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Abstract: The shipbuilding industry demands intelligent robot, which is capable of various tasks
without laborious pre-teaching or programming. Vision system guided robots could be a solution for
autonomous working. This paper introduces the principle and technique details of a vision system
that guides welding robots in ship small assembly production. TOF sensors are employed to collect
spatial points of workpieces. Huge data amount and complex topology bring great difficulty in
the reconstruction of small assemblies. A new unsupervised line segment detector is proposed to
reconstruct ship small assemblies from spatial points. Verified using data from actual manufacturing,
the method of this paper demonstrated good robustness which is a great advantage for industrial
applications. This paper’s work has been implemented in shipyards and shows good commercial
potential. Intelligent, flexible industrial robots could be implemented with the findings of this study,
which will push forward intelligent manufacturing in the shipbuilding industry.

Keywords: intelligent manufacturing; machine vision; autonomous robotic welding; point cloud;
line segment detector

1. Introduction

An industrial robot is the technical trend of intelligent shipbuilding and is expected to
replace labor work in actual manufacturing. However, most welding jobs in shipyards are
still performed manually because conventional welding robots lack flexibility. Industrial
robots could be classified into 2 categories: teach-replay robots and offline-programming
robots, which trajectories are achieved through laborious manual teaching or program-
ming. These approaches are impractical in the shipbuilding industry because shipbuilding
consists of multi-type and small-batch manufacturing for which the time and labor cost
of manual teaching or programming are unacceptable from a commercial point of view.
Thus most welding jobs in shipyards are still performed by manual operators. As rising
labor cost and lack of skilled workers are posing challenges to shipyards, the demands of
intelligent welding robot, which is capable of autonomous welding, is proposed by the
shipbuilding industry.

Studies of autonomous robotic welding in shipbuilding have been attempted [1–5].
The major drawback in previous works is that robots’ trajectories depend on guide rails
or rollers, thus repetitive installation and uninstallation of rails or robots consumes too
much labor and time. Programming of welding robots also leads unfavorable ration of
programming time to production time. Approaches to reduce robot programming costs
could be classified in 3 ways: CAD-based method, hybrid method, and vision-based
method. The CAD-based method employs macros or templates to reduce programming
efforts [6,7]. This leads to significant maintenance costs and does not consider the derivation
of workpieces. The hybrid method combines the CAD model with visual images, enjoying
better flexibility but still requires CAD data or manual input [8]. The vision-based method
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could be an optimized solution for intelligent robotic welding because it is completely
independent of CAD data and routine user inputs [9,10]. Meanwhile, the vision-based
method proposes a great challenge, and splitting it into several small tasks could be a
better solution [11]. Chen described robot pose control for the weld trajectory of a spatial
corrugated web sheet based on laser sensing [12]. Additionally, welding robots with
vision-based weld seam tracking modular are developed, which enjoy better tolerance
to position deviation than conventional robots [13–18]. Research aiming at weld seam
recognition are also conducted. Tsai produced welding path plans for golf club heads [19],
and Zhang reconstructed a single weld seam using structured light [20]. Tsai and Zhang’s
work successfully recognize a single weld seam in laboratory conditions. However, in
previous studies, the problem was not solved under actual manufacturing conditions
because workpieces in shipyards usually include complicated weld seam structures. The
aforementioned studies did not consider multiple workpieces with various shapes, which
is common in actual manufacturing in the shipyard.

Grid-based algorithms are generally more computationally efficient than other algo-
rithms [21]. Most grid-based algorithms achieve a time complexity of O(n), where n is the
number of spatial points. STING [22], Wave Cluster [23], and CLIQUE [24] are the most
commonly used grid-based algorithms. The aforementioned algorithms emphasize point
clustering more than line segment detection. However, the topic of the present study was
intelligent robotic welding for shipbuilding, which requires segments reconstructed from
complicated spatial points.

For the demand of intelligent shipbuilding, a vision-based method is presented to
achieve autonomous robotic welding for small assemblies of various shapes without pre-
teaching or programming. This method is tested in actual manufacturing data from the
shipyard and demonstrated good tolerance, robustness, and accuracy.

