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Abstract: Three-Dimensional (3-D) sound propagation in a shallow-water waveguide with a con-
stant depth and inhomogeneous bottom is studied through numerical simulations. As a model of
inhomogeneity, a transitional region between an acoustically soft and hard bottom is considered.
Depth-averaged transmission loss simulations using the “horizontal rays and vertical modes” ap-
proach and mode parabolic equations demonstrate the horizontal refraction of sound in this region,
even if the water column is considered homogeneous. The observed wave effect is prominent at low
frequencies, at which the water depth does not exceed a few acoustic wavelengths. The obtained
results within the simplified model are verified by the simulations for a real seabed structure in the
Kara Sea.
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1. Introduction

Studying the sound propagation in shallow water with different kinds of inhomo-
geneities is still an actual problem in underwater acoustics. The most important part
of it today is the investigation of 3-D effects [1], which restrict the applicability of the
N × 2-D approximation when calculating the sound pressure field. One of these effects is
the horizontal refraction.

The effect of horizontal refraction is observed in shallow water waveguides with
inhomogeneous seafloor or sloping bottom. It also occurs in the presence of intense internal
waves or temperature fronts. This wave effect is strongly dependent on the parameters of
inhomogeneities. Its manifestation is not limited by the bending of the sound propagation
path, but also includes the spatial redistribution of acoustic intensity in the horizontal
plane, e.g., sound focusing and defocusing. More detailed description of the horizontal
refraction effect due to the bottom or water column inhomogeneities can be found in [2–10].

Although the horizontal refraction has been studied extensively in different environ-
ments, there is one more possible scenario that needs to be examined. The scenario suggests
the presence of volume inhomogeneities in the upper layer of bottom sediments [11]. Prob-
ably, the first mention of this factor is given by Ballard et al. in [12]. However, the effect of
horizontal refraction due to inhomogeneous bottom sediments appeared to be negligible
in comparison with the bottom roughness factor. The conclusion was supported by the
results of numerical modelling for the New Jersey shelf and cannot be extended to other
regions. In particular, the areas with a rather smooth seafloor and a highly inhomogeneous
seabed can be encountered on the Arctic shelf, where the bottom sediments are usually
unconsolidated and have the sound speed close to that in water. In this region, new 3-D
effects of sound propagation, including horizontal refraction associated solely with an
inhomogeneous bottom structure, can be expected.

This paper studies the effect of horizontal refraction due to an inhomogeneous
seabed structure in shallow water within numerical simulations employing the mode
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parabolic equation approach [13]. One after another, two models of inhomogeneous seabed
are considered:

1. A simplified model, where the sound speed is only dependent on one spatial coordi-
nate (in the horizontal plane);

2. A realistic model, based on the velocity analysis of 3-D seismic survey data from the
Kara Sea [11].

Because of the lack of knowledge on spatial distribution of bottom density and sound
attenuation coefficient, these parameters are assumed to be constant in both models. More-
over, shear waves are neglected owing to the fluid nature of the sediments in the region.

2. Acoustic Pressure Field in an Inhomogeneous Waveguide

Complex amplitude of the 3-D pressure field P(x, y, z) in a waveguide with a range-
and depth-dependent bottom sound speed structure cb(x, y, z) is calculated by solving the
mode parabolic equations. In simulations, the scenarios of a negligible mode coupling are
selected. It also means that horizontal gradients of bottom parameters along the acoustic
track is much smaller than those across the track. The water column is assumed to be a
homogeneous layer of a constant depth H, with a sound speed cw and density ρw.

To analyze possible 3-D effects, adiabatic normal modes are considered either sepa-
rately or as a superposition. The total pressure field at a given point (x, y, z) can be written
as a sum of M local normal modes Ψl(z; x, y) [14]

P(x, y, z) =
M

∑
l=1

Al(x, y)Ψl(z; x, y). (1)

The l-th mode amplitude Al(x, y) satisfies the equation

∂2 Al
∂x2 +

∂2 Al
∂y2 + ξ2

l (x, y)Al(x, y) = 0, (2)

where ξl(x, y) = ql(x, y) + iαl(x, y) is the horizontal wavenumber of the l-th mode. Note
that both the real and imaginary parts of eigenvalues are range-dependent.

To obtain the local horizontal wavenumbers ξl(x, y) and mode profiles Ψl(z; x, y), the
following Sturm–Liouville problem is solved numerically

d2Ψl
dz2 +

[
k2

w − ξ2
l (x, y)

]
Ψl(z; x, y) = 0,

Ψl(z; x, y)|z=0 = 0, (free surface)[
Ψl(z; x, y) + g(ξl ; x, y) dΨl

dz

]
z=H

= 0, (water− bottom interface).

