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Abstract: Rosette-type diffusers are becoming popular nowadays for discharging wastewater efflu-
ents. Effluents are known as buoyant jets if they have a lower density than the receiving water, and
they are often used for municipal and desalination purposes. These buoyant effluents discharged
from rosette-type diffusers are known as rosette-type multiport buoyant discharges. Investigating the
mixing properties of these effluents is important for environmental impact assessment and optimal
design of the diffusers. Due to the complex mixing and interacting processes, most of the traditional
simple methods for studying free single jets become invalid for rosette-type multiport buoyant
discharges. Three-dimensional computational fluid dynamics (3D CFD) techniques can satisfactorily
model the concentration fields of rosette-type multiport buoyant discharges, but these techniques
are typically computationally expensive. In this study, a new technique of simulating rosette-type
multiport buoyant discharges using combined 3D CFD and multigene genetic programming (MGGP)
techniques is developed. Modeling the concentration fields of rosette-type multiport buoyant dis-
charges using the proposed approach has rarely been reported previously. A validated numerical
model is used to carry out extensive simulations, and the generated dataset is used to train and test
MGGP-based models. The study demonstrates that the proposed method can provide reasonable
predictions and can significantly improve the prediction efficiency.

Keywords: numerical modeling; computational fluid dynamics; multigene genetic programming;
rosette-type diffusers; buoyant discharges

1. Introduction

Estimating the flow and mixing processes of effluent discharges is crucial for reliable
environmental impact assessments, sound design of treatment and outfall systems, and
proper disposal of wastewater discharges [1-3]. Effluents are known as buoyant jets if they
have a lower density than the receiving water, and they are often used for municipal and
desalination purposes [4—6]. A key factor influencing the mixing processes of effluents is the
diffuser type. In recent decades, rosette-type multiport diffusers have become popular due
to their merits of being cheaper and less space-demanding than traditional diffusers (e.g.,
single-port diffusers) [7-9]. However, because of the complex mechanisms, the practice of
modeling the mixing processes of rosette-type multiport diffusers has not yet been well
established and requires further investigation.

In recent years, complementing the experimental studies [8-12], the simulation of
the mixing processes of jets and plumes using fully physics-based computational fluid
dynamics models has become popular because of the improvements in computing capa-
bilities [13-18]. One shortcoming of the CFD approach is that it typically requires heavy
computing resources and long simulation time, and it is thus helpful to propose a new tech-
nique that can make predictions faster with lower requirements for computing resources.
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Complementing the CFD approach, machine learning techniques have been demonstrated
capable of analyzing water-related phenomenon [4,7,19]. A key advantage of using these
machine learning techniques compared to traditional regression-based methods is that it
does not require a predefined model structure, and is thus able to avoid the errors caused
by the model structure assumptions and to detect hidden relationships between input and
output variables. Thus, machine learning-based models are typically superior to empirical
equations derived using traditional regression-based methods. Compared to CFD models,
trained machine learning-based models have been found to be much more efficient for
some problems [20-23]. However, the training process for a machine learning technique
typically requires a large dataset, which often does not exist, limiting its widespread usage
in water-related applications.

The MGGP technique has previously been applied to modeling other types of dis-
charges, but the mixing mechanisms for different types of discharges are significantly
different, and thus the modeling of rosette-type multiport discharges requires further
investigation. To the best of the authors” knowledge, this is the first time that a combined
3D CFD and MGGP technique is proposed to develop models for rosette-type multiport
buoyant discharges. It should be emphasized that most previous studies on the applica-
tions of machine learning techniques to wastewater jets only modeled some characteristics
parameters, and this is believed to be the first time that entire concentration fields are
modeled using a machine learning technique.

This study aims to develop a new technique of simulating rosette-type multiport
buoyant discharges using combined three-dimensional computational fluid dynamics
and multigene genetic programming techniques. The mixing processes of a buoyant jet
discharged from a rosette-type multiport diffuser is first simulated using a CFD model.
The CFD model is then validated against experimental data and employed to carry out
additional computations to enrich the dataset. The extended dataset is then utilized to
train a machine learning model that can predict the normalized concentration at different
locations. In this study, the CFD model is established within the framework of OpenFOAM
(Open Field Operation and Manipulation), and the machine learning models are developed
using the multigene genetic programming (MGGP) approach [24,25]. A key outcome of
the work is a well-trained machine learning-based model. The accuracy of the developed
machine learning-based model is comparable to the CFD model for the studied applications,
but it can provide predictions in seconds while a CFD model needs hours or even days to
complete a simulation. Most of the previous CFD studies focused on the mixing processes
of jets aimed at developing and evaluating the performance of different models, whereas
the present CFD simulations are used to enrich the dataset.