2. Hardware Implementation

This study focuses on autonomous welding of small assemblies. Small assembly refers
to the basic components in shipbuilding, consisting of plates and stiffeners, as in Figure 1.
Most small assemblies are limited within the dimensional size of 4 m × 4 m, and the weight
of 1 ton. All stiffeners need to be double-sided welded onto the plates.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 2 of 20 
 

 

enjoying better flexibility but still requires CAD data or manual input [8]. The vision-
based method could be an optimized solution for intelligent robotic welding because it is 
completely independent of CAD data and routine user inputs [9,10]. Meanwhile, the vi-
sion-based method proposes a great challenge, and splitting it into several small tasks 
could be a better solution [11]. Chen described robot pose control for the weld trajectory 
of a spatial corrugated web sheet based on laser sensing [12]. Additionally, welding robots 
with vision-based weld seam tracking modular are developed, which enjoy better toler-
ance to position deviation than conventional robots [13–18]. Research aiming at weld seam 
recognition are also conducted. Tsai produced welding path plans for golf club heads [19], 
and Zhang reconstructed a single weld seam using structured light [20]. Tsai and Zhang’s 
work successfully recognize a single weld seam in laboratory conditions. However, in 
previous studies, the problem was not solved under actual manufacturing conditions be-
cause workpieces in shipyards usually include complicated weld seam structures. The 
aforementioned studies did not consider multiple workpieces with various shapes, which 
is common in actual manufacturing in the shipyard. 

Grid-based algorithms are generally more computationally efficient than other algo-
rithms [21]. Most grid-based algorithms achieve a time complexity of O(n), where n is the 
number of spatial points. STING [22], Wave Cluster [23], and CLIQUE [24] are the most 
commonly used grid-based algorithms. The aforementioned algorithms emphasize point 
clustering more than line segment detection. However, the topic of the present study was 
intelligent robotic welding for shipbuilding, which requires segments reconstructed from 
complicated spatial points. 

For the demand of intelligent shipbuilding, a vision-based method is presented to 
achieve autonomous robotic welding for small assemblies of various shapes without pre-
teaching or programming. This method is tested in actual manufacturing data from the 
shipyard and demonstrated good tolerance, robustness, and accuracy. 

2. Hardware Implementation 
This study focuses on autonomous welding of small assemblies. Small assembly re-

fers to the basic components in shipbuilding, consisting of plates and stiffeners, as in Fig-
ure 1. Most small assemblies are limited within the dimensional size of 4 m × 4 m, and the 
weight of 1 ton. All stiffeners need to be double-sided welded onto the plates.  

  
(a) (b) 

  
(c) (d) 

Figure 1. Examples of small assemblies in the shipyard. (a,b,d) consist of orthogonal stiffeners, and
(c) consists of parallel stiffeners.
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The hardware of this study is displayed in Figure 2. Welding robots and time-of-flight
(TOF) laser sensors are installed on the gantry. The robot controller and TOF sensors are
connected to the PC by LAN cable.
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The TOF laser sensors cast laser stripes onto small assemblies and collect depth values.
As the gantry moves, the TOF laser sensors scan over small assemblies on rollers, as shown
in Figure 3.
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into a point cloud of the workpiece as the scan parameters are provided.
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Figure 4. Depth-colored grayscale image of small assemblies.

3. Reconstruction of Small Assembly

Reconstruction of small assembly is the precondition for autonomous robotic welding.
The welding robot needs the exact location of each weld seam, which could be calculated
from the stiffener’s centerline. Thus, the section introduces the method adopted in the
reconstruction of all the stiffeners’ center lines from the depth matrix.

3.1. Spatial Points of Stiffeners

To reduce computation cost, the depth matrix is processed using various approaches to
separate profiles from the background. For instance, Zhang used the Canny edge detector
and Tsai calculated the geometric center of profiles [19,20]. In this study, we adopted Tsai’s
method because it preserves profile information of stiffener. In this method, the recognition
of the profile is performed within each scanned point of each laser stripe. Figure 5a shows a
TOF sensor casting a laser stripe onto a workpiece with 2 stiffeners, and Figure 5b displays
scanned points collected by the TOF sensor, in which the convex bumps in the dashed
circle clearly indicate the location of the stiffener profile.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 5 of 20 
 

 

Data from the TOF laser sensor are organized in a depth matrix. The depth matrix is 
visualized in a depth-colored grayscale image, as shown in Figure 4. It could be trans-
formed into a point cloud of the workpiece as the scan parameters are provided. 

 
Figure 4. Depth-colored grayscale image of small assemblies. 

3. Reconstruction of Small Assembly 
Reconstruction of small assembly is the precondition for autonomous robotic weld-

ing. The welding robot needs the exact location of each weld seam, which could be calcu-
lated from the stiffener’s centerline. Thus, the section introduces the method adopted in 
the reconstruction of all the stiffeners’ center lines from the depth matrix. 

