
Journal of

Marine Science 
and Engineering

Article

Study of the Cone-Shaped Drogue for a Deep-Towed Multi-Channel
Seismic Survey System Based on Data-Driven Simulations

Xiangqian Zhu 1,2,*, Mingqi Sun 1,2, Tianhao He 1, Kaiben Yu 3, Le Zong 3 and Jin-Hwan Choi 4

����������
�������

Citation: Zhu, X.; Sun, M.; He, T.;

Yu, K.; Zong, L.; Choi, J.-H. Study of

the Cone-Shaped Drogue for a

Deep-Towed Multi-Channel Seismic

Survey System Based on Data-Driven

Simulations. J. Mar. Sci. Eng. 2021, 9,

1367. https://doi.org/10.3390/

jmse9121367

Academic Editors: Yigit

Kemal Demirel and Soonseok Song

Received: 11 October 2021

Accepted: 23 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering,
Shandong University, Jinan 250012, China; 202034365@mail.sdu.edu.cn (M.S.);
201700162151@mail.sdu.edu.cn (T.H.)

2 National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University,
Jinan 250012, China

3 National Deep Sea Center, Qingdao 266237, China; yukb@ndsc.org.cn (K.Y.); zongl@ndsc.org.cn (L.Z.)
4 Department of Mechanical Engineering, Kyunghee University, Yongin 17104, Korea; jhchoi@khu.ac.kr
* Correspondence: xqzhu@sdu.edu.cn

Abstract: A drogue is used to stabilise and straighten seismic arrays so that seismic waves can be
well-received. To embed the effect of a cone-shaped drogue into the numerical modelling of the
deep-towed seismic survey system, one surrogate model that maps the relationship between the
hydrodynamic characteristics of the drogue and towing conditions was obtained based on data-driven
simulations. The sample data were obtained by co-simulation of the commercial software RecurDyn
and Particleworks, and the modelling parameters were verified by physical experiments. According
to the Morison formula, the rotational angle, angular velocity, angular acceleration, towing speed,
and towing acceleration of the drogue were selected as the design variables and drag forces and
aligning torque were selected as the research objectives. The sample data of more than 8500 sets were
obtained from virtual manoeuvres. Subsequently, both polynomial and neural network regression
algorithms were used to study these data. Finally, analysis results show that the surrogate model
obtained by machine learning has good performance in predicting research objectives. The results
also reveal that the neural network regression algorithm is superior to the polynomial regression
algorithm, its largest error of mean square is less than 0.8 (N2/N2 mm2), and its R-squared is close
to 1.

Keywords: cone-shaped drogue; hydrodynamic force; virtual simulation; machine learning

