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Abstract: Rosette-type diffusers are becoming popular nowadays for discharging wastewater efflu-

ents. Effluents are known as buoyant jets if they have a lower density than the receiving water, and 

they are often used for municipal and desalination purposes. These buoyant effluents discharged 

from rosette-type diffusers are known as rosette-type multiport buoyant discharges. Investigating 

the mixing properties of these effluents is important for environmental impact assessment and op-

timal design of the diffusers. Due to the complex mixing and interacting processes, most of the tra-

ditional simple methods for studying free single jets become invalid for rosette-type multiport buoy-

ant discharges. Three-dimensional computational fluid dynamics (3D CFD) techniques can satisfac-

torily model the concentration fields of rosette-type multiport buoyant discharges, but these tech-

niques are typically computationally expensive. In this study, a new technique of simulating rosette-

type multiport buoyant discharges using combined 3D CFD and multigene genetic programming 

(MGGP) techniques is developed. Modeling the concentration fields of rosette-type multiport buoy-

ant discharges using the proposed approach has rarely been reported previously. A validated nu-

merical model is used to carry out extensive simulations, and the generated dataset is used to train 

and test MGGP-based models. The study demonstrates that the proposed method can provide rea-

sonable predictions and can significantly improve the prediction efficiency. 

Keywords: numerical modeling; computational fluid dynamics; multigene genetic programming; 

rosette-type diffusers; buoyant discharges 

 

1. Introduction 

Estimating the flow and mixing processes of effluent discharges is crucial for reliable 

environmental impact assessments, sound design of treatment and outfall systems, and 

proper disposal of wastewater discharges [1–3]. Effluents are known as buoyant jets if 

they have a lower density than the receiving water, and they are often used for municipal 

and desalination purposes [4–6]. A key factor influencing the mixing processes of efflu-

ents is the diffuser type. In recent decades, rosette-type multiport diffusers have become 

popular due to their merits of being cheaper and less space-demanding than traditional 

diffusers (e.g., single-port diffusers) [7–9]. However, because of the complex mechanisms, 

the practice of modeling the mixing processes of rosette-type multiport diffusers has not 

yet been well established and requires further investigation. 

In recent years, complementing the experimental studies [8–12], the simulation of the 

mixing processes of jets and plumes using fully physics-based computational fluid dy-

namics models has become popular because of the improvements in computing capabili-
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ties [13–18]. One shortcoming of the CFD approach is that it typically requires heavy com-

puting resources and long simulation time, and it is thus helpful to propose a new tech-

nique that can make predictions faster with lower requirements for computing resources. 

Complementing the CFD approach, machine learning techniques have been demon-

strated capable of analyzing water-related phenomenon [4,7,19]. A key advantage of us-

ing these machine learning techniques compared to traditional regression-based methods 

is that it does not require a predefined model structure, and is thus able to avoid the errors 

caused by the model structure assumptions and to detect hidden relationships between 

input and output variables. Thus, machine learning-based models are typically superior 

to empirical equations derived using traditional regression-based methods. Compared to 

CFD models, trained machine learning-based models have been found to be much more 

efficient for some problems [20–23]. However, the training process for a machine learning 

technique typically requires a large dataset, which often does not exist, limiting its wide-

spread usage in water-related applications. 

The MGGP technique has previously been applied to modeling other types of dis-

charges, but the mixing mechanisms for different types of discharges are significantly dif-

ferent, and thus the modeling of rosette-type multiport discharges requires further inves-

tigation. To the best of the authors’ knowledge, this is the first time that a combined 3D 

CFD and MGGP technique is proposed to develop models for rosette-type multiport 

buoyant discharges. It should be emphasized that most previous studies on the applica-

tions of machine learning techniques to wastewater jets only modeled some characteristics 

parameters, and this is believed to be the first time that entire concentration fields are 

modeled using a machine learning technique. 

This study aims to develop a new technique of simulating rosette-type multiport 

buoyant discharges using combined three-dimensional computational fluid dynamics 

and multigene genetic programming techniques. The mixing processes of a buoyant jet 

discharged from a rosette-type multiport diffuser is first simulated using a CFD model. 

