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Abstract: This paper investigates the station-keeping control of autonomous and remotely-operated
vehicles (ARVs) for free-floating manipulation under model uncertainties and external disturbances.
A modified adaptive generalized super-twisting algorithm (AGSTA) enhanced by adaptive tracking
differentiator (ATD) and reduced-order extended state observer (RESO) is proposed. The ATD is
used to obtain the smooth reference signal and its derivative. The RESO is used to estimate and
compensate for the model uncertainties and external disturbances in real-time, which enhances
the robustness of the controller. The modified AGSTA ensures the fast convergence of the system
states and maintains them in a predefined neighborhood of origin without overestimating control
gains. Besides, the proposed new variable gain strategy completely avoids the control gains vibrating
near the set minimum value. Thanks to the RESO, the proposed controller is model-free and can
be easily implemented in practice. The stability of the closed-loop system is analyzed based on
Lyapunov’s direct method in the time domain. Finally, the proposed control scheme is applied to the
station-keeping control of Haidou-1 ARV, and the simulation results confirm the superiority of the
proposed control scheme over the original AGSTA.

Keywords: station-keeping control; underwater vehicle-manipulator system; super-twisting algo-
rithm; extended state observer

1. Introduction

In recent years, unmanned underwater vehicles (UUVs) have been widely utilized
in various areas such as marine science, marine rescue, and offshore industry [1]. A
considerable number of these applications require UUVs have intervention capabilities.
Currently, most intervention tasks are faced up by a remotely operated vehicle (ROV)
equipped with one or multiple manipulators. However, the ROV needs to be controlled by
highly skilled operators via a master-slave approach, which increases human fatigue over
time and has a more significant time delay in the control loop [2]. Furthermore, the ROV
requires an expensive support vessel equipped with dynamic positioning (DP) systems
and capable of handling the umbilical cable. As a result, the ROV can only work in a
small zone due to the umbilical cable’s restriction. To overcome these limitations, ARV has
been proposed for deep-sea exploration and intervention. The ARV communicates with
the support vessel through an optical fiber instead of an umbilical cable. Thus, the ARV
can deploy and operate from vessels lacking DP capabilities, which reduces operational
costs [3]. The main features of the ARV lie in that it can perform large-scale exploration
tasks, monitoring tasks, and underwater intervention tasks in different operational modes.

The ARV we investigate in this paper is called Haidou-1. It is composed of a fully-
actuated vehicle and a six DoFs deep-sea electric manipulator, as shown in Figure 1. It
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should note that Haidou-1 is a typical underwater vehicle manipulator system (UVMS).
Thus, the research on UVMS can also be applied to our research. When the Haidou-1
performs free-floating manipulation, such as seabed sampling, it will be desired that the
vehicle has a station-keeping function (the vehicle’s ability to maintain the same position
and attitude at all times even under disturbances). However, in order to achieve stability
and maneuverability simultaneously, the metacentric height of the ARV is set lower than
that of a conventional ROV. Besides, the ARV thrusters’ performance is weaker than
the traditional ROV. Therefore, the dynamic coupling effect caused by the motion of the
manipulator has a substantial impact on the vehicle. The vehicle will deviate from the
desired position and attitude, thereby severely reducing the accuracy of the manipulator’s
end-effector. Therefore, the station-keeping control of the vehicle is essential for free-
floating manipulation. However, the design of the controller is quite challenging work due
to the coupling effects, strong nonlinearity, random external disturbances, unpredicted
ocean currents, and the difficulty in accurately modeling the hydrodynamic effects [4].

Figure 1. The Haidou-1 ARV and its reference frames.

There exist two main strategies for UVMS control in the literature. The first strategy
controls the whole system at the operational space level, treating the UVMS as a single
system [5–7]. Another strategy aims to decouple the UVMS and independently control
the vehicle and the manipulator [8]. When the vehicle and manipulator have similar
dynamic characteristics or bandwidth, the first strategy is feasible. However, Haidou-1 has
a big difference in vehicle and manipulator inertias. Moreover, the UVMS as a whole is a
kinematically redundant system that is hard to handle. Thus, we choose the decoupled
control strategy in this paper. Specifically, the vehicle performs station-keeping control
to keep it in a fixed attitude and position, and the manipulator carries out the prescribed
tasks alone. The coupling force caused by manipulator movement is considered as a
disturbance to be compensated by the vehicle controller. In recent years, this approach has
been investigated by several researchers.

Koval [9] proposed an automatical stabilization method for the vehicle where the
manipulator disturbance term is compensated by manipulator kinematics and simpli-
fied dynamics. McLain et al. [10] proposed a model-based coordinated control strategy.
Coupling reaction forces duo to manipulator motion were predicted and counteracted
by the vehicle controller. Antonelli and Cataldi [11] designed a recursive and adaptive
controller for the vehicle to mitigate the dynamic interaction caused by the manipulator.
An alternative vehicle stabilization strategy is proposed in [12], where the focus is to control
the UVMS barycenter. This strategy has a significant reduction in power consumption
compared to the feedback and feedforward control. An observer-based controller has been
proposed in [13], where the disturbance force observer is used to estimate the coupling
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and restoring forces induced by the operating manipulator. Besides, the restoring force is
reduced through a motion planning optimization algorithm. H Huang et al. [14] systemati-
cally analyzed the disturbances introduced by the tether and manipulator movement, then
used them as feedforward terms to achieve precise motion control of observation-class ROV.
Most of the controller mentioned above relies heavily on the dynamic model or disturbance
observer. The control performance may degrade when the dynamic model parameters are
inaccurate, or the manipulator disturbance cannot estimate accurately.

In contrast with the aforementioned methods, sliding mode control (SMC) is well-
known for strong robustness to match uncertainties and perturbations. Thus, SMC is
particularly well suited for the station-keeping control of ARV subject to manipulator
disturbances, parameter uncertainties, and unknown external disturbances. Dannigan
et al. [15] used a sliding mode approach to handle coupling effects induced by the ma-
nipulator. An improved nonsingular terminal SMC (I-NTSMC) scheme was designed for
the coordinated control of the Underwater Biomimetic Vehicle-Manipulator System [16].
I-NTSMC scheme can provide strong robustness for the controller and alleviate the chatter-
ing effect in the meantime. Although the control scheme still uses manipulator dynamics
information, its function is just to enhance the control performance, and the controller does
not rely on it. Besides, there are also many other controllers based on SMC that have been
successfully implemented in underwater vehicles in recent years [17–19].

