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Abstract: Freak waves have great peak energy, short duration, great contingency, and strong nonlinear
characteristics, and can cause severe damage to ships and marine structures. In this study, numerical
simulations in conjunction with experimental tests are applied to study air gap response and wave
slamming loads of a semi-submersible offshore platform under a freak wave. A three-dimensional
wave tank, which is created based on the computational fluid dynamics (CFD) method, is applied
to study the hydrodynamic responses of a semi-submersible platform. The numerical model of the
tank and offshore platform system are checked according to the experimental results. A typical freak
wave is modelled in numerical wave tanks by the linear superposition method, and its significant
wave height is 13.03 m. It is found that the freak wave is closely associated with the wave slamming.
The appearance of the freak wave gives rise to a negative air, gap which appears on the side of the
back wave surface at the bottom of the deck box, and considerable slamming pressure is generated.
Furthermore, the wave run up at the junction of the column and the buoyancy tank is also seen due
to the freak wave.

Keywords: semi-submersible platform; freak wave; CFD; air gap response; wave slamming

1. Introduction

In recent decades, waves and tides [1] have been studied extensively, including the
movement of material by the sea and the effect of wave action on structures. Much maritime
distress indicates that freak waves cause severe damages to ocean platforms. The genera-
tion mechanism of freak waves and their interactions with floating structures have been
well studied by numerical simulations or experimental methods in previous researches.
However, there is no mature theory to explain nonlinearity and energy concentration char-
acteristics caused by freak waves. Generalized wave slamming is also validated for wave
slamming due to freak waves. In previous numerical simulations, the potential flow theory
and Morrison equation were mainly used. Baarholm et al. [2] used three numerical methods
to solve the boundary value problem and obtained the slamming pressure expression at
the bottom of the deck of a fixed offshore platform. Jiang et al. [3] analyzed the wave loads
of floating offshore platforms based on the potential flow theory. The variation of wave
loads on floating offshore platform under different environmental conditions was obtained.
Unfortunately, the potential flow theory neglects the viscosity of water, and the wave
slamming problem with strong nonlinearity needs to be further studied. Zhang et al. [4]
present a numerical study of the impact of a two-dimensional plunging wave on a rigid
vertical wall in the context of potential flow, but the slamming characteristics of complex
three-dimensional moving structures are obviously different from them. Faltinsen [5] and
Jain [6] proposed a classical model to approximate the interaction between small amplitude
regular waves and simple structures. However, the accuracy of the traditional simplified
model was significantly reduced as the physical size of the model and the complexity of
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the structural configuration increased. Therefore, Nielsen [7] applied the integral boundary
method to improve the accuracy of numerical simulations, and it was pointed out that it
is able to preliminarily deal with wave slamming on complex models. At the same time,
large-scale model tests are becoming popular methods in studying wave thumping. Liu
et al. [8] reviewed the slamming pressure of a semi-submersible platform in different waves
by the model test method. They found that the slamming pressure and frequency were
the most serious in the quartering sea wave condition, which was followed by the head
sea wave condition, and were relatively mild in the oblique wave environment. Huo [9]
conducted nonlinear numerical simulations on the slamming frequency and slamming
load of a semi-submersible platform.

The air gap is one of the important concerns during the design procedure of offshore
platforms. As a classical theory of fluid mechanics, potential flow theory was widely
adopted in investigating the air gap of offshore platform due to its high efficiency. A
numerical simulation in conjunction with experimental tests was applied to analyze the air
gap response. Simos et al. [10] carried out model tests to study hydrodynamic responses of
a semi-submersible platform, and it was found that the run up of wave near the column
was often ignored in previous studies. Lwanowski et al. [11] used Com Flow software to
analyze the air gap of an offshore platform and compared the numerical results with the
experimental ones. Li et al. [12] studied air gap responses of a semi-submersible platform
under severe environmental conditions.