1. Introduction

A deep-towed multi-channel seismic survey system, consisting of mothership, towing
cable, towed vehicle, seismic array, and drogue, is used for high-resolution surveys of
the submarine stratum, as shown in Figure 1 [1,2]. The towed seismic array is used to
collect seismic waves reflected from different strata. The heavy pitching motions of the
towed vehicle disturb the towed seismic array and ultimately affect the measurement
accuracy. Therefore, reducing the swing of the seismic array and maintaining its straight
shape is key to improving the exploration resolution. The drogue installed at the tail of
the seismic array can provide backward drag resistance, which can effectively reduce the
swing of the seismic array. Sengupta et al. [3] examined the performance of a conical
ribbon drogue parachute in the wake of a subscale Orion command module. The drogue
can provide command module stabilisation and deceleration prior to the main parachute
deploy. The disk-gap-band (DGB)-type supersonic parachute is traditionally adopted for
future manned planetary exploration, and the parachute exhibits the open areas. The
flow of air from the open areas reduces the force generated during parachute inflation [4].
Since the cone-shaped structure has superior alignability and returnability, a cone-shaped
drogue with both circular sections opened was therefore chosen for this study. The deep-
towed multi-channel seismic survey system is mainly composed of slender cables that are
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thousands of metres, and much computation time is needed when the whole system is
analysed using computational fluid dynamics (CFD). The hydrodynamics of slender cables
can be calculated simply by using the Morison formula, which is inapplicable to cone-
shaped drogues [5–7]. Therefore, one surrogate model that maps the relationship between
the hydrodynamic characteristics of the cone-shaped drogue and towing conditions was
obtained in advance by the machine-learning technique herein described, and this surrogate
model will be embedded into the numerical modelling of the deep-towed multi-channel
seismic survey system for later towing-operation optimization and components design.
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Building a data library is one critical process in machine learning. To build this
data library, hydrodynamic characteristics of the cone-shaped drogue can be analysed
by traditional CFD methods, such as the finite volume method or the finite difference
method [8]. However, the drogue moves freely during towing conditions and the moving
boundary condition severely limits the efficiency of the solution provided by traditional
CFD methods [9]. Moving Particle Semi-implicit (MPS) is one kind of mesh-free particle
method, developed by Koshizuka [10,11], and the fluid is stable at the wall boundary [12].
The commercial software Particleworks has been used to analyse oil lubrication of the
gearbox and interaction between ocean wave and ship [13,14]. The computation speed
is faster with the parallel computing. Therefore, the data library was generated by the
co-simulation of RecurDyn and Particleworks herein [15]. To ensure the accuracy of the
simulation results, physical experiments were conducted using circulating water tanks
in the National Deep Sea Center. Both the particle size and integration step were tuned
according to the results provided by the experiments. At the same time, a machine-learning
technique is a data-driven information-processing framework that can extract potential
information from a large amount of data, build models, and overcome the limitations
of traditional research methods [16]. At present, research on the intersection of fluid
mechanics and machine learning mainly focuses on the reconstruction of the flow field
and the mapping of characteristic quantities such as force coefficients [17,18]. Aiming
at turbulent flow field reconstruction, Milano et al. [19] realised the reconstruction and
prediction of the near-wall flow field through the wall pressure and shear-stress two-wall
information. Fukami et al. [20] used the convolutional neural network and the hybrid
down-sampled skip-connection/multi-scale models to perform a super-resolution analysis
of grossly under-resolved turbulent flow field data, to reconstruct the high-resolution
flow field. To map the force coefficients and other characteristic quantities, Lin et al. [21]
established a neural network that can calculate the hydrodynamic coefficient of the Morison
formula under different Reynolds numbers, KC numbers, and roughness values. The
M5 model tree and nonlinear regression method were used to solve the hydrodynamic
coefficients on vertical piles in regular waves [22]. Several years later, a hybrid model of
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the M5 model tree and a genetic algorithm was proposed [23]. The advantages of the two
algorithms were used to process the wave-load data of the pile group, and the relations
among the coefficients of the pile group, KC number, pile-group arrangement, and relative
pile distance were derived. Srinivasan et al. [24] used the multilayer perceptron and the
long short-term memory (LSTM) to predict temporally evolving turbulent flows. The LSTM
led to excellent predictions of turbulence statistics and the dynamical behaviour of the
system networks. Theodoropoulos et al. [25] researched the development of deep-learning
models that can be utilised to predict the propulsion power of a vessel. They also evaluated
feed-forward neural networks and recurrent neural networks. Predictions provided by
these models were compared with values measured onboard. Machine learning offers a
wealth of techniques to extract information from data that can be translated into knowledge
about the underlying fluid mechanics. Therefore, it is feasible to establish the surrogate
model using the machine-learning method in this study.