The major drawback of the SMC is the chattering issue, which degrades the control
performance, reduces the life of the actuator, and may excite high-frequency unmodeled
dynamics. For these reasons, substantial methods on chattering reduction have been devel-
oped in recent years, such as the boundary layer method [20–22], adaptive control [23,24],
fuzzy logic control [25,26], high-order SMC (HOSMC) [27–29]. Among these methods, the
HOSMC method is the most effective chattering suppression method by hiding discontinu-
ous terms behind an integrator [30]. Among the HOSM control method, the super-twisting
algorithm (STA) is more popular due to being independent of higher-order sliding man-
ifolds. As is described in [31], the STA is effective in suppressing the chattering while
at the same time preserving the good properties of the first-order SMC. To improve the
robustness and convergence velocity of STA when the system state is far away from the
origin, Moreno [32] proposed the generalized super-twisting algorithm (GSTA), which in-
cludes extra linear correction terms compared to the standard STA. Besides, GSTA can also
handle state-dependent disturbances, not just time-dependent disturbances [33]. However,
the GSTA, as well as the STA, requires the upper bound information of the disturbance
derivative, which is usually hard to obtain or overestimated in practice. Moreover, even
the disturbances derivatives are time-varying, it will be desirable to follow their variation.
To circumvent this problem, the variable gain strategy has been widely used. Recently, J.
Guerrero et al. [34] developed an adaptive generalized super-twisting algorithm (AGSTA)
for the trajectory tracking control of underwater vehicles, which does not require any
prior knowledge about the upper bound of the disturbance derivative. However, the
adaptive law used in this paper may still overestimate the control gains. Moreover, the
controller required vehicle dynamic knowledge, which can not be attained accurately in
practical applications.

In this paper, based on the previous results of J. Guerrero et al. [34], we proposed
a modified AGSTA for the station-keeping control of the ARV. The ATD and RESO are
used to enhance the controller performance. The main contributions of this paper are
summarized as follows: (1) A new adaptive law is designed to adjust the gains of GSTA
online, which effectively avoids overestimating control gains, and the control gains will
not vibrate around the set minimum value. (2) The proposed controller is model-free and
can be easily implemented in practical scenarios.

The remainder of this paper is organized as follows. Section 2 introduces ARV mod-
eling, including vehicle dynamics and manipulator dynamics. In Section 3, the detailed
design procedure of the proposed control scheme is presented, and the stability of the
closed-loop system is analyzed based on Lyapunov’s direct method. In Section 4, numeri-
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cal simulation is performed to confirm the effectiveness of the proposed control scheme.
Finally, some conclusions and potential future works are given in Section 5.

2. Model Dynamics
2.1. Vehicle Dynamics

The ARV dynamic model involves two reference frames, as shown in Figure 1. One
is the inertial-fixed frame {n}, another is the body-fixed frame {b} fixed at the center of
buoyancy (COB) of the ARV. Adopting the SNAME notation [35], the vehicle’s dynamic
model considering the manipulator disturbances, hydrodynamic effects, unknown external
disturbances can be written in a compact matrix form as [34]:

M
.
ν + C(ν)ν + D(ν)ν + g(η) = τv + τm + τu.

η = J(η)ν
(1)

where η = [x y z φ θ ψ]T denotes the position and attitude vector in the inertial-fixed frame
and ν = [u v w p q r]T is the linear and angular velocities expressed in the body-fixed
frame. J(η) ∈ R6×6 is the Euler angle mapping matrix from the inertial-fixed frame to
the body-fixed frame. M ∈ R6×6 is the inertia matrix, including the effects of added
mass, C(v) ∈ R6×6 is the Coriolis and centripetal matrix, D(v) ∈ R6×6 represents the
hydrodynamic damping matrix, g(η) ∈ R6 is the vector of gravitational/buoyancy forces
and moments expressed in the body-fixed frame. Finally, τm ∈ R6 defines the vector of
coupling reaction forces between the manipulator and the vehicle. τu ∈ R6 represents the
vector of unknown external disturbances. τv ∈ R6 is the resultant vector of force/moment
generated by thrusters. The vector of the thruster forces uT ∈ R6 produced by each thruster
can be calculated by:

uT = B−1τv (2)

where B ∈ R6×6 is a nonsingular thruster distribution matrix. Refer to Appendix B for
further details about the thruster arrangement.

To simplify the vehicle dynamics model and reduce the computational burden, proper
simplification should be made. As the Haidou-1 ARV usually works in the deep-sea
circumstance, the effect of wave effect and the ocean current is not considered here. The
interaction force between the optical fiber and the vehicle is negligible since it is very
small and hard to model accurately. The hydrodynamic coefficients of Haidou-1 ARV are
obtained by the computational fluid dynamics (CFD) method. Refer to Appendix A for
further details about the vehicle dynamics model.

As the controller is normally designed in task space, it is necessary to establish the
vehicle dynamics in the inertial-fixed frame. Using the following kinematic transformation
equations (assuming that J(η) is nonsingular):

Mη(η) = J−T(η)MJ−1(η)

Cη(v, η) = J−T(η)
[
C(v)−MJ−1(η)

.
J(η)

]
J−1(η)

Dη(v, η) = J−T(η)D(v)J−1(η)
τmη = J−T(η)τm
τuη = J−T(η)τu
gη(η) = J−T(η)g(η)
τη = J−T(η)τν

(3)

The vehicle dynamics (1) can be rewritten in the inertial-fixed frame as:

Mη(η)
..
η + Cη(v, η)

.
η + Dη(v, η)

.
η + gη(η) = τη + τmη + τuη (4)

By introducing a constant diagonal matrix M̂, the vehicle dynamics (4) can be rewritten as:

..
η = M̂−1(τη + f (η, v)

)
(5)
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where f (η, v) represents the total disturbance, including the internal nonlinear dynamics
and external disturbance, and it is defined as follows:

f (η, v) = τmη + τuη − Cη(v, η)
.
η − Dη(v, η)

.
η − gη(η) + (M̂−Mη(η))

..
η (6)

To facilitate controller design, the following assumptions are required.

Assumption 1. The time derivative of total disturbance f (η, v) exists and is bounded.

Assumption 2. The pitch angle is restricted to |θ| < π/2.