A detailed study of the freak wave generation mechanism needs to be investigated to
understand the freak wave slamming phenomenon more comprehensively. Generally, the
modelling theory of freak waves can be divided into two categories: linear and nonlinear
models. Compared to more computationally complex and nonlinear models, the linear su-
perposition model (Longuet-Higgins wave model) [13] has been studied more extensively,
and it has been successfully applied to generate freak waves. Deng et al. [14] and Alexander
I. Dyachenko et al. [15] used nonlinear models to generate freak waves. These models
deal with freak waves as a superposition of a series of waves with different frequencies
and phases. Distortional waves can be generated at specific times and spaces by using
appropriate models. Zhang et al. [16] and Gao et al. [17] used a linear superposition model
to generate freak waves. Because of the tremendous wave height, swift propagation speed,
and extremely destructive characteristics of freak waves, it is important to study the safety
of marine structures under the attack of freak waves. Huang et al. [18] generated a freak
wave at specific times and positions by combining 100 groups of cosine waves, and the
results were compared with experimental results. Zhang et al. [19] generated freak waves
by utilizing wave superposition theory. They studied the effect of freak waves on motions
of a rigid plate and the slamming pressure. The local slamming pressure distribution of
rigid plate subjected to freak wave slamming was obtained. Based on the improved double
wave train superposition model of the Longuet-Higgins’s theory, Zhang et al. [20] carried
out numerical simulation to study freak waves. Wei et al. [21] constructed model tests
on wave load characteristics of an inward capsized ship under a freak wave. Based on
the linear wave superposition theory, a freak wave was generated in a towing tank. To
investigate the influence of ship speed on wave load, model tests of an inward capsized
ship under a freak wave were carried out. In addition, compared with regular waves,
many waveforms have different effects on the hull. Peregrine DH [22] concluded that
the more violent impacts of water waves on walls create velocities and pressures having
magnitudes much larger than those associated with the propagation of ordinary waves
under gravity. CLAUSE G et al. [23] described techniques to synthesize nonlinear gravity
waves in irregular seas. Extreme waves registered in nature were simulated in a physical
wave tank. Furthermore, the impact of the New Year Wave on a semi-submersible and two
stationary ships was investigated.

In this study, the air gap response to motion and wave slamming characteristics of
offshore platform under freak wave are studied by combining numerical simulation with
experimental tests. A typical freak wave is built in the numerical tank based on CFD by the
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method of linear superposition. The air gap response to motion and slamming pressure
distribution characteristics of the platform under the effect of a freak wave is studied, which
provide a reference for the platform design under freak wave. This study is organized as
follows: a theoretical study on numerical wave tanks, the establishment and verification of
a numerical model, and a study on the load distribution of a platform under a freak wave
in numerical simulation.

2. Theoretical Study on Numerical Wave Tanks
2.1. Governing Equations and Discrete Methods

The mathematical model of numerical wave tank consists of continuity equation and
N-S equation:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (i, j = 1, 2, 3) (1)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xi
=

∂

∂xj

[
µ(

∂ui
∂xj

+
∂uj

∂xi
)

]
− ∂p

∂xi
+ ρ fi (i, j = 1, 2, 3) (2)

where ρ is the fluid density, p is fluid pressure, µ is the dynamic viscosity coefficient, fi is
mass force, ui is the velocity component of fluid particle in i direction, and t is time.

In this paper, the K-ω turbulence model is selected, and the governing equation of
the flow field is discretized by the finite volume method. The convection term and the
diffusion term are discretized by the second-order upwind scheme. Finally, the SIMPLE
algorithm is used to correct the pressure field and velocity field.

2.2. Free Surface Tracking Method

For tracking the free wave surface, the volume of fluid method is used for processing.
VOF method is mainly used to determine the shape and position of the free surface by the
ratio function of the fluid volume in the grid cell and the total volume of the grid. The
equation is:

∂aq

∂t
+

∂(uiaq)

∂xi
= 0 (q = 1, 2) (3)

where a1 and a2 are the volume fraction of air and water phase, respectively. The free wave
surface aq is 0.5.

When using this method to capture the free surface, it is necessary to reconstruct
the interface to process the fuzzy interface for the second time to ensure the accuracy of
the results.

2.3. Numerical Wave Making Theory of Freak Wave

According to the current academic requirements, the determination of freak waves
should meet the following three conditions:

(1) The maximum wave height of a freak wave is not less than twice as much as the
significant wave height;

(2) The maximum wave height of the freak wave is greater than twice the height of the
adjacent wave;

(3) The ratio of the peak to the height of the freak wave is about 0.65.

The wave train superposition model for freak wave simulation is defined as follows:

η(x, t) =
M

∑
1

ai cos(kix + ωit + εi) (4)

Generally, the value of x is zero, and the above formula is simplified as:

η(x, t) =
M

∑
1

ai cos(ωit + εi) (5)
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ωi+∆ω

∑
ωi

1
2

a2
i = S(ωi)∆ω (6)

where M is the number of waves. ai and ωi are the amplitude and frequency of the i-th
wave, respectively. εi is the initial phase of the i-th wave, which is randomly selected in the
range of (0, 2π). ∆ω is the frequency difference, and η(x,t) is the wave height of each wave.
S(ωi) is the wave spectral density function.

To obtain more accurate wave elevations, a correction function is introduced to revise
the wave elevations obtained in the above expression:

η(x, t) =
20

∑
2

ai cos(ki(x− xc) + ωi(t− tc) + εi)+ ama1 cos[k(x− xc)+ (βmω1)(t− tc)] (7)

ωi+∆ω

∑
ωi

1
2

a2
i = S(ωi)∆ω (8)

S(ωi) =
0.008g2

ω5
i

exp

(
− 0.74g4

u19.5
4ω4

i

)
(9)

u19.5 = 6.85
√

Hs (10)

ω2
i = ki × g× thkd (11)

where in Formula (7), the selected target spectrum type is P-M, and αm and βm are correction
coefficients. When αm is 25.12 and βm is 4.43 [13], the correction effect is the best. In
deepwater, thkd is approximately equal to the 1, ωi

2 is the product of ki, and g. u19.5 is the
wind speed from the sea surface to the height of 19.5 m. g is the acceleration of gravity, tc is
the occurrence time of freak wave, and xc is the location of freak wave.