The relationship between the hydrodynamic characteristics of the cone-shaped drogue
and towing conditions can be studied using data-driven simulations. Firstly, according to
the Morison formula, the rotational angle, angular velocity, angular acceleration, towing
speed, and towing acceleration were selected as design variables. The drag forces and
aligning torque were selected as the research objectives. According to the motion character-
istics of the towed vehicle and the cone-shaped drogue in the actual sea trial, a reasonable
range of each design variable, that covered all towing conditions, was set. Sample data
was obtained by co-simulation of the commercial softwares RecurDyn and Particleworks.
The modelling parameters were verified by physical experiments. Geometric objects and
kinematic pairs were modelled in RecurDyn, and the liquid flow was simulated by particles
generated in Particleworks. By adjusting the towing speed and rotational angle, nine series
of simulation data were collected and more than 8500 sets of data were obtained. After data
cleaning, coordinate conversion, and low-pass filtering, the data library was established.
Subsequently, both polynomial and neural network regression algorithms were used to
study these data. The surrogate model was generated using 60% of the data, algorithm
parameters were corrected using 20% of the data, and the remaining 20% of the data were
used to test this surrogate model. Finally, analysis results show that the surrogate model
obtained by machine learning had good performance in predicting research objectives. The
results also reveal that the neural network regression algorithm is superior to the polyno-
mial regression algorithm, its largest error of mean square is less than 0.8 (N2/N2·mm2),
and its R-squared is close to 1. Section 2 describes the numerical model used in this study.
Section 3 introduces the physical experiment. Section 4 completes the calibration of the
simulation model and introduces the data library. Section 5 introduces the algorithms and
results. Section 6 summarises the outcomes of the research.

2. Numerical Model

There is no established mathematical formula for calculating the hydrodynamics of a
cone-shaped drogue model. However, the hydrodynamics of cylindrical marine structures
with relatively small dimensions (ratio of characteristic size to wave wavelength less than
0.2) can be calculated using the Morison formula. Morison asserts that the forces acting
on the structure are divided into two parts. One is the horizontal viscous resistance force
fD, which is caused by the horizontal velocity ux of the motion of water particles, and the
other is the inertial force f I , which is caused by the horizontal acceleration ∂ux/∂t of the
motion of water particles. The specific formula is given by Equation (3):

fD =
1
2

CDρAux|ux|. (1)

f I = CMρV
∂ux

∂t
. (2)

f = fD + f I =
1
2

CDρAux|ux|+ CMρV
∂ux

∂t
. (3)
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where ux is the horizontal velocity of the wave water point, ∂ux/∂t is the horizontal ac-
celeration, A is the projected area of an object in the direction of movement, V is the
drainage volume of the structure, ρ is the water density, CD is the drag resistance coeffi-
cient (drag coefficient, velocity force coefficient), and CM is the coefficient of inertia force
(mass coefficient).

According to the Morison formula, the hydrodynamic forces of a cone-shaped drogue
are closely related to its velocity and acceleration relative to the surrounding water, the
projected area in the direction of movement, the volume of displacement, the density of
water, the drag resistance coefficient, and the coefficient of inertia force. Since the density
of water and the size of the cone-shaped drogue are constant and the drainage volume is
small, the drag resistance coefficient and the coefficient of inertia force change with the
motions and orientation of the drogue. The towing speed, acceleration, and rotational
angle of the drogue were chosen as the design variables. Since the angle changes unevenly
with time, the angular velocity and angular acceleration were also introduced as design
variables. The coordinate system is shown in Figure 2. The design variables are the
rotational angle, angular velocity, and angular acceleration in the Z direction, towing speed,
and acceleration along the X direction. The cone-shaped drogue is symmetrical about its
central axis, as shown in Figure 2. Thus, the research targets are the axial drag force in the
X and Y directions, and the torque in the Z direction.
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The sample data can be obtained by virtual simulations and physical experiments.
Those obtained by physical experiments are highly reliable, but the experiments are time-
consuming and costly. The efficiency of data acquisition by simulation is high, but its
accuracy needs to be verified. Since a number of data is needed and the cost of physical
experiments is high, the data library was created by virtual simulations. To improve the
accuracy, experimental data was collected for the subsequent simulation calibration. A
simulation model was constructed with the same experimental conditions, and parameters
such as particle diameter and integration step were adjusted to make the simulation
results close to the experimental data, so as to improve the reliability of the simulation
analysis results.