Since the ARV is a mechanical system, f (η, ν) will not change infinitely fast. Therefore,
assuming that

.
f (η, ν) is bounded is a valid assumption. According to Assumption 2, the

inverse of the Jacobian matrix J(η) exists. For the station-keeping operations, the desired
pitch angle is 0 rad. The fully actuated vehicle has the ability to keep the pitch angle
sufficiently far from ±π/2 radian; besides, the vehicle has metacentric restoring forces.
Thus, the pitch angle is unlikely to violate this restriction [36]. Assumption 2 is reasonable.

2.2. Manipulator Dynamics

In this paper, the Newton-Euler method was used to derive the dynamic model of
the deep-sea manipulator. This method starts with a forward recursion algorithm that
calculates the velocity and acceleration information of each link starting from the base and
moving towards the end-effector [37]:

ωi+1
i+1 = Ri+1

i ωi
i +

.
qi+1Ẑi+1

.
ω

i+1
i+1 = Ri+1

i
.

ω
i
i + Ri+1

i
(iω i ×

.
qi+1

i+1Ẑ i+1
)
+

..
qi+1Ẑi+1

vi+1
i+1 = Ri+1

i
(
vi

i + ωi
i × Pi

i+1
)

.
vi+1

i+1 = Ri+1
i

( .
vi

i +
i .
ω i × Pi

i+1 + ωi
i ×
(
ωi

i × Pi
i+1
))

.
vi+1

c,i+1 =
.
vi+1

i+1 +
.

ω
i+1
i+1 × Pi+1

c,i+1 + ωi+1
i+1 × (ωi+1

i+1 × Pi+1
c,i+1)

(7)

where qi+1 and
.
qi+1 are the joint position and velocity of joint i, zi+1 = [0 0 1]T , i+1R i is

the rotation matrix from frame {i} to frame {i + 1}, iω i and i .
ω i are the angular velocity and

angular acceleration of link i w.r.t. frame {i}. iv i and i .
v i are the linear velocity and linear

acceleration of link i w.r.t. frame {i}. i+1 .
vc,i+1 represents the linear acceleration of the center

of mass (COM) of link i + 1 expressed in frame {i + 1}. iP i+1 is the position vector from joint
i to joint i + 1 expressed in frame {i}. i+1Pc,i+1 is the position vector from joint i + 1 to the
COM of link i + 1 expressed in frame {i + 1}.

Then backward recursion algorithm performs the force and moment balance on each
link and iterates backward from the end effector to the manipulator base. The generalized
force and moment of link i can be determined by:

iF i = Mi
.
vc,i

i N i = Ii
i .
ω i +

iω i × (Ii
iω i)

(8)

where Mi and Ii are the mass matrix and the inertia matrix of link i, respectively.
In the deep ocean environment, each link of the underwater manipulator will be

affected by its self-motion and uniform flow. Due to unpredictable and weak ocean
currents in the deep sea, only self-motion is taken into account here. The hydrodynamic
forces exerted on the manipulator are similar to the vehicle, consisting of additional mass
force, buoyancy, drag force, etc. As the manipulator moves slowly, the additional mass
force acting on the link can be neglected.

The drag force acting on the link i is calculated as [38]:

fhi =
1
2 ρCdD

∫ li
0 ‖v(x)‖v(x)dx

nhi =
1
2 ρCdD

∫ li
0 ‖v

n(x)‖
{
[x, 0, 0]T × vn(x)

}
dx

(9)
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where
v(x) = iv i +

iω i × [x, 0, 0] = [v1(x), v2(x), v3(x)]T

vn(x) = [0, v2(x), v3(x)]T

where ρ is the density of seawater, Cd is the drag coefficient, Cm is the inertia force coefficient,
A is the projected area that is perpendicular to the velocity of the incoming flow, D is the
cross-sectional area of the object, li is the length of link i, the empirical values of Cd = 1.0 is
used here [39].

The vectors of the interaction of forces and moments between two adjacent links are
calculated as follows:

i f i =
iR i+1

i+1 f i+1 +
iF i + migi + bi + fhi

in i =
iR i+1

i+1n i+1 +
i N i +

iP i+1 × (iR i+1
i+1 f i+1) + Pi

ci ×
iF i − Pi

ci ×mig− Pi
bi × bi + nhi

(10)

where Pi
bi is the position vector from the COB of link i to the origin of frame {i}. mi is the

mass of the link i, bi is the vector of buoyancy of link i.
The dynamic coupling force/moment acting on the vehicle can be calculated as follows:

τm =

[ bR0
0 f 0

bR0
0n0 +

bP0 × (bR0
0 f 0)

]
(11)

where f 0
0 and t0

0 are the vectors of the force and the moment exerted on the manipulator
base. Pb

0 is the position vector from the body-fixed frame {b} to the manipulator base
frame {0}.

Due to the particular operating environment and irregular geometric shape, the
dynamics of the deep-sea manipulator are more complicated than on-shore industrial
manipulators. The hydrodynamic coefficients are difficult to measure or estimate accurately,
and the joint friction term is also hard to model accurately owing to the outside seawater
pressure. Furthermore, the manipulator dynamics involve the iterative algorithm, which
is computationally expensive. Thus, the control scheme should not rely on the dynamic
model of the deep-sea manipulator.

3. Controller Design

In this section, the design of the proposed control scheme for the station-keeping
control of ARVs is addressed. The control objective is to stabilize the vehicle in a desired
position and attitude while the manipulator performs the manipulation task. Inspired by
the methodology presented in [34], we proposed a new adaptive law for the GSTA. The
ATD and RESO are used to enhance the control performance of modified AGSTA. Figure 2
presents the control block diagram.

Figure 2. Diagram of the station-keeping control framework.
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3.1. Adaptive Tracking Differentiator

In the free-floating manipulation, the vehicle has difficulty tracking the fast change
reference signal due to larger inertia. Besides, the differential signal is usually extracted by
the backward difference method, which is very sensitive to noise. To overcome these prob-
lems, Cai, Mingxue, et al. [16] proposed the ATD, which can provide the reference signal
and its derivative with a smooth and adjustable process. Compared to the conventional
tracking differentiator, ATD enhances the ability to adapt different step signals with the
variable filter coefficient and fast coefficient.