2.4. Numerical Wave Making Method of Freak Wave

The linear superposition method is a conventional method used in wave tanks as well
as in numerical wave tanks. The generation method for freak waves in this study is based
on the classical Longuet-Higgins model, which linearly superposes 20 different cosine
waves. The wave period and wave height of these 20 cosine waves are shown in Table 1,
where H is the wave height and T denotes the wave period. In order to make waveform
satisfy the definition of freak wave in a shorter wave train as far as possible, the initial
phase is set as zero for all cosine waves. The cuboid computing domain is adopted. The
distance between the entrance and exit of the computational domain and the centroid is
set as 210 m and 280 m, respectively. The length of the wave elimination region is set as
1.4 times the wavelength. The free surface is meshed by prism layer, and the part outside
the free surface is meshed by cutting body.

Table 1. The period and wave height of 20 cosine waves.

Cases T (s) H (m) Cases T (s) H (m)

A1 28.56 0.05 A11 12.08 0.94
A2 25.13 0.30 A12 11.42 0.84
A3 22.44 0.72 A13 10.83 0.76
A4 20.27 1.08 A14 10.30 0.68
A5 18.48 1.29 A15 9.82 0.61
A6 16.98 1.35 A16 9.38 0.55
A7 15.71 1.33 A17 8.98 0.50
A8 14.61 1.25 A18 8.61 0.45
A9 13.66 1.15 A19 8.27 0.41

A10 12.82 1.04 A20 7.95 0.38
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Figure 1 shows the superposition of 20 cosine waves by numerical simulation. The
maximum wave height of the freak wave is 26.2 m, and the significant wave height is
13.03 m. The ratio of the maximum wave height to the significant wave height is greater
than 2.0. The ratios of the maximum wave height to the adjacent wave heights are 2.05 and
3.47, respectively. The peak wave height is 18.04 m, and the ratio of the freak wave crest
to wave trough µ is 0.696. The above three results verify that the superposition model is
accurate enough, which is beneficial to the numerical simulation of freak waves and the
study of wave slamming of platforms under freak wave.
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Figure 1. A superposition of 20 cosine waves. (a) Time history of wave elevations by numerical simulation. (b) Freak wave
profile.

3. Establishment and Verification of Numerical Model
3.1. Selection of Similarity Ratio

Bulleted lists look like this: a double buoyancy tank semi-submersible platform is
studied. In the numerical simulation, the smaller primary mesh size can present more
accurate estimations to the flow field and the motion responses of floating body. A large-
scale ratio will affect the size of grid, which is easy to give rise to wave attenuation, motion
distortion, and so on. However, the number of grids increases significantly with the
decrease of scale ratio, which would result in redundant computing costs. Considering the
conditions of the numerical simulation, the ratio of 1:20 is used in this study.

It is necessary to determine the size of the model structure before model tests. To
simulate the physical mechanisms and hydrodynamic properties of fluids, model test
and the prototype must follow three principles, including geometric similarity, kinematic
similarity and dynamic similarity. Considering the cost of computation time, the capacity
of wave maker, and the size of tank, the model scale is determined as 1:100 in this study.

3.2. Description of the Platform Model

Experimental tests were conducted in the wave basin of Jiangsu University of Science
and Technology (38 m long, 15 m wide, and 1 m deep). A piston wave generator was
installed on one end of the basin to generate incident waves, and on the opposite end of
wave generator a wave-absorbing beach was installed to reduce reflected waves. When
the wave reached the end of the tank, the wave climbed, along with the wave-eliminating
equipment. The wave was then crushed by the wave-eliminating gravel. A large amount of
wave energy was consumed, thereby effectively suppressing the residual wave. In addition,
since the ratio of the experimental water depth (1 m) to the draft (0.155 m) was greater than
4, the shallow water effect can be ignored.

The numerical and experimental models are shown in Figure 2. The origin of the
coordinates was defined at the centroid of the overall structure. The main dimensions and
hydrostatic parameters of the platform are shown in Tables 2 and 3, respectively.
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Table 2. Dimensions of platform body and model.

Structure Name Actual Size Numerical Model Size Test Model Size Unit

Buoyancy tank (L × w × h) 104.5 × 3.9 × 10.05 5.225 × 0.195 × 0.5 1.045 × 0.039 × 0.1005 m
Main deck height 37.55 1.8775 0.3755 m

Double bottom height 29.55 1.4775 0.2955 m
Center spacing of buoyancy tanks 37.5 1.875 0.375 m

Longitudinal column spacing 55.0 2.7515 0.55 m
Working draft/drainage volume 15.5/38,400 0.775/4.8 0.155/0.0384 m/m3

Table 3. Hydrostatic parameters of full-scale model.