The CFD model is then validated against experimental data and employed to carry out 

additional computations to enrich the dataset. The extended dataset is then utilized to 

train a machine learning model that can predict the normalized concentration at different 

locations. In this study, the CFD model is established within the framework of Open-

FOAM (Open Field Operation and Manipulation), and the machine learning models are 

developed using the multigene genetic programming (MGGP) approach [24,25]. A key 

outcome of the work is a well-trained machine learning-based model. The accuracy of the 

developed machine learning-based model is comparable to the CFD model for the studied 

applications, but it can provide predictions in seconds while a CFD model needs hours or 

even days to complete a simulation. Most of the previous CFD studies focused on the 

mixing processes of jets aimed at developing and evaluating the performance of different 

models, whereas the present CFD simulations are used to enrich the dataset. 

2. Materials and Methods 

2.1. The 3D CFD Model 

The governing equations for the CFD model are the Reynolds-averaged Navier–

Stokes equations for mixing two fluids, which can be written as [26,27] 

0  U  (1)
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Where t , U  and   represent time, velocity, and density, respectively. The varia-

bles rgh  and h  represent the static pressure minus hydraulic pressure and the height 

of the fluid column, respectively. The variable  ,   and t  are the volume fraction 

of the fluids, the dynamic viscosity, and turbulent viscosity, respectively. The symbol T  

is the viscous stresses tensor. The subscript i  indicates either the jet or the ambient fluid. 

For example, 1  represents the density of the jet, and 2  represents the density of the 

ambient fluid. 

The volume fraction of the fluids,  , in mixing problems can be calculated using a 

transport equation [5], which can be expressed as 

 1
1 1

t
ab

C

D
t S


 

  
          

U  (7)

where abD , t , and cs  represent the molecular diffusivity, the turbulent viscosity, 

and the turbulent Schmidt number, respectively. 

Regarding turbulence modeling, the previous study reported by Yan et al. [6] demon-

strated that the RNG (renormalization group) k-ε turbulence model outperformed the 

standard k-ε model without significantly increasing the computational costs, and thus the 

RNG k-ε turbulence model was used in this study. Compared with the other three differ-

ent turbulence closures, including the standard k-ε, standard k-omega, and k-omega shear 

stress transport (SST) models, the RNG k-ε model has been found by Yan et al. [5] to be 

the most accurate for multiple buoyant jets. Therefore, in this research, the RNG k-ε model 

was adopted. The standard values of the model coefficients were used in this study, and 

they are summarized in Table 1. 

Table 1. The values of the model constants. 

σk σε c1ε c2ε cμ  η0 β  

0.71942 0.71942 1.42 1.68 0.0845 4.38 0.012 

2.2. The MGGP Technique 

Genetic programming is a machine learning technique that can use an evolutionary 

process to relate input and output variables. Different from some other “black-box” ma-

chine learning approaches, genetic programming techniques can provide explicit models, 

and thus the developed models can be readily retyped and used in other programs. Ge-

netic programming has already been successfully employed in water-related applications, 

such as the prediction of riprap stone size under overtopping flow and the prediction of 

local scour depth downstream of sluice gates [28,29]. The MGGP technique is a new ad-

vancement of the genetic programming technique and was used for the present cases. The 

major difference between traditional genetic programming and MGGP techniques is the 

number of genes in a chromosome; there is only one gene in a traditional genetic program-

ming chromosome, whereas there can be multiple genes in an MGGP chromosome. The 

terms in a gene are often nonlinear, but the genes in an MGGP chromosome are linearly 
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combined. The MGGP technique generates an initial set of models at the beginning of the 

evolutionary process and then improves the models by processes such as mutation, re-

production, and crossover. The technique finally terminates the evolutionary process 

when either the number of generations or the computational time reaches a pre-defined 

value. More information and the advantages of the MGGP technique can be found in pre-

vious papers [4,7,19]. 

2.3. The Combined CFD–MGGP Method 

The first step of the proposed modeling approach was to establish a well-validated 

CFD model. This part of the work has already been completed by the authors in a previous 

study [6], in which a CFD model was developed in OpenFOAM and validated against 

experimental data. 