The discrete form of the ATD can be designed as follows:
r0 = A/4T2

h0 =

{
4h without noise
(A/An + 1)h with noise

y1(k + 1) = y1(k) + hy2(k)
y2(k + 1) = y2(k) + h f han(y1(k)− x(k), y2(k), r0, h0)

(12)

where T is the desired transient time of the reference signal, A is the amplitude of step
signal, h is the sampling period, r0 is the fast coefficient, h0 is the filter coefficient, An
denotes the amplitude of the noise signal, x(k) is the input signal of ATD, y1(k) and y2(k)
represent the target reference signal and corresponding derivative, respectively. f han(·) is
denoted as the optimal synthetic rapid control function which is proposed as:

a0 = r0h2
0

a1 = h0x2
a2 = x1 + a1
a3 =

√
a0(a0 + 8|a2|)

b0 = a1 + sign(a2)(a3 − a0)/2
b1 = [sign(a2 + a0)− sign(a2 − a0)]/2
b2 = (a1 + a2 − b0)b1 + b0
b3 = [sign(b2 + a0)− sign(b2 − a0)]/2
f han(x1, x2, r0, h0) = −r0[b2/a0 − sign(b2)]b3 − r0sign(b2)

(13)

3.2. Reduced-Order Extended State Observer

In this section, an extended state observer (ESO) is developed to estimate the total
disturbance term in real-time. Considering that the system state variables of ARV can
be measured relatively accurately, there is no need to estimate it. Besides, the initial
estimation error will cause an initial peaking phenomenon. Therefore, a reduced-order
ESO is preferred.

To use RESO, we introduce a change of variables. Define χ1 =
.
η, χ2 = M̂−1 f (η, v).

Note that Assumption 1 indicates that the time derivative of the total disturbance
term f (η, v) exists. Therefore, the vehicle dynamics (5) can be extended as the following
state-space form: { .

χ1 = χ̂2 + M̂−1τη
.
χ2 = M̂−1

.
f (η, v)

(14)

Defined χ̂1 and χ̂2 as the estimated value of the state variables. The corresponding
estimation error is defined as χ̃i = χi − χ̂i, i = 1, 2. Then the RESO is designed as [40]:{ .

χ̂1 = χ̂2 + M̂−1τη + β1χ̃1.
χ̂2 = β2χ̃1

(15)
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where βi ∈ R6×6, i = 1, 2, are the corresponding observer gains. Using the bandwidth-
parameterization method proposed in [41], all observer poles can be placed at −ωi. To this
end, the observer gains can be selected as follows:{

β1 = diag(2ω1, 2ω2, 2ω3, 2ω4, 2ω5, 2ω6)
β2 = diag(ω1, ω2, ω3, ω4, ω5, ω6)

(16)

As a result, the RESO has only one parameter to be tuned in one DOF, which is the
observer bandwidth. It should be noted that a smaller estimation error can be obtained by
increasing the bandwidth of RESO. However, the RESO will become more sensitive to the
measurement noise. Therefore, the observer bandwidth should be selected to achieve a
trade-off between the observer performance and the capability of noise tolerance.

3.3. Modified AGSTA Design

There exist two phases for the SMC, i.e., the sliding phase and reaching phase. For the
sliding phase, a linear sliding surface is chosen as follows:

s =
.
e + ce (17)

where s = [s1, s2, . . . s6]
T , e = η− ηd is the error vector. c = diag(c1, c2 · · · c6) is a diagonal

positive definite matrix, which determines the convergence rate of the error.
To obtain good control performance during the reaching phase and alleviate chattering,

the following GSTA will be used:

.
si = −k1iφ1i(si) + vi.
vi = −k2iφ2i(si)

(18)

where
φ1i(si) = µ1i|si|

1
2 sgn(si) + µ2isi

φ2i(si) =
1
2 µ2

1isgn(si) +
3
2 µ1iµ2i|si|

1
2 sgn(si) + µ2

2isi

One can see that for the choice µ2i = 0, the structure of the standard STA is recovered.
The linear growth term µ2isi in φ1i(si) helps to counteract the effects of state-dependent
perturbations, which can exponentially increase in time.

The adaptive gains k1i(t) and k2i(t) are updated as:

.
k1i(t) =


`i |si| > σi
−ri k1i > k1imin, |si| ≤ σi
0 k1i ≤ k1imin, |si| ≤ σi

k2i(t) = 2εik1i + βi + 4ε2
i

(19)

where µ1i, µ2i, ωi, ri, σi, βi, k1imin, σi and εi are arbitrary positive constants. ri is utilized
to adjust the decrease rate of k1i, which avoids overestimating the control gains. Note
that ri is set to li in many papers [42–44], which may not be the best choice. σi denotes
the predefined neighborhood of zero, smaller σi can ensure lower steady-state error but
increase the chattering effect as well. k1imin is used to maintain the control performance
when the sliding variable converges to the region |si| < σi. When k1i ≤ k1imin and |si| ≤ σi,.
k1i(t) is set to 0 instead of `i, which avoids the control gains are varying in a zigzag motion.

Finally, combining the RESO and modified AGSTA, the control scheme for the station-
keeping control of ARV is given as follows:

τν = JT M̂[
.̂.
ηd + c

.
e− χ̂2 + υ] (20)
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where
.̂.
ηd denotes the nominal value of the second derivative of the reference signal,

υ = [υ1, υ2, · · · , υ6]
T , and each element of this vector is given as:

υi = −k1iφ1i(si)−
∫

k2iφ2i(si) (21)

It should be noted that we cannot obtain
..
ηd with the ATD. Nevertheless, we can

replace it with a nominal value, such as 0. The corresponding error will be treated as an
unknown disturbance.

3.4. Stability Analysis

The following lemma is used for the stability analysis.

Lemma 1. [45]. Consider a nonlinear system
.
x = f (t, x). Suppose there exists a continuous

positive definite function V(x), which satisfies
.

V(x) ≤ −λVα(x). Then, the system state arrives
at the equilibrium point in a finite-time ts which satisfies ts ≤ V(1−α)(0)/λ(1− α).