2. Materials and Methods
2.1. The 3D CFD Model

The governing equations for the CFD model are the Reynolds-averaged Navier-Stokes
equations for mixing two fluids, which can be written as [26,27]
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where t, U and p represent time, velocity, and density, respectively. The variables p,, and
h represent the static pressure minus hydraulic pressure and the height of the fluid column,
respectively. The variable «, y and y; are the volume fraction of the fluids, the dynamic
viscosity, and turbulent viscosity, respectively. The symbol T is the viscous stresses tensor.
The subscript i indicates either the jet or the ambient fluid. For example, p; represents the
density of the jet, and p, represents the density of the ambient fluid.

The volume fraction of the fluids, «, in mixing problems can be calculated using a
transport equation [5], which can be expressed as

%—FV-(UM) =V <<Dab+vt)v“1> @)

Sc
where D, 14, and s; represent the molecular diffusivity, the turbulent viscosity, and the
turbulent Schmidt number, respectively.

Regarding turbulence modeling, the previous study reported by Yan et al. [6] demon-
strated that the RNG (renormalization group) k-¢ turbulence model outperformed the
standard k-e¢ model without significantly increasing the computational costs, and thus the
RNG k-¢ turbulence model was used in this study. Compared with the other three different
turbulence closures, including the standard k-¢, standard k-omega, and k-omega shear
stress transport (SST) models, the RNG k-¢ model has been found by Yan et al. [5] to be the
most accurate for multiple buoyant jets. Therefore, in this research, the RNG k-¢ model
was adopted. The standard values of the model coefficients were used in this study, and
they are summarized in Table 1.

Table 1. The values of the model constants.

ok O C1e e Cu Mo B
0.71942 0.71942 1.42 1.68 0.0845 438 0.012

2.2. The MGGP Technique

Genetic programming is a machine learning technique that can use an evolutionary
process to relate input and output variables. Different from some other “black-box” ma-
chine learning approaches, genetic programming techniques can provide explicit models,
and thus the developed models can be readily retyped and used in other programs. Ge-
netic programming has already been successfully employed in water-related applications,
such as the prediction of riprap stone size under overtopping flow and the prediction
of local scour depth downstream of sluice gates [28,29]. The MGGP technique is a new
advancement of the genetic programming technique and was used for the present cases.
The major difference between traditional genetic programming and MGGP techniques
is the number of genes in a chromosome; there is only one gene in a traditional genetic
programming chromosome, whereas there can be multiple genes in an MGGP chromosome.
The terms in a gene are often nonlinear, but the genes in an MGGP chromosome are linearly
combined. The MGGP technique generates an initial set of models at the beginning of
the evolutionary process and then improves the models by processes such as mutation,
reproduction, and crossover. The technique finally terminates the evolutionary process
when either the number of generations or the computational time reaches a pre-defined
value. More information and the advantages of the MGGP technique can be found in
previous papers [4,7,19].

2.3. The Combined CFD-MGGP Method

The first step of the proposed modeling approach was to establish a well-validated
CFD model. This part of the work has already been completed by the authors in a previous
study [6], in which a CFD model was developed in OpenFOAM and validated against
experimental data.
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The validated CFD model is then used to perform additional simulations to enrich
the dataset. One of the most important parameters influencing the mixing properties of
wastewater effluents is the densimetric Froude number, which is a function of the densities
of the fluids, the port diameter, and the initial velocity. In this study, 20 different additional
cases were considered, which have different values of ambient water density. As the
CFD model is physics-based, it is deemed reasonable to assume that the accuracy of the
numerical predictions is acceptable. The enriched dataset is then employed to develop
machine learning-based models using the MGGP technique. The dataset has four variables:
the Fr number (the ratio of inertial force to viscous force), the x (horizontal) and y (vertical)
coordinates, and the normalized concentration. The Fr number, X, and y coordinates were
defined as the features (input variables), while the normalized concentration was selected
as the output variable.