The validated CFD model is then used to perform additional simulations to enrich 

the dataset. One of the most important parameters influencing the mixing properties of 

wastewater effluents is the densimetric Froude number, which is a function of the densi-

ties of the fluids, the port diameter, and the initial velocity. In this study, 20 different ad-

ditional cases were considered, which have different values of ambient water density. As 

the CFD model is physics-based, it is deemed reasonable to assume that the accuracy of 

the numerical predictions is acceptable. The enriched dataset is then employed to develop 

machine learning-based models using the MGGP technique. The dataset has four varia-

bles: the Fr number (the ratio of inertial force to viscous force), the x (horizontal) and y 

(vertical) coordinates, and the normalized concentration. The Fr number, x, and y coordi-

nates were defined as the features (input variables), while the normalized concentration 

was selected as the output variable. 

The length of the data matrix was (4040, 4). The dataset was randomly divided into 

two parts: 80% of the data were used for model training, and the remaining 20% of the 

data were used for model testing. In order to develop MGGP-based models for the con-

centration field of a rosette buoyant jet, the Fr number, the x and y coordinates were de-

fined as input variables, and the normalized concentration was used as output variable. 

The MGGP training process was performed using GPTIPS2 (Genetic Programming 

Toolbox for Multigene Symbolic Regression 2) [25], which is an open-source MATLAB 

(MathWorks, Natick, USA) code. Sensitivity analyses were performed to determine the 

configurations of the training process. The number of generations was set at 1000, and 

each generation had a population size of 500. The tournament size, probability of the Pa-

reto tournament, and elite fraction were set at 10, 0.3, and 0.3, respectively. The maximum 

number of genes was set at 20, and each gene had a maximum depth of trees of 20. 

3. Results 

3.1. CFD Results 

The governing equations were solved using a solver named “twoLiquidMixing-

Foam” on the open-source CFD platform OpenFOAM. In a pioneering study, a CFD 

model for rosette multiple buoyant jets has been validated by Yan et al. [6]. The computa-

tional domain and boundary conditions were primarily set according to the available ex-

perimental configurations [11]. The diffuser consisted of six ports, and the diameter of the 

ports was 0.0044 m. The study area was symmetric, and it was thus divided into 12 sub-

domains, as illustrated in Figure 1. The model only simulated 1 of the 12 sub-domains and 

used the “symmetric” boundary condition available in OpenFOAM. The boundary con-

ditions at the top surface and the outer boundaries were set to inlet–outlet, which is similar 

to the zero-gradient open boundary condition, but it will switch to the fixed-value bound-

ary condition when there is any backward flow. The no-slip boundary condition with the 

standard wall function was employed for the bottom patch. An area of 0.06 m × 0.06 m 

near the jet port was selected as the area of interest because initial dilution of wastewater 

effluents was of the most significant importance. In the figures, the x coordinates ranged 
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from 0.03 m to 0.09 m, and the y coordinates ranged from 0.13 m to 0.19 m. The results can 

be mirrored to obtain the results for the entire study domain using the software ParaView 

(Sandia National Laboratory, New Mexico, USA) and Tecplot (Tecplot Inc, Bellevue, 

USA). This approach ignores the swirling effects near the planes of the symmetry, but 

sensitivity studies have proved that these effects were minor, and simulating only one 

sub-domain can significantly reduce the computational costs. The initial values of k and ε 

were calculated based on the jet diameter, initial velocity, and initial density, and their 

values were 0.000246 m2/s2 and 0.002061 m2/s2, respectively. The initial velocity and initial 

fraction of the fluid for discharges were both set at zero. The computational mesh was 

generated using the open-source software Salome. An unstructured computation mesh 

with hexahedral cells with local refinements near the port was employed for domain dis-

cretization. Using the method reported by Yan and Mohammadian [2,13], mesh sensitivity 

analyses were performed. A relatively coarse grid resolution was firstly utilized, and then 

finer grids were tried until convergence criterion was met. In the final mesh, the smallest 

grid size was 0.001 m, and the largest one was 0.005 m. 

 

Figure 1. Schematic of a rosette-type diffuser (a), the sub-domains (b), and the coordinate setup 

(c). 

The data of rosette-type buoyant jets obtained by experiment [11] and simulation 

were shown in Figure 2. In this figure, the comparison of the measured and simulated 

trajectories showed that the simulated data were in good agreement with the measured 

data. The root-mean-squared error (RMSE) for the normalized concentration was 0.25, the 

coefficient of determination (R2) was 0.98, and the normalized root-mean-squared error 

(NRMSE) was 0.04. Therefore, the performance of the CDF model is believed to be satis-

factory, and the simulated data were assumed to be actual data. 
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Figure 2. Comparison of the experimental and simulated results. The dots = the experimental data 

[1]; the line = the numerical predictions. 