Substituting the controller (20) into the vehicle dynamics (5) yields the closed-loop
dynamics, then take the i-th DOF to analyze for convenience; we have

.
s = −k1[µ1|s|

1
2 sgn(s) + µ2s] + v

.
v = −k2[

1
2 µ2

1sgn(s) + 3
2 µ1µ2|s|

1
2 sgn(s)] +

.
h(t)

(22)

where hi(t) = [χ̃2 +
..
ηd −

.̂.
ηd]i stands for the estimation error of RESO and

..
ηd which has

been proved to be bounded in [40].
Without loss of generality, Equation (22) can be rewritten in a compact form:

.
s = −k1φ1(s) + v
.

v = −k2φ2(s) +
.
h

(23)

where
φ1(s) = µ1|s|

1
2 sgn(s) + µ2s

φ2(s) = 1
2 µ2

1sgn(s) + 3
2 µ1µ2|s|

1
2 sgn(s)

For the convenience of Lyapunov analysis, a new state vector is introduced here:

z = [z1 z2]
T = [φ1 (s) v]T (24)

Noting that φ2(s) = φ′1(s)φ1(s) and φ′1(s) = µ1/2
∣∣∣s∣∣∣ 1

2
+ µ2 . Then, the time derivative

of z is obtained as: .
z1 = φ′1(s)[−k1z1 + z2]
.
z2 = −φ′1(s)k2z1 +

.
h

(25)

where
.
h is bounded as

∣∣∣ .
h
∣∣∣ ≤ hb. Thus, there exists an unknown bounded function L(t)

satisfying
.
h = L(t)φ′1(s).

Remark 1. Note that the differential equations in (25) have discontinuous right-hand sides; the
solutions of this differential inclusion are understood in Filippov’s sense [46].

Equation (25) can be rewritten in a vector-matrix format:

.
z = φ′1(s)Az (26)
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where

A =

[
−k1 1

−k2 + L(t) 0

]
Then, the following Lyapunov candidate function will be used to prove the closed-

loop stability.

V(z1, z2, k1, k2) = V0(z) +
1

2ς1
(k1 − k∗1)

2 +
1

2ς2
(k2 − k∗2)

2 (27)

where ς1, ς2, k∗1 and k∗2 are positive constants and V0(z) is given by:

V0(z) = (β + 4ε2)z2
1 − 4εz1z2 + z2

2 = zT Pz (28)

P = PT =

[
β + 4ε2 −2ε
−2ε 1

]
> 0

Furthermore, it is easy to verify that V(·) is positive definite and radially unbounded.
It is noteworthy that P is a positive definite matrix if β is an arbitrary positive constant. By
using the standard inequality for quadratic forms, we obtain:

λmin{P}
∣∣∣∣∣∣z∣∣∣|22 ≤ V0(z) ≤ λmax{P}

∣∣∣∣∣∣z∣∣∣|22 (29)

where
∣∣∣∣∣∣z∣∣∣|22 = µ2

1

∣∣∣s∣∣∣+2µ1µ2

∣∣∣s∣∣∣ 3
2
+ µ2

2s2 + v2 represents the Euclidean norm. λmin{·} and
λmax{·} are the minimum and maximum eigenvalues of matrices, respectively. Further,
we can derive the following inequality:

|s|
1
2 ≤ 1

µ1
||z||2 ≤

V
1
2

0 (z)

µ1λ
1
2
min{P}

(30)

The time derivative of V0(z) is further given as:

.
V0(z) =

.
zT Pz + zT P

.
z = φ′1(s)z

T [AT P + PA]z = −φ′1(s)z
TQz (31)

where

Q =

[
2k1(β + 4ε2)− 4ε(k2 − L(t)) k2 − β− 4ε2 − 2εk1 − L(t)

k2 − β− 4ε2 − 2εk1 − L(t) 4ε

]
Selecting the gain k2 = β + 2εk1 + 4ε2, the matrix Q will be a positive definite matrix

with minimum eigenvalue 2ε if k1 satisfies the following inequality:

k1 >
L2(t)
4εβ

+
2ε(β + 4ε2 − L) + ε

β
(32)

Then, the time derivative of V0(z) satisfies the following inequalities

.
V0(z) = −φ′1(s)z

TQz ≤ −2ε(µ1/2
∣∣∣s∣∣∣ 1

2
+ µ2)

∣∣∣∣∣∣z∣∣∣|22 (33)

Substituting (29) and (30) into (33), we can obtain:

.
V0(zi) ≤ −

µ2
1ε

λ
1
2
min{P}

V
1
2

0 (z)− 2µ2ε
V0(z)

λmax{P}
≤ −℘V

1
2

0 (z) (34)

where

℘ =
µ2

1ε

λ
1
2
min{P}
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Differentiating the Lyapunov function candidate (27) w.r.t. time yields:

.
V(·)=

.
V0(z) + 1

ς1

(
k1 − k∗1

) .
k1 +

1
ς2
(k2 − k∗2)

.
k2

≤ −℘V
1
2

0 (z) + 1
ς1

(
k1 − k∗1

) .
k1 +

1
ς2
(k2 − k∗2)

.
k2

= −℘V
1
2

0 (z)− ω1√
2ς1

∣∣k1 − k∗1
∣∣− ω2√

2ς2
|k2 − k∗2 |+ 1

ς1

(
k1 − k∗1

) .
k1

+ 1
ς2
(k2 − k∗2)

.
k2 +

ω1√
2ς1

∣∣k1 − k∗1
∣∣+ ω2√

2ς2
|k2 − k∗2 |

(35)

By using the well-known inequality
√

x2 + y2 + z2 ≤ |x| + |y| + |z| on (35), the
following inequality is obtained

− ℘V
1
2

0 (zi)−
ω1√
2ς1
|k1 − k∗1 | −

ω2√
2ς2
|k2 − k∗2 | ≤ −}

√
V(·) (36)

where
} = min(℘, ω1, ω2)

As indicated in [47], k1 and k2 are bounded. Therefore, there exist positive constants
k∗1 and k∗2 satisfying k1 − k∗1 < 0 and k2 − k∗2 < 0 for ∀t ≥ 0.

Then, the time derivative of V(z1, z2, k1, k2) can be rewritten as:

.
V(·) ≤ −}

√
V(·)−

∣∣k1 − k∗1
∣∣( 1

ς1

.
k1 − ω1√

2ς1

)
− |k2 − k∗2 |

(
1
ς2

.
k2 − ω2√

2ς2

)
= −}

√
V(·) + ϑ

(37)

where

ϑ = −|k1 − k∗1 |
(

1
ς1

.
k1 −

ω1√
2ς1

)
− |k2 − k∗2 |

(
1
ς2

.
k2 −

ω2√
2ς2

)
Finally, some specific conditions should be discussed for accomplishing the proof. For

further analysis of
.