3. Physical Experiment

The axial drag forces of one cone-shaped drogue were measured by using unidi-
rectional tension sensor, and the measured axial drag forces helped to tune modelling
parameters of the virtual simulation. The experimental facilities and efforts in improving
the accuracy of experiments are introduced herein.
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3.1. Circulating Water Tank Equipment

This experiment was carried out with the aid of a circulating water tank in the National
Deep Sea Center. The circulating water tank is mainly composed of a flow rate controller,
a fluid adjusting and stabilising system, and a working part, as shown in Figure 3. The
working part is made of transparent glass, and both height and width of the cross-section
are 400 mm. The range of the steady flow is from 0.1 m/s to 1.0 m/s. The water speed of
the working part can be controlled by adjusting the frequency of the converter using the
flow rate controller, as shown in Figure 4.
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3.2. Data Collection

The cone-shaped drogue was tied to one end of the tension sensor by four nylon lines,
and the other end of the sensor was connected to the bottom of the airfoiled plate through
a threaded connection, as shown in Figure 5a. The NACA0021 airfoiled plate with a low
Mach number and a high angle of attack was selected as the sensor mounting frame, to
reduce the disturbance to the flow field. Figure 5b illustrates that the airfoiled plate had a
slight influence on the flow field behind. The cone-shaped drogue was placed at the centre
of the tank to prevent the drogue from touching the wall during the experiment.
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The drag force F on node O is measured, as illustrated in Figure 5a. The drag force
results in strain, which turn to a change in capacitance. Thus, the force signal was converted
into an electrical signal for display. The sensor structure is illustrated in Figure 6a. The
sensor used in this experiment had a range of 50 N and an accuracy of 0.3%. That is, the
confidence interval of the actual force F is the measured data F’ ± 0.15 N. At the same time,
the data were transferred to DAY-SENSOR acquisition software for recording, as shown
in Figure 6b. After the cone-shaped drogue was stable in the water, the DAY-SENSOR
software started to collect experimental data. Then, the motor of the circulating water tank
was powered, and the frequency of the inverter was adjusted to generate a stable flow field
with a specific flow rate. The flow rate was maintained for approximately one minute to
ensure that the flow field entered a stable state.
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After the data collection time met the requirements, the frequency of the inverter
was adjusted to change the flow rate, and the axial force of the cone-shaped drogue was
measured at other flow rates.

3.3. Experiment Results

According to the actual performance of the water tank and tension sensor, this experi-
ment was mainly carried out at flow rates of 0 m/s, 0.19 m/s, 0.33 m/s, 0.47 m/s, 0.60 m/s,
and 0.72 m/s. The force data of the cone-shaped drogue are shown in Figure 7.
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4. Virtual Simulation

The virtual simulations were implemented by a co-simulation of RecurDyn and
Particleworks. The relative velocity between the drogue and surrounding water was
established by flowing water in the experiments, while it was established by moving drogue
in the virtual simulations. Motion of the cone-shaped drogue was defined in RecurDyn,
and Particleworks performed flow field simulation analysis. The cone-shaped drogue,
dummy body, water tank, and kinematic pairs were modelled in RecurDyn, as shown in
Figure 8a. The model generated by RecurDyn was imported into the Particleworks software
in .obj format, and important parameters such as fluid properties, particle diameter, and
integration step were set in Particleworks. After the particles were filled, a solution file
was generated, which could be opened in RecurDyn for simulation analysis. The velocity
contour of fluid during simulation is shown in Figure 8b.
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4.1. Parameter Tuning

Particleworks is commercial software developed based on the Moving Particle Semi-
implicit (MPS) method [26]. The MPS method is an analytical method dealing with
incompressible flow, which discretises continuum mechanics using particles. The fun-
damental governing equations of the MPS method are a continuum equation and Navier–
Stokes equations.

Continuum equation (mass conservation law)

Dρ

Dt
= 0. (4)

Navier–Stokes equations (momentum conservation law)

D
→
u

Dt
= −∇P

ρ
+ υ∇2→u +

→
g . (5)

where D/Dt expresses a Lagrangian derivation, ρ is density,
→
u is velocity, P is pressure, v

is kinematic viscosity coefficient, and
→
g is gravity acceleration.

The distance over which an interaction has an effect is designated as the “effective
radius” and particles within the effective radius of a specified particle are termed neighbour
particles, as shown in Figure 9. To ensure distribution uniformity and isotropy in the
placement of neighbour particles, an appropriate value for the effective radius is 3.1 times
the length of the initial particle diameter.
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The interaction between the particles is weighted in accordance with the distance
between two particles. The weight function is shown in Equation (6).