Center of Gravity (m) Center of Buoyancy (m) Radius of Gyration (m)

longitudinal
center of gravity

(LCG)

transverse center
of gravity

(TCG)

vertical center
of gravity

(VCG)

longitudinal
center of
buoyance

(LCB)

transverse center
of buoyance

(TCB)

vertical center
of buoyance

(VCB)
Rx Ry Rz

0.05 0.0 23.4 0.1 0.0 6.5 29.9 31.6 34.5

3.3. Platform Monitoring Point Location

Figure 3 shows the distribution of monitoring points on the semi-submersible platform.
The thump pressure monitoring points on the lower surface of the semi-submersible
platform riser and upper deck are marked as L1–L8, A1–A6, B1–B6, D1–D7, and LZ1–LZ7.
The coordinates of the monitoring points are shown in Table 4. The middle and lower
positions of the front surface of the column are vulnerable to wave slamming.
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Table 4. The coordinates of the monitoring points.

Monitoring Points X (m) Y (m) Z (m) Monitoring Points X (m) Y (m) Z (m)

K 35.25 −27 13.55 B4 27.5 −19.25 21
L1 35.25 24 12 B5 27.5 −19.25 24
L2 35.25 24 14 B6 27.5 −19.25 27
L3 35.25 24 16 D1 35.25 34.75 29.55
L4 35.25 24 18 D2 35.25 28.75 29.55
L5 35.25 24 20 D3 35.25 22.75 29.55
L6 35.25 24 22 D4 35.25 16.75 29.55
L7 35.25 24 24 D5 35.25 10.75 29.55
L8 35.25 24 26 D6 35.25 4.75 29.55
A1 27.5 34.75 12 D7 35.25 0 29.55
A2 27.5 34.75 15 LZ1 −19.75 34.75 29.55
A3 27.5 34.75 18 LZ2 −19.75 28.75 29.55
A4 27.5 34.75 21 LZ3 −19.75 22.75 29.55
A5 27.5 34.75 24 LZ4 −19.75 16.75 29.55
A6 27.5 34.75 27 LZ5 −19.75 10.75 29.55
B1 27.5 −19.25 12 LZ6 −19.75 4.75 29.55
B2 27.5 −19.25 15 LZ7 −19.75 0 29.55
B3 27.5 −19.25 18

As can be seen in Figure 3, L1–L8 are set uniformly on the surface of the columns of
the numerical model to investigate the wave slamming loads on the column along with
height, and the distance between each two monitoring points is 2 m. Among them, L8 is
located on the junction of the buoyancy tank and the column. A1–A6 are monitoring points
on the front column, and B1–B6 are arranged on the rear column. The vertical distance
between A1 and A6 is 3 m. A1–A6 and B1–B6 are used to analyze the wave slamming in
beam sea. In addition, the bottom of the upper deck is a position that is often subjected to
the wave slamming. Therefore, the slamming load on the bottom of the upper deck should
be calculated. D1–D7 and LZ1–LZ7 are placed on the front and rear vertical columns to the
center line of the deck, respectively, with an equal distance of 6 m.

To further verify the numerical model, the numerical pressure slamming of K-point at
the midline of the vertical surface of the column is compared with the numerical one.

3.4. Verification of Numerical Model
3.4.1. Wave Making and Wave Elimination of Numerical Tank

The accuracy of the numerically simulated waves should be verified before the calcu-
lation of slamming loads. In this study, the boundary wave making method is adopted.
The velocity and wave surface expressions of the air and water phase are defined at the
entrance boundary. The water surface is captured by the fluid volume function method
(VOF). The wave is a linear micro amplitude wave based on the fifth-order linear wave
theory. Dong et al. [24] claimed that the wave energy density of the fifth-order Stokes is
more consistent with the numerical integration result, compared with other wave models.

Damping dissipation regions are installed at the outlet and both walls of the tank to
improve the stability of the wavefield in this area. In this study, the length of the wave
elimination area is set as 1.5 times the wavelength. The schematic of the wave elimination
region is shown in Figure 4.
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Figure 5. Comparison between theoretical numerical and waveform. (a) 4 m from the calculation domain entrance. (b) 12 

m from the calculation domain entrance. 
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ulation. In the numerical simulation, the mesh size of the overlapping area is closely as-

sociated with the foundation size. The arrangement of the wave gauge in the numerical 

Figure 4. Wave elimination region.

3.4.2. Simulation and Theoretical Comparison of Numerical Wave Generation

In the CFD software STARCCM+ used in this study, the monitoring points are set in
the numerical wave tank to obtain the wave elevation time series. Two monitoring points
are placed at the inlet (4 m) and middle (12 m) to track wave elevations, and the numerical
results are compared with the analytical ones, as seen in Figure 5, where good agreements
between them can be found, which shows the accuracy of the numerical wave tank in
simulating the fifth-order regular wave.
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from the calculation domain entrance.