V(·), its sign should be discussed in three conditions.
When |s| > σ,

.
k1 = `, and the term ϑ is computed as:

ϑ = −|k1 − k∗1 |
(

1
ς1

`− ω1√
2ς1

)
− |k2 − k∗2 |

(
1
ς2

2ε`− ω2√
2ς2

)
(38)

By selecting ` = ω1
√

ς1/2 and ε = ω2
√

ς2/2/2`, the term ϑ = 0 can be met. Then,
Equation (37) can be rewritten as:

.
V(·) ≤ −}

√
V(·) (39)

The gain k1 will increase monotonically based on adaptive law until the condition
(32) is reached. Then the sliding variable will reach the domain |s| ≤ σ in the finite time
according to Lemma 1.

When k1i > k1imin and |si| ≤ σi,
.
k1 = −r, ϑ is computed as:

ϑ = |k1 − k∗1 |
(

1
ς1

r +
ω1√
2ς1

)
+ |k2 − k∗2 |

(
1
ς2

2εr +
ω2√
2ς2

)
(40)

It is obvious that
.
k1 < 0 and ϑ > 0. Thus the sign of

.
V(·) is uncertain, which means |s|

may become greater than σ with the decrease of k1. Once the sliding variable exceeds this
domain, it will return to the domain |s| ≤ σ in finite time, as discussed above. It is noted
that the condition of k1 ≤ k1min and |s| ≤ σ is similar to that of k1 > k1min and |s| ≤ σ.
Hence we omit the corresponding discussion.

Finally, we can conclude that the sliding variable will converge to the predefined
neighborhood of origin in the finite time and remain in a larger domain |s| ≤ σ, σ > σ for
all subsequent time. Since we use a linear sliding surface, the error vector will confine to
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the neighborhood of origin asymptotically. The whole system is stable and bounded in
finite time.

4. Simulation Results

To validate the feasibility and efficiency of the proposed control scheme, simula-
tions will be conducted on a realistic model Haidou-1 ARV in the MATLAB/Simscape
software environment.

4.1. Description of the Simulation System

The ARV model considered in the simulation is composed of a 6 DoFs vehicle and
a 6 DoFs deep-sea electric manipulator and is operating in the 11,000 m deep sea. The
vehicle has six thrusters in total to provide the station-keeping capabilities, including two
vertical thrusters, two side thrusters, and two rotatable thrusters (in the stern side). The
thrust force saturation is considered in simulation, and the thrust force can range from
−146.9 N to 231.6 N. The vehicle can be fully actuated when the manipulator performs
underwater manipulation tasks.

The manipulator mounted on the bow part of the vehicle is a 7-function (with 6 DoFs
and 1 clamping function) electric manipulator that can operate in 11,000 m deep sea. The
Denavit-Hartenberg (D-H) parameters of the deep-sea electric manipulator are specified in
Table 1, and the manipulator weighs 36.6 kg in water.

Table 1. D-H parameters for the deep-sea electric manipulator.

Joint i ai−1 (mm) di (mm) αi−1 (deg) Joint Limit (deg)

1 0 0 90 −30~90
2 130.4 138.22 90 −30~90
3 641.8 0 0 −90~30
4 220.2 442.64 90 −90~90
5 21.5 0 −90 0~90
6 −48.1 239.60 90 −180~180

To make the simulation more consistent with the realistic scenario. The sensor mea-
surement noises should be taken into consideration in the simulation. The following sensor
noises are added: zero-mean Gaussian noises with the variance of 1× 10−4 are added to the
ideal vehicle position signals; zero-mean Gaussian noises with the variance of 2.74 × 10−5

are added to the ideal vehicle attitude signals; zero-mean Gaussian noises with the variance
of 2.5 × 10−7 are added to the ideal vehicle velocity signals. The measurement signals are
handled by an extended Kalman filter (EKF) and then used as the controller’s input signals,
as shown in Figure 2.

Moreover, the parameters of the dynamic model used in the controller are assumed
to be inaccurate and have about 30% parameter uncertainties. In this study, the unknown
time-varying external disturbances are simulated using the periodic functions as follows:

du =



5 + 3 sin(0.2t + π/5)N
5 + 4 cos(0.3t + π/6)N
10 + 8 cos(0.2t)N
25 + 16 sin(0.2t)N ·m
30 + 15 sin(0.2t + π/4)N ·m
8 + 6 cos(0.3t)N ·m

(41)

Finally, the control scheme is discretized by the explicit Euler method, and the sam-
pling period is set to 0.1 s.
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4.2. Description of the Task

In the simulation task, the vehicle performs station-keeping while the manipula-
tor is used to grasp the stationary target. The desired grasping process is illustrated
in Figure 3. This simulation is used to verify the station-keeping ability of the ARV af-
ter using the proposed controller. In the simulation, the vehicle’s initial state is set as:
η0 = [0.02,0.02,0.03,π/90,π/90,π/90]T and ν0 = [0.002,0.001,0.002,0.002,0.002,0.001]T. The
manipulator’s initial state is set to q0 = [90◦, 90◦, −90◦, 0◦, 90◦, 0◦]T. The desired value ηd
and νd are all set to 0. The fifth-order polynomial curves are used to plan joint trajectories
in the joint space, and the desired joint trajectories are given in Figure 4. The contact process
between the gripper and the object to be manipulated is not considered here. We only
linearly added the weight of the grabbed target in water to the manipulator’s end-effector
in 0.5 s.

Figure 3. The process of free-floating manipulation during simulation.

Figure 4. Planned joint trajectories.
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Since our work is based on the previous results of J. Guerrero et al. [34] and can
therefore be used as benchmarks of the performance of the proposed controller. To evaluate
the control performance quantitatively, two performance indexes are defined as follows:

CHAT =
1
N

N−1

∑
k=0

∣∣τv,k+1 − τv,k
∣∣ (42)

RMSE =

√√√√ 1
N

N−1

∑
k=0

e2
k (43)

where tk+1 − tk = h > 0 denotes the sampling period, and we denote f (tk) = fk with
k = 0, 1, 2 . . . N. The first performance index calculates the average variation of the control
input signals, which can evaluate the chattering effect quantitatively [48]. The second
objective function represents the root mean squared error (RMSE), which can assess the
control performance. These two performance indexes allow us to trade off chattering
reduction ability and tracking control performance of the controller.

The parameter tuning of the controller is treated as a multi-objective optimization
problem, and we use the gamultiobj function in MATLAB to solve it. The chosen control
parameters are listed in Table 2.

Table 2. Controller parameters for the simulation.