(3)

Here, kw = ω/cw is the wavenumber in water, ω = 2π f is the sound source frequency,
g(ξl ; x, y) = iZ1(ξl ; x, y)/ωρw, Z1(ξl ; x, y) is the total effective impedance of the bottom,
which is defined by the bottom sound speed distribution cb(x, y, z), density ρb, and attenua-
tion coefficient βλ. To calculate the total effective impedance, one can use Equation (3.3.12)
in [15] for the layered bottom.

Following the derivation by Collins et al. [16], by assuming outgoing waves only (no
backscattering) and using Padé approximation of the operator square root, Equation (2)
can be reduced to the parabolic equation in the form

∂Al
∂x

= iq0
l

(
1 + ∑ n

j=1
aj,n Xl

1 + bj,n Xl

)
Al . (4)

The coefficients aj,n and bj,n are selected to provide accuracy and stability constraints;
Xl = q0

l
−2 (∂2/∂y2 + ξ2

l − q0
l

2), where q0
l is the real part of the l-th mode horizontal

wavenumber at the sound source location. Numerical solution of Equation (4) is found by
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employing the split-step Padé algorithm implemented in the RAM code [17], which can be
carefully configured and adapted for calculations in the horizontal plane.

The acoustic propagation direction is primarily along the x-axis. The gradients of
bottom parameters are oriented mainly along the y-axis. At an initial range, the modal
excitation is proportional to the amplitude of the mode at the sound source location (0, 0, zs),
Al(0, y) ∼ Ψl(zs; 0, 0), where zs is the source depth.

Sound attenuation in the horizontal plane is characterized by two-dimensional (2-D)
transmission loss of individual modes

TLl(x, y) = −20 lg
|Al(x, y)|
|Al(x1, 0)| (5)

and by 2-D depth-averaged transmission loss of the total acoustic field P(x, y, z)

TL(x, y) = −10 lg

∫ H
0 |P(x, y, z)|2dz∫ H

0 |P(x1, 0, z)|2dz
, (6)

where x1 = 1 m.

3. Numerical Simulations within a Simplified Model

Consider the idealized shallow-water waveguide shown in Figure 1, which repre-
sents a homogeneous water layer of a constant depth H over an inhomogeneous bottom
halfspace. The waveguide parameters are given in Table 1.
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Figure 1. Simplified waveguide model demonstrating the sound speed structure cb(x, y, z) in a
transitional region between an acoustically soft and hard bottom; black circle depicts the location of a
sound source.

Table 1. Waveguide parameters.

Parameter Value

Water depth H 28 m
Sound speed in water cw 1470 m/s

Water density ρw 1000 kg/m3

Bottom density ρb 1850 kg/m3

Bottom attenuation βλ 0.33 dB/λ
Transitional region width ∆y 2000 m

Let us examine sound propagation in the transitional region between an acoustically
soft (cb < cw) and hard (cb > cw) bottom, as depicted in Figure 1. The bottom density
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ρb and attenuation coefficient βλ are constant. Sound speed in the bottom varies as a
piecewise-linear function of y,

cb(y) =


1400 m/s, i f y < −1000 m, (soft bottom)

(1500 + 0.1·y) m/s, i f |y| < 1000 m, (transitional region)
1600 m/s, i f y > 1000 m, (hard bottom).

(7)

To prevent undesirable reflections, artificial absorbing layers are placed on the sides
of the model domain at |y| > 2000 m.

Figure 2 shows the phase speed Vph
l = ω/ql and attenuation coefficient αl of the first

mode (l = 1) plotted vs. sound speed in the bottom cb for frequencies of 29, 55, 81, 108, and
134 Hz. For the purpose of illustration, we choose the bottom sound speed variation from
100 to 2500 m/s, which exceeds the interval of cb in the transitional region. Vertical dashed
lines in Figure 2 demonstrate the boundaries of the region. Note that the phase speed
Vph

1 has a distinct minimum between these lines. The relative “depth” of the minimum is
lower at a higher frequency. By placing a low-frequency sound source in the transitional
region in the vicinity of the modal phase speed minimum, one can expect the effect of
horizontal refraction to be pronounced. It is also important that the modal attenuation
coefficient for the soft bottom is two orders of magnitude greater than for the hard bottom.
The imaginary part of ξl can have a large value, comparable to the real part. This feature
should be carefully treated when solving Equation (4). All these remarks are also true for
other normal modes (l > 1).
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Figure 2. Dependence of (a) the modal phase speed Vph
l and (b) attenuation αl on the sound speed

in the bottom cb for the first mode at different frequencies. Vertical dashed lines limit the transitional
region under consideration.