Yan et al. [6] have simulated rosette buoyant jets with different jet angles and evalu-

ated the influences of the jet angles. Another major variable affecting the mixing proper-

ties of buoyant jets is the densimetric Froude number (Fr). In this study, the validated CFD 

model for rosette multiple buoyant jets was employed to perform simulations for 20 ad-

ditional cases with different values of Fr. The values of ambient water density were within 

the reasonable ranges and determined using the “rand” function in MATLAB, and they 

led to Fr numbers ranging from 5.750 to 24.676. These values were randomly determined 

to reduce the regularity of the dataset. The intervals between the values of Fr number in 

different cases were small, so the current number of cases was deemed sufficient for train-

ing a machine learning-based model. A default value of 1 second was used for the com-

putational time step, but the model automatically adjusted it based on the Courant num-

ber, which was of the value of 1. All the simulations were run up to 30 seconds, which 

was determined based on a sensitivity analysis; namely, longer computational duration 

did not significantly change the results. The detailed parameters are summarized in Table 

2. 
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Table 2. Parameters for the additional computations. 

Cases 
ρj 

(kg/m3) 

ρa 

(kg/m3) 

∆ρ 

(kg/m3) 

g' 

(m/s2) 

D 

(m) 

U 

(m/s) 

Fr 

(—） 

Case 01 997 998.3 1.3 0.013 0.0044 0.185 24.676 

Case 02 997 999.5 2.5 0.025 0.0044 0.185 17.805 

Case 03 997 1000.2 3.2 0.031 0.0044 0.185 15.743 

Case 04 997 1001.1 4.1 0.040 0.0044 0.185 13.914 

Case 05 997 1001.3 4.3 0.042 0.0044 0.185 13.588 

Case 06 997 1001.4 4.4 0.043 0.0044 0.185 13.433 

Case 07 997 1002.5 5.5 0.054 0.0044 0.185 12.022 

Case 08 997 1004.8 7.8 0.076 0.0044 0.185 10.107 

Case 09 997 1005.9 8.9 0.087 0.0044 0.185 9.467 

Case 10 997 1009.0 12.0 0.117 0.0044 0.185 8.165 

Case 11 997 1009.9 12.9 0.125 0.0044 0.185 7.879 

Case 12 997 1013.5 16.5 0.160 0.0044 0.185 6.979 

Case 13 997 1014.4 17.4 0.168 0.0044 0.185 6.799 

Case 14 997 1020.2 23.2 0.223 0.0044 0.185 5.905 

Case 15 997 1021.0 24.0 0.231 0.0044 0.185 5.808 

Case 16 997 1021.5 24.5 0.235 0.0044 0.185 5.750 

Case 17 997 1023.1 26.1 0.250 0.0044 0.185 5.575 

Case 18 997 1023.9 26.9 0.258 0.0044 0.185 5.494 

Case 19 997 1024.3 27.3 0.261 0.0044 0.185 5.454 

Case 20 997 1025.9 28.9 0.276 0.0044 0.185 5.305 

Note: ρj = the initial density of the effluent; ρa = the initial density of the ambient water; ∆ρ = ρa – 

ρj; g’ = the reduced gravity; D = the port diameter of the diffuser; U = the initial velocity of the dis-

charge; Fr = densimetric Froude number. 

The normalized concentrations (defined by the concentration, C, divided by the ini-

tial jet concentration, C0) at the central plane (indicated by the dashed line in Figure 1b) 

for different cases obtained by the CFD model are presented in Figure 3. As can be seen, 

the differences in the mixing properties for different scenarios were very obvious, demon-

strating that the influences of Fr are significant. In a non-buoyant case, the jets symmetri-

cally spread in the vertical direction. In Case 01, the density of the effluent was slightly 

smaller than the ambient water, so the jet was bent slightly upward due to the buoyancy 

effect. With smaller values of Fr, the outlines of the buoyant jets became more obvious. In 

the cases with a smaller value of Fr, the density differences between the effluents and 

ambient water were greater, thus the effects of buoyancy were greater. Therefore, in Cases 

02~08, the jets were less significantly bent upward, and buoyant jets can be clearly seen in 