3.1. Spatial Points of Stiffeners 
To reduce computation cost, the depth matrix is processed using various approaches 

to separate profiles from the background. For instance, Zhang used the Canny edge de-
tector and Tsai calculated the geometric center of profiles [19,20]. In this study, we 
adopted Tsai’s method because it preserves profile information of stiffener. In this 
method, the recognition of the profile is performed within each scanned point of each laser 
stripe. Figure 5a shows a TOF sensor casting a laser stripe onto a workpiece with 2 stiff-
eners, and Figure 5b displays scanned points collected by the TOF sensor, in which the 
convex bumps in the dashed circle clearly indicate the location of the stiffener profile. 

 
(a) 

TOF Sensor 

Laser strip 
Stiffener

Figure 5. Cont.



J. Mar. Sci. Eng. 2021, 9, 1313 6 of 18J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 6 of 20 
 

 

(b) 

Figure 5. (a) Laser stripe on the small assembly; (b) Profiles in the row of scanned points. 

By extracting the profile centers from each column, the spatial points of stiffeners are 
obtained. Figure 6 gives examples of small assemblies and corresponding spatial points 
in this study. 

 
(a) 

Figure 5. (a) Laser stripe on the small assembly; (b) Profiles in the row of scanned points.

By extracting the profile centers from each column, the spatial points of stiffeners are
obtained. Figure 6 gives examples of small assemblies and corresponding spatial points in
this study.
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3.2. Grid-Based Line Segment Detector

Problems arise as we are trying to reconstruct all the stiffeners from these spatial
points. Inevitable noise interferes with conventional line segment detectors (e.g., Hough
transformation (HT), RANSAC, LSD). For example, line segments detected by the HT from
spatial points of Figure 6b are marked in red in Figure 7. It’s clear that noise results in
missing points and false detection. Deliberately adjusting the parameters of the HT may
alleviate the interference of noise. However, this is impractical in real-time manufacturing
because the entire process is expected to run unsupervised. Moreover, the uncertainty of
stiffeners’ count, multi-density of points, and complex topology of small assemblies add
more difficulties to this work.
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Figure 7. Line segments were detected (in red) from spatial points.

Thus, a new unsupervised approach is required to detect all of the line segments from
spatial points. Here we introduce a grid-based line segment detector. It consists of 5 steps:
sampling, rotation, convolution, deconvolution, and reconstruction, which are shown in
Figure 8.
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Before we take the small assembly in Figure 6b to explain the working process of the
detector, it is necessary to introduce the coordinate system on the workpiece. The X-axis
was parallel to the gantry rails, the Y-axis was perpendicular to the rail. The system origin
is located at the corner of the panel, as shown in Figure 9.
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Figure 9. Coordinate system on the workpiece.

The first step is sampling, which greatly reduces the complexity of the following
computation. All spatial points are projected into a grid consisting of square cells, and this
is also the grid-based line segment detector named by. Marking empty cells as white, and
non-empty cells as black, the grid could be converted to a binary feature map. Figure 10
shows the process of sampling 15,066 points from Figure 6b to a feature map of 78 × 63 cells.
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angle of the axis is given by random sample consensus (RANSAC). RANSAC determines a
single line from these points and calculates its angle from the x-axis, which is denoted by
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θ. The grid axis is then rotated by θ about the origin. Figure 11a shows the results of the
rotation. After rotation, spatial points are re-sampled, as shown in Figure 11b.
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Re-sampled feature map is converted to a matrix {f (i, j)}, where the matrix entries
f (i, j) = 1 for black pixels and f (i, j) = 0 for white pixels. Matrix {f (i, j)} is convoluted to detect
all line segments. Here 2 kernels are designed to detect horizontal and vertical segments.

First, the horizontal segment detector Kh [size: 3 × (2n + 1)] is introduced, where
n equals half the length of the desired horizontal segment. The convolution operation
using Kh differs slightly from the conventional convolution operation. It consists of the
following steps:

1. Move kernel’s center to a black pixel (i,j), i is the row index, j is the column index
2. sum = 0;
3. l = j − n;
4. Check pixels at (i − 1,l), (i,l) and (i + 1,l), increase sum by 1 if any of these pixels is

black;
5. Increase l by 1;
6. Repeat 3. until l = j + n;
7. Convolution output at pixel g(i,j) = 1 if sum is not less than 2n, or g(i,j) = 0;
8. Repeat 1. until all nonzero entries are convoluted.

Figure 12a shows the convolution output of Figure 10b, which removes all vertical
segments. All horizontal segments could be recovered through the deconvolution process,
as shown in Figure 12b. Finally, it helps us extract spatial points to reconstruct stiffeners in
this direction, as shown in Figure 12c.
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Similarly, the vertical segments are detected by introducing kernel Kv. The size of Kv
is (2m + 1) × 3, where m is half the length of the desired vertical segment. The convolution
using Kv is similar to the algorithm used for the horizontal segments. Figure 13 shows the
vertical segment detection process with kernel Kv.
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4. Results and Verification

To investigate the accuracy of the segmented detector, The coordinates of the stiffeners’
free ends were manually measured and compared with the reconstructed position, as
shown in Table 2.