The length of the data matrix was (4040, 4). The dataset was randomly divided
into two parts: 80% of the data were used for model training, and the remaining 20% of
the data were used for model testing. In order to develop MGGP-based models for the
concentration field of a rosette buoyant jet, the Fr number, the x and y coordinates were
defined as input variables, and the normalized concentration was used as output variable.
The MGGP training process was performed using GPTIPS2 (Genetic Programming Toolbox
for Multigene Symbolic Regression 2) [25], which is an open-source MATLAB (MathWorks,
Natick, USA) code. Sensitivity analyses were performed to determine the configurations of
the training process. The number of generations was set at 1000, and each generation had
a population size of 500. The tournament size, probability of the Pareto tournament, and
elite fraction were set at 10, 0.3, and 0.3, respectively. The maximum number of genes was
set at 20, and each gene had a maximum depth of trees of 20.

3. Results
3.1. CFD Results

The governing equations were solved using a solver named “twoLiquidMixingFoam’
on the open-source CFD platform OpenFOAM. In a pioneering study, a CFD model for
rosette multiple buoyant jets has been validated by Yan et al. [6]. The computational domain
and boundary conditions were primarily set according to the available experimental
configurations [11]. The diffuser consisted of six ports, and the diameter of the ports was
0.0044 m. The study area was symmetric, and it was thus divided into 12 sub-domains, as
illustrated in Figure 1. The model only simulated 1 of the 12 sub-domains and used the
“symmetric” boundary condition available in OpenFOAM. The boundary conditions at the
top surface and the outer boundaries were set to inlet-outlet, which is similar to the zero-
gradient open boundary condition, but it will switch to the fixed-value boundary condition
when there is any backward flow. The no-slip boundary condition with the standard wall
function was employed for the bottom patch. An area of 0.06 m x 0.06 m near the jet port
was selected as the area of interest because initial dilution of wastewater effluents was of
the most significant importance. In the figures, the x coordinates ranged from 0.03 m to
0.09 m, and the y coordinates ranged from 0.13 m to 0.19 m. The results can be mirrored to
obtain the results for the entire study domain using the software ParaView (Sandia National
Laboratory, New Mexico, USA) and Tecplot (Tecplot Inc, Bellevue, USA). This approach
ignores the swirling effects near the planes of the symmetry, but sensitivity studies have
proved that these effects were minor, and simulating only one sub-domain can significantly
reduce the computational costs. The initial values of k and ¢ were calculated based on
the jet diameter, initial velocity, and initial density, and their values were 0.000246 m? /s>
and 0.002061 m?/s?, respectively. The initial velocity and initial fraction of the fluid for
discharges were both set at zero. The computational mesh was generated using the open-
source software Salome. An unstructured computation mesh with hexahedral cells with
local refinements near the port was employed for domain discretization. Using the method
reported by Yan and Mohammadian [2,13], mesh sensitivity analyses were performed.
A relatively coarse grid resolution was firstly utilized, and then finer grids were tried until
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convergence criterion was met. In the final mesh, the smallest grid size was 0.001 m, and
the largest one was 0.005 m.

(©)

Plane of
symmetry

Sub-domain

Figure 1. Schematic of a rosette-type diffuser (a), the sub-domains (b), and the coordinate setup (c).

The data of rosette-type buoyant jets obtained by experiment [11] and simulation
were shown in Figure 2. In this figure, the comparison of the measured and simulated
trajectories showed that the simulated data were in good agreement with the measured
data. The root-mean-squared error (RMSE) for the normalized concentration was 0.25,
the coefficient of determination (R2) was 0.98, and the normalized root-mean-squared
error (NRMSE) was 0.04. Therefore, the performance of the CDF model is believed to be
satisfactory, and the simulated data were assumed to be actual data.