ω(
∣∣∣→r ij

∣∣∣) =


re∣∣∣→r ij

∣∣∣ − 1 (
∣∣∣→r ij

∣∣∣ < re)

0 (
∣∣∣→r ij

∣∣∣ < re)
. (6)

Subscripts i and j express particle numbers. re is the effective radius. In addition,
→
rij =

→
rj −

→
ri , where

→
ri is the position vector of particle i.
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Particle number density is a dimensionless quantity expressing the density of particle
placement and is a parameter unique to the MPS method. The particle number density is
defined by

n = ∑
j 6=i

ω
(∣∣∣→r ij

∣∣∣). (7)

As mentioned above, both the particle size and the integration step greatly affect the
simulation results. Since the volume of fluid to be modelled is determined, the number of
particles increases exponentially with the decrease of the particle size. The computation
cost is inversely proportional to the number of particles. However, the simulation results
are unreliable if the particle size is too large. Therefore, calibrating the simulation model
through experimental data and selecting the appropriate particle size are necessary pre-
requisites for the simulation. A cone-shaped drogue of the same size as the one used in
physical experiment was established in RecurDyn. In Particleworks, particles with diam-
eters of 6, 5, 4, 3, and 2.6 mm were successively generated for simulation analysis, with
integration step sizes of 1.0 × 10−4, 1.5 × 10−4, 2.0 × 10−4, and 3.0 × 10−4 s. The results
are shown in Figure 10. Within the error tolerance range, the simulation results are stable
and fit the physical experiment when the particle diameter was 5 mm and the integration
step size was 1.0 × 10−4 s. The difference between the simulation and experimental results
is less than 10%.
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4.2. Building Data Library

After tuning the modelling parameters, simulation analyses were carried out to
establish the data library needed for the machine learning. By adjusting the towing speed
and rotational angle, nine simulations were carried out, and more than 8500 sets of data
were sampled. According to the motion characteristics of the deep-towed multi-channel
seismic array system in an actual sea trial [27,28], a reasonable range of design variables
was set as following: the range of angles was 0 to 0.533 rad; the range of angular velocity
was −0.6 to 0.52 rad/s; the angular acceleration was −1.29 to 2.1 rad/s2; the range of
velocity was 0 to 1 m/s; and the acceleration was −1.125 to 1.5 m/s2. The basic conditions
of the rotational angle, angular velocity, angular acceleration, velocity, and acceleration
are shown in Table 1. The drag forces Fx and Fy, and torque Mz were obtained. Both the
design variables and research objectives of Data 6 are shown in Figure 11. At the beginning
of the simulation, the cone-shaped drogue changed from a static state to a stable moving
state, and the forces and torque fluctuated significantly. Therefore, part of the data at the
beginning of the simulation must be removed. There is a slight fluctuation in the entire
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data, which is filtered by low-pass filtering. After transforming coordinates and low-pass
filtering, a data library was established. The processed data curve is shown in Figure 12.

Table 1. Basic information of design variable in building data library.

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9

Angle
(rad)

0.177
0.530

0.262
0.262

0.26
0.26

0.083
0.533

0.015
0.419

0.28
0.52

0.1
0.4

0
0.37

0.09
0.52

Angular vel.
(rad/s)

0.35
0.35

0
0

0
0

0.167
0.167

0.11
0.3

−0.5
0.46

−0.6
0.2

−0.36
0.52

−0.41
0.43

Angular accel.
(rad/s2)

0
0

0
0

0
0

0
0

−1.29
0.56

−0.93
0.913

−2.0
0

−1.2
2.1

−1.02
1.46

Velocity
(mm/s)

354.67
1062.83

194.7
500

200
650

99.6
639.6

181.2
500

128.42
520

137.4
500.3

150
600

14.12
600

Acceleration
(mm/s2)

700
700

0
1071.43

−300
500

200
200

−266.74
735.825

−471.2
471.22

−322.17
376.971

−1125
750

−750
1500
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5. Machine Learning Processing