AGSTA [ci, µ1i, µ2i, `i, εi, βi, k1i(0), σi]

x [2.5500, 0.0021, 0.0690, 0.3192, 3.1620, 1.2692, 0.0049, 0.0020]
y [1.5830, 0.0023, 0.1189, 0.7272, 2.1222, 2.5352, 0.0040, 0.0028]
z [5.1820, 0.0031, 0.1628, 0.3680, 1.8180, 1.2795, 0.0063, 0.0066]
φ [5.7932, 0.0032, 0.2474, 1.1557, 2.0171, 0.9480, 0.0066, 0.0155]
θ [4.0165, 0.0030, 0.0609, 0.5230, 3.9955, 3.2493, 0.0080, 0.0079]
ψ [2.8460, 0.0020, 0.2053, 0.7632, 1.4879, 0.6179, 0.0065, 0.0055]

Proposed [ci, µ1i, µ2i, `i, ri, k1i(0), k1mini, εi, βi, σi, ωi]

x [2.0576, 0.0023, 0.1315, 1.4140, 0.8028, 0.0045, 0.4425, 1.1732, 2.1554, 0.0017, 1.0792]
y [1.0407, 0.0029, 0.2787, 1.1101, 0.9778, 0.0066, 0.6360, 0.6514, 0.7757, 0.0019, 1.1541]
z [3.1099, 0.0065, 0.2468, 1.4638, 0.2408, 0.0050, 0.5251, 0.6666, 1.5306, 0.0031, 0.5379]
φ [8.1867, 0.0068, 0.1687, 0.7613, 0.5755, 0.0658, 0.3288, 1.9506, 2.5442, 0.0077, 1.0778]
θ [3.1722, 0.0269, 0.1682, 0.6937, 0.6108, 0.0068, 0.1132, 0.2298, 1.4234, 0.0032, 1.1901]
ψ [2.3681, 0.0026, 0.1639, 0.8678, 0.5303, 0.0061, 0.4155, 1.6172, 2.6475, 0.0015, 0.5143]

4.3. Results and Discussions

Figure 5 depicts the time responses of vehicle state variables during station-keeping
control, and Figure 6 displays the corresponding errors. From Figure 5, one can notice
that the desired reference signals generated by the ATD are smooth and are reached
for both controllers. However, the origin AGSTA controller has a more significant over-
shoot and steady-state error than the proposed controller. The RMSE values are given in
Table 3, which indicates that the proposed controller has smaller RMSE values than the
origin AGSTA controller.
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Figure 5. Time response of the vehicle state variables during station-keeping control.

Figure 6. Vehicle state errors during station-keeping control.
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Table 3. Comparison of performance indices.

State Variables
CHAT RMSE

AGSTA Proposed AGSTA Proposed

x 0.0363 0.0285 6.1005 × 10−4 5.9895 × 10−4

y 0.0749 0.0462 6.0119 × 10−4 5.8173 × 10−4

z 0.1045 0.0672 7.5175 × 10−4 5.1327 × 10−4

φ 0.0903 0.0538 7.5865 × 10−4 5.3599 × 10−4

θ 0.1173 0.0887 7.7607 × 10−4 7.5049 × 10−4

ψ 0.1006 0.0662 5.6136 × 10−4 5.5314 × 10−4

Figure 7 shows the thrust force for each thruster during the simulation. As expected,
the thrust forces of the original AGSTA controller exist serious chattering phenomenon. In
contrast with the original AGSTA controller, the proposed controller produces a relatively
smooth control input which proves the proposed controller has a better chattering reduction
ability. A quantitative performance comparison of the chattering is also given in Table 3.
The CHAT value of our proposed controller is 61.8%~78% of the original AGSTA controller.

Figure 7. Thrust force for each thruster during station-keeping control.

It should be noted that the control parameters of the original AGSTA controller are also
tuned by the multi-objective optimization method. Hence, the CHAT value gap between
the two controllers is not very obvious. However, when tunning the control parameters
of the original AGSTA controller manually, we find it often leads to severe chattering and
even becomes unstable. As a result, the parameter tuning process becomes hard. The
proposed controller avoids the problems above, making it safer and easier to tune than the
original one.

Figure 8 depicts the time trajectories of the sliding variables during the station-keeping
control. It can be observed that the sliding variable enters the predefined neighborhood
of origin and try to remain there. The evolution of the adaptive gains k1(t) is depicted in
Figure 9; it can be seen that the control gains of the proposed controller increase or decrease
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in a bounded region. The control gains tend to maintain at a small value. If the sliding
variable exceeds the predefined neighborhood of origin, the adaptive gains will increase
until it enters this domain again. Figure 9 shows that small control gains are sufficient to
resist the disturbances and ensure an ideal sliding mode most of the time. The proposed
controller ensures the sliding variable converges to the neighborhood of origin without
overestimating control gains.

Figure 8. Time trajectories of sliding variables during station-keeping control.

For the AGSTA controller, the gains k1(t) keep increasing until the sliding mode is
reached, then the gains remain unchanged, ensuring an ideal sliding mode for a while. As
the disturbance increases, the sliding mode may be lost, so the gains k1(t) keep increasing
until the sliding mode is reached again. When the disturbance decreases, the gains still
maintain this value. As a result, the AGSTA may overestimate the control gains, which
leads to an increase in the chattering amplitude.

It should be noted that some papers [43,49] also allow the control gains to decrease
according to specific rules. However, the adaptive law proposed in these papers is limited
to the conventional super-twisting algorithm, and control gains will vibrate around the set
minimum value. Figure 10 compares control gains’ evolution when using the traditional
adaptive law and the proposed adaptive law. The magnified view of Figure 10 confirms
that gains of traditional adaptive law vary in zigzag motion after arriving at the minimum
value. Our proposed adaptive law avoids this problem which helps further mitigate the
chattering. It should be noted that zigzag motion induced by traditional adaptive law
will only appear after the controller is discretized and becomes severe with the increase of
sampling time.
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Figure 9. Evolution of the adaptive gains k1(t) over time.

Figure 10. Comparison of adaptive gains between the traditional and proposed adaptive law.

The total disturbance estimated by RESO is presented in Figure 11. The results show
that the total disturbance can be effectively estimated and compensated by the RESO. The
initial peaking phenomenon due to the initial state estimation error is eliminated. One can
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see that the estimated total disturbance has a slight phase lag compared to the simulated
value because the bandwidth of RESO is restricted to the measurement noise.

Figure 11. Comparison of estimated total disturbance and simulated total disturbance.