3.4.3. Verification of Convergence of Numerical Tank Grid

The change of mesh size has a significant influence on the attenuation of waves.
Among them, the foundation size has the greatest influence on the accuracy of wave
simulation. In the numerical simulation, the mesh size of the overlapping area is closely
associated with the foundation size. The arrangement of the wave gauge in the numerical
wave tank is shown in Figure 6. It is used to calculate the influence of the following
different mesh sizes on the results.
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Figure 7. Wave time history of three foundation sizes. (a) Foundation size: 1 m. (b) Foundation size: 2 m. (c) Foundation 

size: 3 m. 

Table 5. The transformation ratio according to the Froude similarity. 

Parameter Label Conversion Coefficient 

Length Ls/Lm α 

Area As/Am α2 

Period Ts/Tm α1/2 

Force Fs/Fm γα3 

3.4.4. Computational Domain and Grid Generation 

Considering the flow field integrity and grid number limitation in the CFD software 

STARCCM+, selecting the computational domain is crucial. In this study, a rectangular 

Figure 6. Installation position of wave gauge.

In this study, a typical case (T = 10 s and H = 6 m) is chosen to verify the grid
setup of the numerical simulation. As shown in Figure 7, for the wave parameters after
reduced transformation in the numerical simulation process (T ≈ 2.23 s, H = 0.3 m), the
transformation ratio according to the Froude similarity is shown; in Table 5, α represents the
scale ratio, and density correction factor γ is 1.025 (ρseawater/ρfreshwater). Generally, the base
size of the grid should be set to 1/50–1/100 of the wavelength (λ) in the numerical wave
simulations. The calculated wavelength is obtained as 156 m according to the wavelength
λ (=1.56 T2). Three foundation sizes—1 m, 2 m, and 3 m—are discussed to study the
influence of mesh size on generated waves. As shown in Figure 7a,b, good agreement
between the numerical solutions and theoretical ones for various mesh size values over the
overall tested region can be found. With the increase of the foundation sizes, a sizeable
discrepancy between the numerical and theoretical results can be found. As shown in
Figure 7c, there is apparent wave attenuation after the calculation time exceeds 15 s. By
considering the accuracy of wave simulation and wave attenuation, a more stable mesh
size setting with a foundation size of 1 m is used.
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size: 3 m.

Table 5. The transformation ratio according to the Froude similarity.

Parameter Label Conversion Coefficient

Length Ls/Lm α
Area As/Am α2

Period Ts/Tm α1/2

Force Fs/Fm γα3

3.4.4. Computational Domain and Grid Generation

Considering the flow field integrity and grid number limitation in the CFD software
STARCCM+, selecting the computational domain is crucial. In this study, a rectangular
parallelepiped calculation domain of 39.75 m × 22.00 m × 12.00 m is adopted. As shown
in Figure 8, the free liquid surface acted as the dividing line in the numerical wave tank
with gas on the top and liquid on the bottom. The distances of the entrance and exit of the
calculation domain to the center of mass of the platform are 13.1 m and 26.5 m, respectively.
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A wave-eliminating region is defined to reduce the damping layer set by the reflection after
the wave was transmitted to the pressure boundary. The mooring system consists of eight
high-density polyethylene taut moorings, and they are symmetrically arranged. The cable
outlet angle is 30 degrees. The anchor radius is 200 m. All eight mooring lines are 226 m
long, and they are in tension and maintain a certain pretension. The specific parameters of
mooring lines are shown in Table 6.
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Table 6. Parameter of mooring line.

Type Diameter
(mm)

Wet Weight
(kg/m)

Dry Weight
(kg/m)

Axial Rigidity
(N)

Breaking Strength
(N)

Entity 114 7 0.3 2.57 × 108 7.35 × 106

The overlapping grid technology in CFD software STARCCM+ is used to mesh the
semi-submersible platform. The free surface part adopts the prismatic grid, and the
cut volume grid is used for the rest part. The mesh sizes of focus areas, including free
surface, strut, and buoyancy tank surface, are refined. The wave encryption grid and the
overlapping area grid are shown in Figure 9. Since the exit of the computational domain
is the dissipation region, the grid of the water surface in the dissipation region is not
encrypted to minimize the number of grids and reduce the workload.
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To accurately capture the nonlinear characteristics of shallow-water waves and verify
the accuracy of the numerical tank, the incident wave model is defined as fifth-order Stokes
regular wave. The realization of fifth-order Stokes regular wave in numerical tank also laid
a foundation for the subsequent simulation of freak wave. The draft is 15.5 m, and the flow
rate is 1.07 m/s, the wave height is 15.8 m, and the period is 9.39 s (in full scale).