The regression algorithm is mainly used to predict numerical data. In this analysis, it
was used to predict the hydrodynamic forces and torque of the cone-shaped drogue. Com-
mon regression algorithms include the normal equation, ridge regression, gradient descent
in linear regression, polynomial regression algorithm, and neural network regression algo-
rithm. According to the Morison formula, the relationship between the design variables
and the research objectives is not a simple linear one. Therefore, polynomial regression
and neural network regression algorithm were selected for this study. Both polynomial
regression and neural network regression algorithms, called from the Scikit-learn library of
the Python tool [29,30], were used to train and predict the relationship between the design
variables and the hydrodynamic forces and torque.

5.1. Polynomial Regression

The nonlinear relation can be predicted by the polynomial regression method by
adding high-order items. The specific formula is given by Equations (8) and (9).

Specific formula of the unary m-degree polynomial regression equation:

y =b0 + b1x + b2x2 + . . . + bmxm. (8)

Specific formula of the binary quadratic polynomial regression equation:

y = b0 + b1x1 + b2x2 + b3x1x2 + b4x1
2 + b5x2

2. (9)

where bi is the undetermined coefficient.
According to the specific formula of the binary quadratic polynomial regression

equation, imagine creating a new set of features, as shown in Equation (10). So, the equation
can be written as Equation (11). By considering linear fits within a higher-dimensional
space built with these basis functions, the model has the flexibility to fit a much broader
range of data.

z = [x1, x2, x1x2, x1
2, x2

2]. (10)

y = b0 + b1z1 + b2z2 + b3z3 + b4z4 + b5z5. (11)

In this study, there were five design variables, so five-element n-degree polynomials
were selected for fitting. We only needed to determine the value of degree n to confirm the
final fitting situation. Numerical fitting of the case was related to the value of degree, as
shown in Figure 13. The predicted hydrodynamic forces and torque values were compared
with their values, and the mean square error (MSE) was used to evaluate the accuracy of
the surrogate model. Select the degree where MSE is the smallest, and the specific formula
of MSE is shown in Equation (12):

MSE =
1
m

m

∑
i=1

( fi − yi)
2. (12)

where fi denotes the predicted value, and yi denotes the real value.
After the final test, the polynomial regression could better predict the forces when its

degree was 4 and could better predict the torque when the degree was 5. The results will
be shown in detail in Section 5.2.3.
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Figure 13. Comparison of fitting conditions of different degrees.

5.2. Neural Network Regression
5.2.1. Basic Structure of Neural Networks

A neural network is a multilayer feedforward network. The important processing
unit of the network is the topological structure of neurons and networks, which connects a
neuron to another layer or another neuron of the same layer. The connection is accompanied
by the weight ω, which is adjusted by the backpropagation learning algorithm. The process
of establishing the learning model involves determining all the parameters in the neural
network using the gradient descent method. The number of input and output nodes of
the neural network depends on the research problem. The number of input nodes means
the number of design variables, and the number of output nodes means the number of
research objectives. There are five design variables and three research objectives in the
data library, and three neural network models were established to predict the relationship
between each research objective and all the design variables. Each neural network model
has five input nodes and one output node, as shown in Figure 14.
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The activation function f (·) is used to introduce nonlinearity into the neural network,
which narrows the value to a smaller range [21], as shown in Figure 15. For example, the sig-
moid activation function has a compression range of zero to one, as shown in Equation (13).
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There are many activation functions available, of which the ReLU and TanH functions are
superior to the sigmoid activation functions, as shown in Equations (14) and (15). In this
study, we chose the TanH functions as the activation function.

sigmoid(x) =
1

1 + e−x . (13)

ReLU(x) =
{

x, x ≥ 0
0, x < 0

. (14)

TanH = 2sigmoid(2x)− 1 =
2

1 + e−2x − 1. (15)
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Xj (j = 1, 2, 3, . . . , n) is the input signal accepted by neurons, ωji represents the weight
of the jth neuron in layer i, and bi is the bias. After receiving inputs from neurons of each
layer, the weighted sum of all inputs and weights is calculated and the amount of bias
is added and then acted on by the activation function as the output of this layer. The
input–output relationship is shown in Equation (16).