40

30 | e Experimental
— Numerical
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Figure 2. Comparison of the experimental and simulated results. The dots = the experimental
data [1]; the line = the numerical predictions.
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Yan et al. [6] have simulated rosette buoyant jets with different jet angles and evaluated
the influences of the jet angles. Another major variable affecting the mixing properties of
buoyant jets is the densimetric Froude number (Fr). In this study, the validated CFD model
for rosette multiple buoyant jets was employed to perform simulations for 20 additional
cases with different values of Fr. The values of ambient water density were within the
reasonable ranges and determined using the “rand” function in MATLAB, and they led
to Fr numbers ranging from 5.750 to 24.676. These values were randomly determined
to reduce the regularity of the dataset. The intervals between the values of Fr number
in different cases were small, so the current number of cases was deemed sufficient for
training a machine learning-based model. A default value of 1 second was used for the
computational time step, but the model automatically adjusted it based on the Courant
number, which was of the value of 1. All the simulations were run up to 30 seconds, which
was determined based on a sensitivity analysis; namely, longer computational duration did
not significantly change the results. The detailed parameters are summarized in Table 2.

Table 2. Parameters for the additional computations.

Cases Pj pa Ap g D U Fr
(kg/m3) (kg/m3) (kg/m®) (m/s2) (m) (m/s) )
Case 01 997 998.3 1.3 0.013 0.0044 0.185 24.676
Case 02 997 999.5 2.5 0.025 0.0044 0.185 17.805
Case 03 997 1000.2 3.2 0.031 0.0044 0.185 15.743
Case 04 997 1001.1 4.1 0.040 0.0044 0.185 13.914
Case 05 997 1001.3 43 0.042 0.0044 0.185 13.588
Case 06 997 1001.4 44 0.043 0.0044 0.185 13.433
Case 07 997 1002.5 5.5 0.054 0.0044 0.185 12.022
Case 08 997 1004.8 7.8 0.076 0.0044 0.185 10.107
Case 09 997 1005.9 8.9 0.087 0.0044 0.185 9.467
Case 10 997 1009.0 12.0 0.117 0.0044 0.185 8.165
Case 11 997 1009.9 12.9 0.125 0.0044 0.185 7.879
Case 12 997 1013.5 16.5 0.160 0.0044 0.185 6.979
Case 13 997 1014.4 17.4 0.168 0.0044 0.185 6.799
Case 14 997 1020.2 23.2 0.223 0.0044 0.185 5.905
Case 15 997 1021.0 24.0 0.231 0.0044 0.185 5.808
Case 16 997 1021.5 245 0.235 0.0044 0.185 5.750
Case 17 997 1023.1 26.1 0.250 0.0044 0.185 5.575
Case 18 997 1023.9 26.9 0.258 0.0044 0.185 5.494
Case 19 997 1024.3 27.3 0.261 0.0044 0.185 5.454
Case 20 997 1025.9 28.9 0.276 0.0044 0.185 5.305

Note: pj = the initial density of the effluent; pa = the initial density of the ambient water; Ap = pa — pj; g’ = the
reduced gravity; D = the port diameter of the diffuser; U = the initial velocity of the discharge; Fr = densimetric
Froude number.

The normalized concentrations (defined by the concentration, C, divided by the
initial jet concentration, C0) at the central plane (indicated by the dashed line in Figure 1b)
for different cases obtained by the CFD model are presented in Figure 3. As can be
seen, the differences in the mixing properties for different scenarios were very obvious,
demonstrating that the influences of Fr are significant. In a non-buoyant case, the jets
symmetrically spread in the vertical direction. In Case 01, the density of the effluent
was slightly smaller than the ambient water, so the jet was bent slightly upward due to
the buoyancy effect. With smaller values of Fr, the outlines of the buoyant jets became
more obvious. In the cases with a smaller value of Fr, the density differences between
the effluents and ambient water were greater, thus the effects of buoyancy were greater.
Therefore, in Cases 02~08, the jets were less significantly bent upward, and buoyant jets
can be clearly seen in Cases 09~20. The numerical data were then extracted using ParaView
and MATLAB, which can be used for training and testing the MGGP-based models.
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Figure 3. The normalized concentration field at the central plane for different cases obtained by the CFD model.