3.4.5. Attenuation Test with Experimental Results

Errors in the model structure, slight wave attenuation, and human operations will
bias the results. The decay tests are repeated five times, and average values of these results
are determined as the final results to ensure the accuracy. The numerical and experimental
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results of the natural periods of the platform are shown in Table 7. Figure 10 shows the
decay curves in different degree of freedoms.

Table 7. Natural period of platform.

Degrees of Freedom Model Period (s) Numerical Simulation Period (s) Error Percentage

Heave 20.3 20.9 2.96%
Roll 33.6 33.8 0.6%
Pitch 30.0 29.9 −0.33%
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The difference between the numerical simulation period of heave, roll, and pitch,
and the model period, is 2.96%, 0.6%, and −0.33%, respectively. The results are relatively
close and are controlled by 5%, which verifies the accuracy of the grid size and calculation
method in the numerical simulation.

3.5. Analysis of Slamming Pressure

To verify the accuracy of the finite element model in the CFD method and the feasibility
of the analysis method, two cases of typical working conditions are studied in model tests.
The measured and simulated slamming pressure time series are compared. The occurrence
time, peak value, and error range of slamming are discussed.

The head sea wave condition with H(wave height) of 20 m, T(wave period) of 11 s
is studied, which corresponds to H of 0.2 m, T of 1.1 s in model tests. The numerical and
experimental wave-slamming time series at the K-point (the K-point at the midline of the
vertical surface of the column, as shown in Figure 3) are compared in Figure 11, where
three stable periods are used for the analysis. In Figure 11, it can be found that:

(1) Both the numerical and test results show that the slamming period is about 11 s,
which indicates that the numerical simulations are accurate enough and experimental
tests are well conducted;

(2) The simulated slamming pressure time series have the same trend as the experi-
mental ones. The results show similar characteristics: short duration and significant
nonlinearity;

(3) The peak values of numerical slamming pressures are 230.9 kPa, 250.18 kPa, and
223.04 kPa, respectively, in these three wave periods, and the measured slamming
peaks are 227.76 kPa, 240.54 kPa, and 218.13 kPa. The differences between them are
1.4%, 3.9%, and 2.3%, respectively. The results are close and within the allowable
error range.
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Figure 11. Comparison of K-point slamming pressure under the wave condition with H = 20 m,
T = 11 s.

The heave sea wave condition with H (wave height) of 15 m, T (wave period) of 9 s
is studied, which corresponds to H of 0.15 m, T of 0.9 s in model tests. The results at the
K-point are compared in Figure 12. Again, three stable periods were chosen for the analysis,
and the findings are concluded as followings:

(1) Both the numerical results and the test results show that the period is about 9 s;
(2) The development of slamming pressure at K-point is as follows: firstly, the slamming

pressure increases sharply and steeply to the maximum, then decreases rapidly in 0.2–
0.3 s, and decreases slowly till to the end. If compared with Figure 11, it can be found
that the nonlinearity of the slamming pressure is more evident in this case. However,
the fluctuating water pressure is less prominent than the one in the first case;

(3) The simulated peaks of slamming pressures are 220.50 kPa, 213.85 kPa, and 210.09 kPa,
respectively, and the measured ones are 245.52 kPa, 231.74 kPa, and 232.47 kPa. The
differences between them are −10.2%, −7.7%, and −9.6%, respectively. The results
are close and within the allowable error range.
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4. Study on Load Distribution of Platform under Freak Wave in Numerical Simulation
4.1. Load Characteristics of Slamming Pressure
4.1.1. Slamming Loads in Head Sea

In Section 3, it has been validated that the numerical software is able to present good
estimations of the slamming load. In the following study, the numerical simulations are
carried out to study slamming load due to snap loads.

Figure 13 shows the slamming pressure time series of L1 to L8 when the draft is 15.5 m
and the flow rate is 1.07 m/s. Under the random wave condition between 100 and 150 s, it
can be found that the maximum slamming pressure is only 35.39 kPa (hereafter, this value
is denoted as a normal slamming value). After 158 s, the slamming value increases rapidly,
which is as great as 60.76 kPa and 78.92 kPa at 158.7 s and 165.73 s, respectively, and they
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are 71.69% and 123% higher than the normal slamming value. The maximum slamming
appears at the L1 in 175 s due to the freak wave, and the ultimate value is 137.2 kPa, which
is 287.68% greater than the normal slamming value. It is 73.8% and 96% greater than the
two neighbor slamming values, respectively. L1–L8 are located at a quarter of the front
surface of the column, and the height increases in turn, while the slamming value and the
area formed by the negative air gap are decreased successively. This indicates that the
area when the L1 is located should be strengthened to resist vast slamming loads under
freak waves.
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Figure 13. Pressure time history curve of L1–L8 monitoring point on front surface of column. (a) Global graphics.
(b) Detail graphics.