y = f (ω·x + b)

= f (
n
∑

j=1
ωj iXj + b). (16)

5.2.2. Establishment of Neural Networks

The number of hidden layers and nodes in each layer have important effects on the
training difficulty and prediction performance of the neural network. In general, the more
complex the neural network, the more difficult the training and the better the prediction
performance. At the same time, however, the risk of overfitting is increased. Regarding the
former, some studies [31–34] have shown that the neural network of a single hidden layer
can approach any nonlinear function under the condition of a sufficient number of nodes
in the hidden layer.

However, there is still no clear quantitative formula for the selection of hidden layer
nodes. A rough estimation can be made according to the empirical formula [35,36]:

N =
√

n + m + a. (17)

where N is the number of neurons in the hidden layer, n and m are the number of input
nodes and output nodes, a is a constant, usually with a value range between 1 and 10.

After preliminary debugging and considering the complexity of the problem in this
study, the neural network model of a single hidden layer was used to predict the force,
and the number of neurons in the hidden layer was set between 13 and 30. A neural
network model with two hidden layers was used to predict the torque. The number of
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neurons in the first hidden layer was set between 155 and 165. The number of neurons in
the second hidden layer was set between 105 and 115 neurons. When the network layers
were determined, the grid search method was used to determine the number of neurons in
each layer of the network. In terms of the data, 60% of the data were randomly divided as
the training set, 20% as the validation set, and 20% as the testing set. The training set data
were used to fit the model. In the neural network, the validation set was used to select the
number of neurons in the hidden layer according to the scope of grid search. The testing set
was used to evaluate the generalisation capability of the final model. That is, the training
set was used to find the rule, and the validation set was used to find the network structure
with the best score and take it as the final network structure.

The score was measured by R-squared; the closer R-Squared is to 1, the higher the accu-
racy of the surrogate model is. The specific formula of R-squared is shown in Equation (18):

R2 = 1−

m
∑

i=1
( fi − yi)

2

m
∑

i=1
(yi − yi)

2
. (18)

where fi denotes the predicted value, yi denotes the real value, and yi denotes the average
of the real values.

After validation-set adjustment, the number of nodes in a single hidden layer used to
predict the neural network model of Fx was 27, and Fy was 27. For the neural network used
to predict Mz, the number of neurons in the first hidden layer was 168, and the number of
neurons in the second layer was 110.

5.2.3. Results and Discussion

The surrogate model that indicates the relationship between the design variables and
the research objectives was generated by the training and validation sets, and five design
variables of the testing set were input into the surrogate model to predicate the drag force
Fx, lateral force Fy and torque Mz. MSE and R-squared were used to evaluate the accuracy
of the surrogate model. The testing data were randomly selected each time, the MSEs of Fx,
Fy and Mz are shown in Table 2, and the R-squared of Fx, Fy and Mz are shown in Table 3.
Meanwhile, the maximum, minimum, and the average values of the Fx, Fy, and Mz in the
obtained data library are listed in Table 4. Compared to the values shown in Table 4, the
MSE and the R-squared of predictions by the surrogate model are acceptable.

Table 2. MSE of predictions by surrogate model.

Fx(N2) Fy(N2) Mz(N2
˙mm2)

Polynomial
Regression 0.0452 0.0015 0.8310

Neural Network
Regression 0.0297 0.0019 0.7341

Table 3. R-squared of predictions by surrogate model.

Fx(N2) Fy(N2) Mz(N2
˙mm2)

Polynomial
Regression 0.9891 0.9929 0.9868

Neural Network
Regression 0.9928 0.9910 0.9883
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Table 4. Basic information of Fx, Fy and Mz in data library.