Cases 09~20. The numerical data were then extracted using ParaView and MATLAB, 

which can be used for training and testing the MGGP-based models. 
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Figure 3. The normalized concentration field at the central plane for different cases obtained by the CFD model. 
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3.2. Results Obtained by the Combined Method 

In the dataset, the mean, minimum, maximum, and median values for Fr were 9.993, 

5.305, 24.676, and 8.022, respectively. The standard deviation, variance, kurtosis, and 

skewness were 5.079, 25.801, 4.109, and 1.267, respectively. The mean, minimum, maxi-

mum, and median values for normalized concentration were 0.33, 0, 1, and 0.28, respec-

tively. The standard deviation, variance, kurtosis, and skewness of normalized concentra-

tion were 0.28, 0.08, 2.09, and 0.49, respectively. This dataset was then used to train and 

test MGGP-based models. A total of 3232 data were assigned into the training dataset, and 

the remaining data were assigned into the testing dataset. The mean values for Fr and 

normalized concentration in the training dataset were 9.935 and 0.33, respectively; those 

in the testing dataset were 10.225 and 0.33, respectively. 

Each generation in the evolutionary process generated 500 models, and the perfor-

mances of these models varied significantly. The fitness of the MGGP models in each evo-

lutionary step of the model training process was plotted in Figure 4. The fitness of the 

models was quantified by the RMSE values. In the earlier generations, the performance of 

the models was relatively poor. The mean RMSE value was approximately 0.3. The overall 

quality of the models significantly improved with the processes of mutation, crossover, 

and reproduction. At the generation of about 300, the mean fitness went below 0.15. As 

can be seen, the model errors did not change much after about 300 generations, implying 

that the performance cannot be substantially improved by running further steps. To be 

conservative, the training processes were run up to 1000 generations. 

 

Figure 4. The fitness of the MGGP models in each evolutionary step: (a) the best fitness, and (b) the mean fitness and 

standard deviations. 

The final generation contained 500 models, and these models had different levels of 

accuracy and simplicity. The present study used the Pareto-optimal approach to figure 

out the best model. The input variables (Fr, x, and y) were then supplied, and the best 

model was employed to predict the normalized concentration for each case. The normal-

ized concentration at different locations for different cases obtained by the best model was 

utilized to re-construct the normalized concentration field at the central plane, which is 
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shown in Figure 5. The concentration fields predicted by the combined approach did not 

perform very well in predicting the core of the jets in the first few cases. However, in 

general, the predictions matched the physics-based data very well, especially for the in-

fluence area of the jets, which is one of the most important factors in environmental impact 

assessments. The jets were bent slightly upward for Cases 01~08. The outlines of the buoy-

ant jets became more obvious in the cases with smaller values of Fr. These general obser-

vations were consistent with those obtained by the physics-based model. 

 

Figure 5. The normalized concentration field at the central plane for different cases obtained by the MGGP model. 
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The spatial distribution of the normalized concentration was also close to that pro-

vided by the physics-based model, but the results were less smooth, and there were a few 

regions with unexpected high values of normalized concentration. This phenomenon re-

vealed a weakness of data-driven models: the predictions may not follow strict physical 

principles. However, it is reasonable to expect that the model can be continuously im-

proved with more datasets with higher resolution and larger size. Nevertheless, the per-

formance of the model obtained in this study was regarded as satisfactory. 

The predictions for the training and testing datasets were further compared in Figure 

6, and RMSE and R2 values were also calculated. In this figure, the results obtained by the 

physics-based model were referred to as the actual data, and those obtained by the com-

bined model were called predicted data. The 1:1 line was also plotted in the figure. If a 

data point was located higher than the 1:1 line, the combined model over-estimated the 

data, and vice versa. As can be seen in the figure, most of the data points were located 

close to the 1:1 line, demonstrating the overall good performance of the combined model. 

The spatial distribution of the data points was relatively uniform, indicating that the 

model did not tend to over- or under-predict the data. To further quantify the perfor-

mance of the prediction, the RMSE and R2 values for the training and datasets were cal-

culated. RMSE and R2 values for the training dataset were 0.087 and 0.903, respectively. 

Those for the testing dataset were 0.088 and 0.902, respectively. The RMSE values were 

low and the R2 values were high, so the accuracy of the model predictions was acceptable. 

The fitness for the testing dataset was close to the training dataset, indicating that the risk 

of over-fitting was low. 