3.2. Results Obtained by the Combined Method

In the dataset, the mean, minimum, maximum, and median values for Fr were 9.993,
5.305, 24.676, and 8.022, respectively. The standard deviation, variance, kurtosis, and
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skewness were 5.079, 25.801, 4.109, and 1.267, respectively. The mean, minimum, maximum,
and median values for normalized concentration were 0.33, 0, 1, and 0.28, respectively.
The standard deviation, variance, kurtosis, and skewness of normalized concentration
were 0.28, 0.08, 2.09, and 0.49, respectively. This dataset was then used to train and test
MGGP-based models. A total of 3232 data were assigned into the training dataset, and
the remaining data were assigned into the testing dataset. The mean values for Fr and
normalized concentration in the training dataset were 9.935 and 0.33, respectively; those in
the testing dataset were 10.225 and 0.33, respectively.

Each generation in the evolutionary process generated 500 models, and the perfor-
mances of these models varied significantly. The fitness of the MGGP models in each
evolutionary step of the model training process was plotted in Figure 4. The fitness of the
models was quantified by the RMSE values. In the earlier generations, the performance of
the models was relatively poor. The mean RMSE value was approximately 0.3. The overall
quality of the models significantly improved with the processes of mutation, crossover,
and reproduction. At the generation of about 300, the mean fitness went below 0.15. As
can be seen, the model errors did not change much after about 300 generations, implying
that the performance cannot be substantially improved by running further steps. To be
conservative, the training processes were run up to 1000 generations.

Best fithess
0 100 200 300 400 500 600 700 800 900
Generation
e Mean fitness (= 1 standard de\'iation)_

100 200 300 400 500 600

Generation

700 800 900

Figure 4. The fitness of the MGGP models in each evolutionary step: (a) the best fitness, and (b) the mean fitness and

standard deviations.

The final generation contained 500 models, and these models had different levels of
accuracy and simplicity. The present study used the Pareto-optimal approach to figure out
the best model. The input variables (Fr, x, and y) were then supplied, and the best model
was employed to predict the normalized concentration for each case. The normalized
concentration at different locations for different cases obtained by the best model was
utilized to re-construct the normalized concentration field at the central plane, which is
shown in Figure 5. The concentration fields predicted by the combined approach did
not perform very well in predicting the core of the jets in the first few cases. However,
in general, the predictions matched the physics-based data very well, especially for the
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influence area of the jets, which is one of the most important factors in environmental
impact assessments. The jets were bent slightly upward for Cases 01~08. The outlines of
the buoyant jets became more obvious in the cases with smaller values of Fr. These general
observations were consistent with those obtained by the physics-based model.

(0.03, 0.13) x=0.098(0.03,0.13) x=0.09

x=0.09§(0.030013 x=0.098(0.03, 0218 x=0.09

x=0.09§(0.03, 0.13) x=0.09§(0.03, 0.13)

x=0.09§(0.03, 0.13)
y=0.19

x=0.09§(0.03, 0.13) x=0.094(0.03, 0.13)

0.03, 0.13) (0.03, 0.13) x=0.09§(0.03, 0.13) x=0.09§(0.03, 0.13)

GIc,

0 01020304 0506 07 08 09 1

Figure 5. The normalized concentration field at the central plane for different cases obtained by the MGGP model.
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The spatial distribution of the normalized concentration was also close to that provided
by the physics-based model, but the results were less smooth, and there were a few regions
with unexpected high values of normalized concentration. This phenomenon revealed a
weakness of data-driven models: the predictions may not follow strict physical principles.
However, it is reasonable to expect that the model can be continuously improved with
more datasets with higher resolution and larger size. Nevertheless, the performance of the
model obtained in this study was regarded as satisfactory.

The predictions for the training and testing datasets were further compared in Figure 6,
and RMSE and R2 values were also calculated. In this figure, the results obtained by
the physics-based model were referred to as the actual data, and those obtained by the
combined model were called predicted data. The 1:1 line was also plotted in the figure. If a
data point was located higher than the 1:1 line, the combined model over-estimated the
data, and vice versa. As can be seen in the figure, most of the data points were located
close to the 1:1 line, demonstrating the overall good performance of the combined model.
The spatial distribution of the data points was relatively uniform, indicating that the model
did not tend to over- or under-predict the data. To further quantify the performance of the
prediction, the RMSE and R2 values for the training and datasets were calculated. RMSE
and R2 values for the training dataset were 0.087 and 0.903, respectively. Those for the
testing dataset were 0.088 and 0.902, respectively. The RMSE values were low and the R2
values were high, so the accuracy of the model predictions was acceptable. The fitness for
the testing dataset was close to the training dataset, indicating that the risk of over-fitting
was low.