Fx (N) Fy (N) Mz (N˙mm)

Average 2.1722 1.7746 5.4190
MIN 0.0296 0.0020 0.7526
MAX 12.7854 4.8293 23.6963

The drag Fx of the testing set were predicted by both the polynomial and neural
network regressions, respectively, and these predicted values were compared with the real
values, as shown in Figure 16. Similarly, the Fy and Mz are illustrated in Figures 17 and 18.
Several values predicted by the polynomial regression were much larger than the real
values, as indicated by green boxes. Except for these values, either the Fx or Fy can be
well-predicted by the polynomial regression when its degree is 4, while the aligning torque
Mz can be well predicted when the degree is 5. The neural network regression algorithm
is more reliable in obtaining the Fx, Fy and Mz, and the maximum MSE is less than
0.8 (N2/N2·mm2) and its R-squared is close to 1. Finally, the surrogate model that maps
the relationship between the hydrodynamic characteristics of the cone-shaped drogue and
towing conditions was established by using the neural network regression.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

maps the relationship between the hydrodynamic characteristics of the cone-shaped 
drogue and towing conditions was established by using the neural network regression. 

  
(a) (b) 

Figure 16. Fitting results of Fx by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 17. Fitting results of Fy by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 16. Fitting results of Fx by polynomial regression and neural network regression, (a) Polynomial regression; (b)
Neural network regression.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

maps the relationship between the hydrodynamic characteristics of the cone-shaped 
drogue and towing conditions was established by using the neural network regression. 

  
(a) (b) 

Figure 16. Fitting results of Fx by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 17. Fitting results of Fy by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 17. Fitting results of Fy by polynomial regression and neural network regression, (a) Polynomial regression; (b)
Neural network regression.



J. Mar. Sci. Eng. 2021, 9, 1367 16 of 18

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

maps the relationship between the hydrodynamic characteristics of the cone-shaped 
drogue and towing conditions was established by using the neural network regression. 

  
(a) (b) 

Figure 16. Fitting results of Fx by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 17. Fitting results of Fy by polynomial regression and neural network regression, (a) Polynomial regression; (b) 
Neural network regression. 

 
(a) (b) 

Figure 18. Fitting results of Mz by polynomial regression and neural network regression, (a) Polynomial regression; (b)
Neural network regression.

6. Summary

Based on data-driven simulations, the surrogate model that maps the relationship be-
tween the hydrodynamic characteristics of the cone-shaped drogue and towing conditions
was obtained in this paper, so that the effect of a cone-shaped drogue can be embedded into
the numerical modelling of the deep-towed seismic survey system. The research results
can be summarised as follows:

(1) The five design variables and three research objectives were determined according
to the Morison formula. The rotational angle, angular velocity, angular acceleration,
velocity, and acceleration were selected as input design variables, and the drag forces
Fx, lateral forces Fy, and torque Mz were respectively taken as the output research
objectives. According to the motion characteristics of the towed vehicle and the
cone-shaped drogue in actual sea trial, a reasonable range of design variables was set.

(2) The simulation model was calibrated with the aid of physical experiments to ensure
that the simulation results accurately reflected the mapping relationship between the
design variables and the research objectives, and a large number of samples were
obtained by the simulation model. After transforming coordinates and low-pass
filtering of the data, a data library was established.

(3) Polynomial regression and neural network regression algorithms were used to create
the surrogate model. Analysis results show that the surrogate model obtained by ma-
chine learning have good performance in predicting research objectives. The results
also reveal that the neural network regression algorithm is superior to polynomial
regression algorithm and its largest error of mean square is less than 0.8 (N2/N2·mm2)
and its R-squared is close to 1. Therefore, the surrogate model that maps the relation-
ship between the hydrodynamic characteristics of the drogue and towing conditions
was established successfully.

Considering the applicability of the surrogate model, we plan to continue the following
work in the future:

(1) As the information of the current step is merely adopted to predict the research
target, neither the polynomial regression nor neural network regression considers the
cumulative effect of the front steps. Therefore, the current surrogate model is fit for
situations in which the cumulative effect of the front steps is not obvious, such as the
exploration stage of the deep-towed system. In the future, the time-series algorithm
will be used to model the diving and rising stages, during which the cumulative effect
is non-negligible.
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(2) The geometry of the cone-shaped drogue is unchanged here. The geometry of the
cone-shaped drogue will be set as an independent variable so that the cone-shape
drogue can be optimised to stabilise the deep-towed system.
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