Table 2. Distance between reconstructed and measured positions.

Free End Measured Position
(x, y)

Reconstructed Position
(x, y) Distance (mm)

A (1032, 426) (1043, 452) 28.2
B (3410, 25) (3431, 28) 21.2
C (1682, 1910) (1691, 1919) 12.7
D (2483, 1773) (2489, 1784) 10.8
E (3177, 1650) (3181, 1656) 7.2
F (3725, 798) (3754, 783) 32.6

In this study, the welding robot equips a range sensor for precise location and welding
tracking. Tolerance of stiffener position is expected to be less than 50 mm. As shown
in the last column of Table 2, all of the distances were less than 50 mm, satisfying the
accuracy requirement.

Based on the demands of ship manufacturing, this algorithm is expected to give a
reliable output, regardless of the kernel size or the shapes of the spatial points.

Figure 15a shows spatial points for which the convolutional grid-based clustering
approach was adopted to extract all of the horizontal segments from the noise and
other segments. Figure 15b shows the feature map sampled from these spatial points,
and Figure 15c–e shows the convolution output for different sizes of Kh (n = 3, 4, 5).
Figure 15c–e shows similar clustering numbers and positions of the black pixels, which
indicated that the convolution output was insensitive to the value of n. As the goal of this
step is to determine the number and positions of potential straight segments, this finding
indicated the good robustness and tolerance of the algorithm, which are important for
industrial applications. Thus, all the horizontal segments could be easily extracted using
linear fitting. The results of the extracted points and segments are shown in Figure 15f.
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5. Application

Figure 17 describes a general working flow of autonomous ship small assembly line,
in which the line segment detector plays a crucial role. Data volume from the TOF sensor
ranges from 500 MB to 5 GB, and spatial points number are from 50,000 to 100,000. The grid-
based algorithm contributes to reducing computation complexity, allowing the assembly
line welding to multiply workpieces simultaneously.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 17 of 20 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 16. (a,c,e) Spatial points of small assemblies; (b,d,f) Reconstructed segments of stiffeners. 

5. Application 
Figure 17 describes a general working flow of autonomous ship small assembly line, 

in which the line segment detector plays a crucial role. Data volume from the TOF sensor 
ranges from 500 MB to 5 GB, and spatial points number are from 50,000 to 100,000. The 
grid-based algorithm contributes to reducing computation complexity, allowing the as-
sembly line welding to multiply workpieces simultaneously. 

 
Figure 17. Working flow of autonomous ship small assembly line. 

The line segment detector was implemented on an autonomous ship small assembly 
line in Guangzhou Shipyard International Company Ltd., belonging to China State Ship-
building Corporation Ltd. (CSSC), as shown in Figure 18. The assembly line has been put 
into production since 2019. The vision system guided robots preforming various welding 
jobs without manual teaching or programming. It is also shown that the assembly line is 
capable of mass production, taking the leading position in this field. 

TOF sensor 

Data of workpiece Spatial points 

Grid based line segment detector 

Stiffeners’ position Robot commands 

Welding robot 

Figure 17. Working flow of autonomous ship small assembly line.

The line segment detector was implemented on an autonomous ship small assembly
line in Guangzhou Shipyard International Company Ltd., belonging to China State Ship-
building Corporation Ltd. (CSSC), as shown in Figure 18. The assembly line has been put
into production since 2019. The vision system guided robots preforming various welding
jobs without manual teaching or programming. It is also shown that the assembly line is
capable of mass production, taking the leading position in this field.
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6. Conclusions

In this paper, a grid-based line segment detector was introduced, which was used
to guide robots for autonomous welding in ship-building. Intelligent robotic welding
systems were implemented using the proposed algorithm, and the approach was verified
under actual manufacturing conditions. The contributions of this study are summarized
as follows:

(1) The method presented in this paper demonstrated good robustness. It successfully
clustered the points of stiffeners with complicated structures, despite the interference
of noise. The robustness is a great advantage for industrial applications.

(2) This algorithm was verified under manufacturing conditions and exhibited accuracy
and robustness. Based on this work, intelligent ship small assembly lines were
implemented and put into production in shipyards.

Curved segments, which are also important in ship-building, were not considered
in this study. In future research, a detector for curved segments will be conducted to fill
the gaps of this study. Also, we are planning to extend our research to more cases in
shipbuilding, like welding jobs for ship blocks, reversing modeling of hull structures, etc.
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