 

Figure 6. Comparison of the actual and predicted normalized concentration: (a) training dataset, and (b) testing dataset. 

4. Discussion 

The primary contribution of this study is the proposed hybrid method of modeling 

rosette-type multiport buoyant discharges using combined 3D CFD and MGGP tech-

niques. A key factor hindering the wide usage of 3D CFD techniques is the heavy compu-

tational costs. Although it is acceptable to validate a model and perform several compu-

tations, it is impractical to use a 3D CFD model to perform extensive calculations to check 

the influences of some parameters. Using the proposed approach, a new model was de-

veloped using the CFD data. Using the original CFD model to simulate a new case would 

take hours or even days, but using the developed MGGP-based model to perform a cal-

culation would only take a few seconds. Although interpolation techniques may also be 

capable of providing satisfactory predictions for the current cases, the MGGP approach is 

believed to be more promising because 1) it can produce predictions by simply using the 
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equations, unlike interpolation techniques, which always require known values; and 2) 

the developed model can be readily extended to incorporate other factors. The present 

study only considered the influence of the Fr number because it primarily aimed to eval-

uate the proposed approach, but the model can be continuously extended in future studies 

to include more parameters. 

Another factor limiting the application of 3D CFD models in practical water-related 

projects is the high requirements of disk storage. The CFD outputs include the volume 

fraction, the turbulent kinetic energy, turbulent energy dissipation rate, eddy viscosity, 

pressure, and velocity at each time step. However, in this approach, due to the fast calcu-

lation velocity, it is unnecessary to save the predicted data in the simulation progress. The 

size of the MATLAB script file for the final model was only 4 KB in the present study. 

Therefore, the proposed approach can substantially reduce the storage requirements of 

traditional CFD methods without significantly impacting the model accuracy. 

It is acknowledged that artificial intelligence modeling typically requires a large 

amount of data for model training, and these methods are very sensitive to the number of 

input data. However, in the present study, only 20 additional simulations were per-

formed, which provided a data matrix with a dimension of 4040 rows and 4 columns. 

However, the comparisons demonstrated that the limited number of data have provided 

a reasonable model in this study. The reasons can be summarized as follows: first, the 

combined effects of the input variables have been represented by the Fr number, and thus 

the number of features has been substantially reduced, making it much easier for MGGP 

to figure out the relationships between input and output variables; second, the typical 

range of the Fr number was narrow, so the intervals of Fr between different cases were 

actually sufficiently small; third, the values for different cases were determined randomly, 

and thus the regularity of the dataset has been reduced, which further improved the data 

quality. However, the predictions at some locations were notably scattered. Firstly, ma-

chine learning techniques make predictions from the data for model training instead of 

mechanisms, and thus it is quite common that the predictions do not follow strict physical 

principles. Secondly, no additional data were provided in this study, as the overall per-

formance of the model was believed to be satisfactory, but the limited number of data has 

definitely lowered the prediction accuracy at some locations. Thus, a larger size of dataset 

would be required if a higher-performance model were desired. 

5. Conclusions 

The present study proposed a novel method of modeling rosette-type multiport 

buoyant discharges using combined 3D CFD and MGGP techniques. A total of 20 cases 

was simulated using a validated CFD model. Overall, the agreement between the predic-

tions provided by the combined model and the physics-based data was acceptable. The 

jets were bent slightly upward for cases with larger values of Fr number. The outlines of 

the buoyant jets became more obvious in the cases with smaller values of Fr, which was 

consistent with the observations based on the physics-based results. The RMSE and R2 

values for the training dataset were 0.087 and 0.903, respectively. Those for the testing 

dataset were 0.088 and 0.902, respectively. Therefore, although the predicted concentra-

tion fields exhibited some unrealistic values, the RMSE values were low and the R2 values 

were high, and thus the overall performance of the model was deemed satisfactory. 

Using the original CFD model to simulate a new case would take hours or even days, 

and would require larger storage space. In contrast, the proposed approach only took a 

few seconds to perform calculations for a new case, and it used less memory. What is 

more, this is believed to be the first time that the entire concentration fields were modeled 

using a combined approach of CFD and machine learning techniques. This study demon-

strated the capability of the proposed approach in replicating the concentration fields for 

rosette buoyant jets. The performance of the combined models can be further improved 

or extended when more data are available. 
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