Acoustic field is calculated for a single sound source placed at the depth of zs = 15 m
in the center of the transitional region, i.e., near the phase speed minimum. To demonstrate
possible 3-D effects, sound propagation is simulated for a frequency of 55 Hz, at which the
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first mode dominates the total field. Figure 3 shows the modal phase speed Vph
1 along the

y-axis and the corresponding trajectories of modal rays calculated by a ray tracing code,
BELLHOP [18], in the horizontal plane. The bending of the rays is clearly seen, which
reveals the effect of horizontal refraction. The maximum angle of refraction is 7.5◦. (The
angle of refraction is defined as the angle between the source-receiver direction and the
actual ray trajectory at the receiver.)
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Now we estimate the effect of the refraction on the acoustic intensity distribution in
the horizontal plane. Figure 4a shows the calculated 2-D transmission loss TL at 55 Hz.
(In this case, transmission loss of the first mode approximates the total transmission
loss, TL ≈ TL1). We notice a strong azimuthal anisotropy of TL, that is explained by a
significant spatial variability of modal attenuation, but not by the horizontal refraction
itself. To highlight the effect of horizontal refraction, the transmission loss TL is compared
to the transmission loss TL0 calculated using the N × 2-D approximation. As TL, TL0 can
also be defined by Equation (6) and Equation (1), but the modal amplitude Al in Equation
(1) is found from Equation (4) with the complex wavenumber ξl(x, y) = ql(x, y) + iαl(x, y)
replaced by ξ̃l(x, y) = q0

l + iαl(x, y), i.e., by keeping the spatial variability only in the
imaginary part. In fact, it means that we use the adiabatic N × 2-D approximation, where
mode coupling is neglected. (The proposed approach is valid only for the depth-averaged
intensity estimates.) According to [12], the effects of mode coupling are secondary to those
of horizontal refraction even at higher frequency, 300 Hz, in a ~80 m deep waveguide with
a rough seafloor. In [19], the applicability of adiabatic approximation to depth-averaged
transmission loss calculations is demonstrated for a single source in shallow water with a
range-dependent bottom structure.

The spatial distribution of the transmission loss difference ∆TL = TL0 − TL at a
frequency of 55 Hz is shown in Figure 4b, which exhibits an additional insonification of the
transitional region due to the horizontal refraction effect. This is explained by the fact that
a curved ray, despite its longer trajectory, travels a shorter distance in the region of strong
attenuation compared to a straight ray. The maximum increase in amplitude under given
conditions reaches ∆TL = 22 dB at 10-km range from the sound source.

In the multimodal regime at higher frequencies, the effect of horizontal refraction
weakens for the first mode, but can still be exhibited in the acoustic field of other modes.
However, the amplitudes of those modes are attenuated with range more rapidly than the
amplitude of the first mode. Figure 4c shows the 2-D transmission loss TL at 134 Hz, at
which the acoustic field is effectively formed by the first three normal modes. Owing to
the dominance of the first mode in the full field, the maximum difference in propagation
loss between the three-dimensional case and the N × 2-D approximation does not exceed
∆TL = 12 dB at 10-km range (see Figure 4d). Additional calculations for other positions of
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the sound source along the y-axis show that the transmission loss difference ∆TL decreases
to 6 dB, if the source is shifted by ±500 m relative to the initial location.
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Figure 4. Contours in dB of the depth-averaged transmission loss TL in the horizontal plane at (a) 55
and (c) 134 Hz; the difference between transmission loss ∆TL obtained by mode parabolic equation
solution and N × 2-D approximate solution at (b) 55 and (d) 134 Hz.

Note that the indicated effect of horizontal refraction, in principle, can be observed
not only in the transitional region between an acoustically soft and hard bottom, but also,
for example, in a region of hard bottom with a variable sound speed, which is close to the
sound speed in water.

4. Numerical Simulations for a Real Seabed Model in the Kara Sea

The results of the previous section show the effect of horizontal refraction in an
idealized waveguide of a constant depth, having the “soft bottom-hard bottom” transitional
region. The key remaining question is, do such environments exist in a real ocean? Indeed,
in order to observe horizontal refraction, the transitional region must be sufficiently long
(at least several kilometers in length) and have a fairly regular structure.

