons.
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