As shown in Figure 13b, during the period from 165 to 180 s, there are two slamming
waves in a single wave period. That is because the wave’s massive stacking and height
increase in front of the platform when the freak wave impacts the platform for the first time.
Additionally, the platform moves more violently under the influence of the freak wave,
which leads to the platform slamming for the second time. In this slamming process, the
water pressure occupies the main component, mainly manifested by the slow decay process
of the slamming pressure. The effect of the freak wave will cause a sudden change and
rapid increase of the slamming value, and the damage to the platform cannot be ignored.

Figures 14 and 15 show the slamming pressure time histories of D and LZ. It is seen
that the slamming occurs at D2 and D3, and LZ2, LZ3, and LZ4, points. The maximum
pressures of D2 and D3 are 15.13 kPa and 44.4 kPa. The maximum values of LZ2 and LZ3
are 33.3 kPa and 85.3 kPa. The slamming pressures of LZ2 and LZ3 are 220% and 192% of
D2 and D3, respectively, which indicates that the slamming loads on the rear column are
much larger than the front column. The negative air gap appears around the column due
to the run up of wave.
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Negative pressures can be found in Figures 14b and 15b, where it is seen that these 

negative pressures last for around 1 s when the slamming pressure is reduced to 0 kPa. 

The occurrence of negative pressures means that waves subside rapidly after the impact, 

and there is no air to supplement in time. Freak waves run up at the junction of the bottom 

of the deck and the column. Due to the fact that the two vertical plates are connected at 

90°, the waves are squeezed and collided here, showing strong nonlinear characteristics. 

4.1.2. Slamming Loads in Beam Sea 

The slamming load on offshore structure in beam sea is rare; however, it should be 

discussed as an exceptional hazardous working condition. Figure 16a shows the wave 

slamming on the monitoring points arranged on the front column wavefront surface (A1–

A6), and Figure 16b shows the wave slamming on the monitoring points located on the 

rear column wavefront surface (B1–B6). It can be seen that the pressure distribution on the 

front column wavefront surface is relatively gentle and the pressure distribution on the 

rear column wavefront surface is relatively steeper. The reason is that when the wave is a 

transverse wave, the front column wavefront surface is located on the side of the platform, 

and there is no deck cover at the top. However, there is wave interference on the wave 

face of the rear column, and there is a shadowing effect between the column and the deck. 

So, the nonlinear characteristics of wave slamming on the rear column are more promi-

nent. 
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Figure 15. Pressure time series of LZ1–LZ7 on wavefront surface of rear column. (a) Global graphics. (b) Detail graphics.

Negative pressures can be found in Figures 14b and 15b, where it is seen that these
negative pressures last for around 1 s when the slamming pressure is reduced to 0 kPa. The
occurrence of negative pressures means that waves subside rapidly after the impact, and
there is no air to supplement in time. Freak waves run up at the junction of the bottom of
the deck and the column. Due to the fact that the two vertical plates are connected at 90◦,
the waves are squeezed and collided here, showing strong nonlinear characteristics.

4.1.2. Slamming Loads in Beam Sea

The slamming load on offshore structure in beam sea is rare; however, it should be
discussed as an exceptional hazardous working condition. Figure 16a shows the wave
slamming on the monitoring points arranged on the front column wavefront surface
(A1–A6), and Figure 16b shows the wave slamming on the monitoring points located on
the rear column wavefront surface (B1–B6). It can be seen that the pressure distribution on
the front column wavefront surface is relatively gentle and the pressure distribution on the
rear column wavefront surface is relatively steeper. The reason is that when the wave is a
transverse wave, the front column wavefront surface is located on the side of the platform,
and there is no deck cover at the top. However, there is wave interference on the wave face
of the rear column, and there is a shadowing effect between the column and the deck. So,
the nonlinear characteristics of wave slamming on the rear column are more prominent.
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with height rise, resulting in the run up of wave. At this time, the higher position of the 

column is submerged, and pressure is also generated at the top of the column. At t3 and 

Figure 16. Pressure time series of column monitoring points. (a) The monitoring points of A1–A6. (b) The monitoring
points of B1–B6.



J. Mar. Sci. Eng. 2021, 9, 1266 15 of 19

The maximum slamming value decreases with the increase of vertical height. The
maximum values of A1, A2, and A3 are 71.7 kPa, 51.7 kPa, and 33.7 kPa, and the maximum
values of B1, B2, and B3 are 66.4 kPa, 61.9 kPa, and 40.11 kPa. It is seen that the slamming
value of the rear column is slightly smaller than that of the front column, except for A1.