An example of a shallow-water waveguide with an inhomogeneous bottom and almost
constant water depth is presented in Figure 5, which shows the sound speed structure
in one of the regions of the Kara Sea. This complicated range- and depth-dependent
structure is obtained by the velocity analysis of 3-D seismic survey data [11]. To study
three-dimensional acoustic effects, we choose a rectangular area of the bottom, marked in
Figure 5a by the dashed ellipse and shown separately in Figure 5b. The selected area is
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characterized by strong horizontal gradients of the sound speed in the seabed. The water
depth there is equal to 28 m over the whole area.
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Figure 5. (a) The 3-D structure of the sound speed in one of the regions of the Kara Sea (the dashed
ellipse indicates the part selected for numerical simulations; continuous dark blue area represents the
water column); (b) horizontal slice of the sound speed structure inside the seabed at the depth of
41 m below the sea surface in the selected region; black circle depicts the location of a sound source
(0, 0, 15 m).

As shown in Figure 5, the sound speed in the seabed cb varies from 1460 m/s (blue
areas) to 1700 m/s (yellow areas). It is important that there exist some extended zones,
where the sound speed cb in the upper sediments is approximately equal to the sound
speed in water cb ≈ cw = 1460 m/s. The existence of such zones can be explained by the
presence of gas-saturated or water-saturated silty sediments. The bottom density ρb is
assumed to be constant and equal to 1850 kg/m3, which is supported by the core sample
analysis results [11]. Due to the lack of information on the sound attenuation coefficient in
the seabed, its value is taken equal to 0.33 dB/λ.

Figure 6 shows the distributions of the phase speed Vph
l and attenuation coefficient

αl of the first mode at a frequency of 55 Hz in the selected region. One can see a strong
variability of the modal phase speed in the zone of a low sound speed in the seabed,
−2000 m < y < 0 m. The maximum phase speed gradient is equal to 0.06 (m/s)/m. The
same zone is also characterized by the largest values of modal attenuation αl (up to
1.5 × 10–3 1/m or 13 dB/km).

The presence of a canyon-like distribution of the phase speed shown in Figure 6a,
leads to the effect of horizontal refraction, which is demonstrated in Figure 7 for a 55-Hz
sound source located at (0, 0, 15 m). As in the case of the idealized waveguide model, we
note the curvature of modal rays in the horizontal plane (the modal rays are depicted by
white lines in Figure 7a). The maximum angle of refraction is 6◦. The maximum difference
in the transmission loss ∆TL between the mode parabolic equation solution and N × 2-D
solution, is observed in the zone of a low sound speed in the sediments, and equals to 7 dB.
If the sound source is moved along the y-axis to the point (0, −1000 m, 15 m), which is in
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the middle of the “canyon”, the transmission loss difference increases up to 10 dB. The
corresponding results at 134 Hz show the maximum difference of 4 dB. The main factor
leading to the decrease of ∆TL in the real simulation with respect to the simplified model
is that the modal phase speed gradient is not constant along the x-axis, and its mean value
is less than that in the idealized waveguide.
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Figure 7. (a) Contours in dB of the depth-averaged transmission loss TL in the horizontal plane at
55 Hz in the selected region of the Kara Sea (white lines show the modal rays of the first mode);
(b) the difference between transmission loss ∆TL obtained by mode parabolic equation solution and
N × 2-D approximate solution at 55 Hz.
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5. Discussion and Conclusions

The simulated depth-averaged intensity and transmission loss demonstrate the effect
of horizontal refraction due to an inhomogeneous bottom structure, which can be significant
even if the water column has a constant sound speed and depth. This effect is most
pronounced at low frequencies in the zones, where the bottom sound speed is close to that
in water.

For the realistic model of a shallow-water waveguide in the Kara Sea, the horizontal
refraction at 55 Hz and 10-km range leads to the decrease in the depth averaged transmis-
sion loss by 7 dB relative to the N × 2-D approximation. In this case, the maximum angle
of refraction is 6◦. This value is of the same order of magnitude as in environments with a
typical sloping bottom (the slope angle is ~0.5◦) or intense internal waves (the amplitude is
~10 m).

The horizontal refraction associated with an inhomogeneous bottom is characterized
by the following features:

1. The redistribution of sound intensity in the horizontal plane is determined not only
by the modal phase speed structure, but also by the modal attenuation;

2. The interference of a refracted and direct modal ray is weakly exposed due to the
strong difference in the modal attenuation coefficient along the rays;

3. The degree of horizontal refraction strongly depends on the sound source location;
the maximum effect is observed for a sound source placed above the bottom, where
the sound speed is close to that in water.

The results of this work can be important, for example, for more accurate estimates
of safety zone boundaries introduced for marine mammals on the Arctic shelf in the
areas with a high level of anthropogenic noise. Another possible application is an array-
performance prediction when estimating source bearing and range in shallow water with
inhomogeneous bottom, since their estimates can be affected by horizontal refraction.
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