5. Conclusions

This paper is dedicated to solving the station-keeping control problem of ARVs for
free-floating manipulation. A modified AGSTA enhanced by ATD and RESO is developed.
Comparative simulation results on the Haidou-1 ARV demonstrate that the proposed
control scheme is more efficient than the original AGSTA controller. The adaptive gains
increase or decrease in a bounded region according to the magnitude of the sliding variable.
As a result, the sliding variables are confined to a predefined neighborhood of zero without
overestimating control gains, thereby reducing the chattering. Besides, the proposed new
variable gain strategy completely avoids the adaptive gains varying in zigzag motion near
the set minimum value and is not affected by the sampling time.

In future work, pool experiments will be conducted to demonstrate the effectiveness
of our proposed controller. Besides, the proposed controller is designed in the continuous-
time domain and discretized by the explicit Euler method, which will introduce discretiza-
tion chattering [50]. A proper discretization scheme is necessary. Recently, the implicit
discretization method has been successfully used to discretize the super-twisting algo-
rithm [51,52], which has been shown theoretically and experimentally to provide significant
chattering alleviation. It may apply to our proposed controller and further improve its
chattering reduction ability. Besides, the RESO used in this paper is sensitive to noise,
which should be handled in future work.
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Appendix A

M =



m− ρX′.
u

−ρX′.
v

−ρX′.
w

0 mzG − ρX′.
q
−myG − ρX′.

r
−ρY′.

u
m− ρY′.

v
0 −mzG 0 mxG − ρY′.

r
ρZ′.

u
0 m− ρZ′.

w
myG −mxG − ρZ′.

q
0

0 −mzG − ρK′.
v

myG − ρK′.
w

Ixx − ρK′.
p

−Ixy −Ixz

mzG − ρM′
.
u

0 −mxG − ρM′
.

w
−Iyx Iyy − ρM′

.
q

−Iyz

−myG − ρN′.
u

mxG − ρN′.
v

0 −Izy −Izy Izz − ρN′.
r



C(v) =



0 0 0
0 0 0
0 0 0

−m(yGq + zGr) m(w + yG p) m(zG p− v)
m(xGq− w) −m(zGr + xG p) m(u + zGq)
m(xGr + v) m(yGr− u) −m(xG p + yGq)

m(yGq + zGr) m(w− xGq) −m(xGr + v)
−m(w + yG p) m(zGr + xG p) m(u− yGr)

m(v− zG p) −m(u + zGq) m(xG p + yGq)
0 0 Iyzr + Ixy p− Iyyq

Iyzq + Ixz p− Izzr Iyzq + Ixz p− Izzr −Ixzr− Ixyq + Ixx p
−Iyzr− Ixy p + Iyyq −Iyzr− Ixy p + Iyyq 0



D(v) = −ρ



X′u + X′u|w||w| X′v + X′v|v||v| X′w + X′δs
|w|
(

δs − π
2

δs
|δs |

)
0 X′q X′r

Y′u Y′v + Y′v|v||v| 0 0 0 Y′r

Z′u 0 Z′w + Z′w|w||w|+ Z′δsδs
|w|
(

δs − π
2

δs
|δs |

)2
0 Z′q 0

K′u|w||w| K′v K′w K′p 0 0

M′
u + M′

uww 0 M′
w + M′

w|w||w|+ M′
δs

(
δs − π

2
δs
|δs |

)
w + M′

δsδs

(
δs − π

2
δs
|δs |

)2
|w| 0 M′

q 0

N′u N′v + N′v|v||v| 0 0 0 N′r



g(η) =



(G− B) sin θ
−(G− B) cos θ sin φ
−(G− B) cos θ cos φ

−(yGG− yBB) cos θ cos φ + (zGG− zBB) cos θ sin φ
(zGG− zBB) sin θ + (xGG− xBB) cos θ cos φ
−(xGG− xBB) cos θ sin φ− (yGG− yBB) sin θ
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Table A1. Dynamic parameters of the Haidou-1 ARV.

Coefficient Value coefficient Value Coefficient Value Coefficient Value

X′u −0.601 X′v 0.115 X′w 0.031 X′q −0.345
X′r 0.008 X′.u −1.419 X′.v 0.051 X′.w 0.063
X′.q 0.165 X′.r 0.073 X′v|v| −2.564 X′u|w| −0.194

X′δs
1.148 Y′u 0.044 Y′v −4.199 Y′r 0.753

Y′.u −0.117 Y′.v −12.006 Y′.r 1.361 Y′v|v| 7.257
Z′u −0.352 Z′w −0.617 Z′q 0.231 Z′.u −0.029
Z′.w −3.085 Z′.q −1.174 Z′w|w| −0.343 Z′δsδs

−0.967

K′v −0.307 K′w −0.114 K′p 0.179 K′.v 0.048
K′.w 0.030 K′.p −0.347 K′u|w| −0.271 M′u 0.006

M′w 0.0002 M′q −0.774 M′.u −0.061 M′.w 0.428
M′.q −1.930 M′uw 1.271 M′w|w| −0.150 M′δsδs

−1.775

M′δs
−0.051 N′u 0.006 N′v 1.318 N′r −2.12

N′.u 0.004 N′.v 2.549 N′.r −5.087 N′v|v| −0.599

m 4325.925
kg ρ

1027.77
kg/m3 Ixx

999
kg·m2 Iyy

4036
kg·m2

Izz
3703

kg·m2 Ixy 0 kg·m2 Iyz 0 kg·m2 Ixz 38 kg·m2

xB 0 m yB 0 m zB 0 m xG 0 m
yG 0 m zG 0.05 m g 9.8 m/s2 B (m+2)*g

Appendix B

The thruster arrangement of the Haidou-1 ARV is shown in Figure 1.

Figure 1. Thruster arrangement of the Haidou-1 ARV.

The thruster configuration matrix of the Haidou-1 ARV is given as:

B =



cos δsL cos δsR 0 0 0 0
0 0 1 1 0 0

− sin δsL − sin δsR 0 0 1 1
ystn sin δsL −ystn sin δsR 0 0 −ybow ybow

zstn cos δsL + xstn sin δsL zstn cos δsR + xstn sin δsR 0 0 −xbow −xbow
ystn cos δsL −ystn cos δsR xhB xhS 0 0


where δsL = −72◦, δsR = −55◦, xstn = −1.722 m , ystn = 0.6 m, zstn = −0.02 m,
xbow = 0.75 m, ybow = 0.55 m, xhB = 0.8 m and xhS = −1 m.
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