4.2. Characteristics of Slamming Pressure Distribution
4.2.1. Free Surface Variations

Two instantaneous dates, including 175.795 s and 180.615 s, are selected to analyze the
variations of the free water surface, and the results are shown in Figure 17. At 175.795 s,
the wave collided with the deck on the wavefront surface of the front column, and the run
up of wave occurred. When it rises to the top of the column, it squeezes against the bottom
of deck box, and the wave shows unique characteristics such as rolling and breaking. At
180.615 s, the wave propagates to the wavefront surface of the rear column. There is also a
run up of wave and the wave slamming with the bottom deck, resulting in negative air
gap. The variations of free surface can be verified by deck slamming pressure distribution
(in the next sub-section).
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4.2.2. Column Pressure Distribution

The pressure distribution nephograms of wave slamming between 175.795 s and
184.08 s in beam sea are selected to analyze the pressure distribution characteristics of wave
slamming on column.

As shown in Figure 18, it can be concluded that the pressure distribution is concen-
trated in the middle of the column bottom at t1. This indicates that the waves are more
clearly superimposed in the center. At t2, the pressure distribution gradually decreases
with height rise, resulting in the run up of wave. At this time, the higher position of the
column is submerged, and pressure is also generated at the top of the column. At t3 and
t4, the wave gradually reduces, which gives rise to a lower pressure area. Moreover, a
relatively obvious pressure area is formed on the surface of the column, there is wave
slamming on the surface of the column break and separately on the surface, and the area of
the high-pressure area is then expanded to two. It can be understood that wave slamming
occurs at the junction of the bottom of the column and the buoyancy tank. With the slimness
of each periodic wave, a large local slamming pressure is generated.

Due to the run up of the wave, the high-stress area moves up at t2, and the high-stress
area at other times is concentrated below the column. The results show that the position
below the midpoint of column height is easy to subject wave slamming. The air gap
response in this area should be emphatically analyzed during the platform design.
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4.2.3. Deck Pressure Distribution

The pressure distribution nephograms of wave slamming between 175.795 s and
184.08 s in beam sea are studied, and the results are given in Figure 19, where it can be seen
that the slamming pressure first appears at the junction of the front column wave face and
the deck at t1. At the t2 moment, with the falling off of water particles, negative pressure
is generated here. When the wave propagates at the junction of wavefront surface of rear
column and the deck, two large slamming pressure regions, which are symmetrical about
the y-axis, are generated at t3. Finally, there is a large pressure area that diffuses to the side
of the column at t4. These areas are the intense slamming of the deck jet generated at t3.

The slamming area from t1 to t4 is generally concentrated at the junction of the column
and the deck, which indicates that the column is also an important concern of the air gap
response when analyzing the pressure distribution of the deck.
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5. Conclusions

In this study, the air gap motion response and wave slamming characteristics of
offshore platform under freak wave are numerically and experimentally studied. The
difference between experimental and the numerical natural periods of the platform is less
than 5%. In the analysis of slamming pressure, the error ranges of slamming pressure under
H (wave height) of 20 m, T (wave period) of 11 s are 1.4%, 3.9%, and 2.3%, respectively.
The error ranges of slamming pressure under H (wave height) of 15 m, T (wave period) of
9 s are −10.2%, −7.7% and −9.6%, respectively. These results verified the accuracy of the
finite element model.

The area of negative air gap and slamming pressure distribution characteristics of the
platform under freak wave are studied, and the following conclusions can be drawn:

(1) A large slamming with a value of 137.2 kPa occurs under the column near the strut,
which is 287.68% greater than the normal slamming value and 73.8% and 96% greater
than the two neighbor slamming values. It shows that the freak wave has strong
nonlinear characteristics;

(2) A negative air gap phenomenon is found at five points when analyzing the monitoring
points at the bottom of deck box. The slamming pressures of the rear column (LZ2
and LZ3) are 220% and 192% of the front column (D2 and D3), respectively. This
shows that the slamming of the deck on the wave face of the rear column is much
larger than that on the wave face of the front column. The negative air gap appears
around the column due to the wave run-up;

(3) The slamming values at the same position on the wavefront side of the front column
are 7.4%, −19.7%, and −19%, compared with that on the wavefront side of the rear
column in beam sea. The results indicate that the nonlinear characteristics of the
wavefront side of the rear column are more apparent, and the influence of the freak
wave on the rear column is more incredible;



J. Mar. Sci. Eng. 2021, 9, 1266 18 of 19

(4) It is found that the part below the midpoint of the column height is easy to subject
to larger slamming than other positions, and the high-stress area of slamming is
generally concentrated at the junction of column and deck.

The analysis shows that the freak wave has strong nonlinear characteristics. The
influence of the maximum peak energy on the platform cannot be ignored. Especially when
the freak wave appears, the slamming pressure is two to three times higher than usual
under the same significant wave height. The negative air gap is closely related to the wave
run up of column, which mainly occurs at the junction of the column and the buoyancy
tank. This result provides a reference for the structural areas that need to be strengthened
in the design of the semi-submersible platform. In addition, the wave slamming load has a
greater impact on the strength of slender pole structures such as struts. Finally, the research
on the formation mechanism of freak waves, the conditions and rules of occurrence, and
the movement characteristics of platform operations under freak wave are very important
to the design and operational safety of platforms.
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