(b) 1
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Actual normalized concentration Actual normalized concentration

Figure 6. Comparison of the actual and predicted normalized concentration: (a) training dataset, and (b) testing dataset.

4. Discussion

The primary contribution of this study is the proposed hybrid method of modeling
rosette-type multiport buoyant discharges using combined 3D CFD and MGGP techniques.
A key factor hindering the wide usage of 3D CFD techniques is the heavy computational
costs. Although it is acceptable to validate a model and perform several computations, it is
impractical to use a 3D CFD model to perform extensive calculations to check the influences
of some parameters. Using the proposed approach, a new model was developed using the
CFD data. Using the original CFD model to simulate a new case would take hours or even
days, but using the developed MGGP-based model to perform a calculation would only
take a few seconds. Although interpolation techniques may also be capable of providing
satisfactory predictions for the current cases, the MGGP approach is believed to be more
promising because (1) it can produce predictions by simply using the equations, unlike
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interpolation techniques, which always require known values; and (2) the developed model
can be readily extended to incorporate other factors. The present study only considered the
influence of the Fr number because it primarily aimed to evaluate the proposed approach,
but the model can be continuously extended in future studies to include more parameters.

Another factor limiting the application of 3D CFD models in practical water-related
projects is the high requirements of disk storage. The CFD outputs include the volume
fraction, the turbulent kinetic energy, turbulent energy dissipation rate, eddy viscosity,
pressure, and velocity at each time step. However, in this approach, due to the fast
calculation velocity, it is unnecessary to save the predicted data in the simulation progress.
The size of the MATLAB script file for the final model was only 4 KB in the present study:.
Therefore, the proposed approach can substantially reduce the storage requirements of
traditional CFD methods without significantly impacting the model accuracy.

It is acknowledged that artificial intelligence modeling typically requires a large
amount of data for model training, and these methods are very sensitive to the number of
input data. However, in the present study, only 20 additional simulations were performed,
which provided a data matrix with a dimension of 4040 rows and 4 columns. However, the
comparisons demonstrated that the limited number of data have provided a reasonable
model in this study. The reasons can be summarized as follows: first, the combined effects
of the input variables have been represented by the Fr number, and thus the number of
features has been substantially reduced, making it much easier for MGGP to figure out
the relationships between input and output variables; second, the typical range of the Fr
number was narrow, so the intervals of Fr between different cases were actually sufficiently
small; third, the values for different cases were determined randomly, and thus the regular-
ity of the dataset has been reduced, which further improved the data quality. However, the
predictions at some locations were notably scattered. Firstly, machine learning techniques
make predictions from the data for model training instead of mechanisms, and thus it
is quite common that the predictions do not follow strict physical principles. Secondly,
no additional data were provided in this study, as the overall performance of the model
was believed to be satisfactory, but the limited number of data has definitely lowered the
prediction accuracy at some locations. Thus, a larger size of dataset would be required if a
higher-performance model were desired.

5. Conclusions

The present study proposed a novel method of modeling rosette-type multiport
buoyant discharges using combined 3D CFD and MGGP techniques. A total of 20 cases was
simulated using a validated CFD model. Overall, the agreement between the predictions
provided by the combined model and the physics-based data was acceptable. The jets were
bent slightly upward for cases with larger values of Fr number. The outlines of the buoyant
jets became more obvious in the cases with smaller values of Fr, which was consistent
with the observations based on the physics-based results. The RMSE and R2 values for the
training dataset were 0.087 and 0.903, respectively. Those for the testing dataset were 0.088
and 0.902, respectively. Therefore, although the predicted concentration fields exhibited
some unrealistic values, the RMSE values were low and the R2 values were high, and thus
the overall performance of the model was deemed satisfactory.

Using the original CFD model to simulate a new case would take hours or even
days, and would require larger storage space. In contrast, the proposed approach only
took a few seconds to perform calculations for a new case, and it used less memory.
What is more, this is believed to be the first time that the entire concentration fields were
modeled using a combined approach of CFD and machine learning techniques. This study
demonstrated the capability of the proposed approach in replicating the concentration
fields for rosette buoyant jets. The performance of the combined models can be further
improved or extended when more data are available.
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