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Abstract: In this study, we constructed a rapid refresh wave forecast model using sea winds from
the Korea Local Analysis and Prediction System as input forcing data. The model evaluated the
changes in forecast performance considering the influence of input wind–wave interaction, which is
an important factor that determines forecast performance. The forecast performance was evaluated
by comparing the forecast results of the wave model with the significant wave height, wave period,
and wave direction provided by moored buoy observations. During the typhoon season, the model
tended to underestimate the conditions, and the root mean square error (RMSE) was reduced by
increasing the wind and wave interaction parameter. The best value of the interaction parameter that
minimizes the RMSE was determined based on the results of the numerical experiments performed
during the typhoon season. The forecast error in the typhoon season was higher than that observed
in the analysis results of the non-typhoon season. This can be attributed to the variations of the wave
energy caused by the relatively strong typhoon wind field considered in the wave model.

Keywords: rapid refresh wave forecast model; wind–wave interaction; forecast performance; typhoon
season; wave energy

1. Introduction

Global, regional, local coastal, and regional probability wave forecast models currently
used by the Korea Meteorological Administration (KMA) generate forecasts for sea weather
conditions. Although these conditions vary constantly, the forecasts contribute significantly
toward responding to extreme weather conditions and supporting safe maritime activities.
However, accidents at sea and maritime disasters occur every year due to extreme weather
despite using wave forecast systems. Moreover, the increase in various maritime activities
has threatened the safety of the public. Therefore, providing wave forecast information for
rapid response and countermeasure planning with regard to extreme weather is essential.

The wave forecast model currently operated was constructed based on WAVEWATCH3
(WW3), which is the standard wave forecast model used for wave research globally. Due
to the presence of various physics modules, WW3 uses a model optimization process to
execute highly accurate numerical modeling. It was configured to consider the effects of
tide, current, sea ice, and other factors [1–8]. However, sensitivity experiments are required
to select the appropriate physics modules and parameters because the WW3 model is
highly sensitive to changes in the packages and variables [9–11]. Several studies inves-
tigated the effects of the physics packages in the wave model by implementing various
physical phenomena in the model, such as wave–wave interactions, wind–wave interac-
tions, wave energy dissipation, and wave breaking phenomena, considering the coastal
topography [12–19]. Researchers have reported results regarding wave dispersion and
nonlinear effects [20–26]. Furthermore, studies are actively being conducted to calculate the
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accuracy of atmospheric input fields, which is an important factor in determining the accu-
racy of forecast models [27–31]. In addition, research on the characteristics of wind waves
developed by extreme wind fields, such as typhoons, is actively being conducted [32–37].

However, most of the aforementioned studies focus on physical phenomena that ap-
pear on a global scale, and research on wave models that incorporate the rapidly changing
weather phenomena of local areas is limited. Analysis and prediction results are greatly
affected by the physical modules and parameterizations of the wave model and the quality
of the input wind field. Therefore, it is necessary to closely evaluate these impacts and
construct the most suitable wave model [38–40].

In this study, we used the Korea Local Analysis and Prediction System (KLAPS) for
the Korean Peninsula region to construct a rapid refresh wave forecast model, which
incorporates the rapidly changing atmospheric conditions. Numerical experiments were
performed under various conditions to examine the effect of the input wind and wave
interaction on the results of the forecast model. The forecast results obtained for the
typhoon season were compared with the observation data, and the effects of the input wind
and wave interactions were evaluated under multiple experimental conditions. Based on
the results, the forecast performance of the model was verified in terms of the significant
wave height, wave period, and wave direction during the rapidly changing atmospheric
conditions of the typhoon season.

2. Methodology
2.1. Model Setup and Observation Data

The proposed rapid refresh wave forecast model constructed based on WW3 was
assigned a modeling area with a latitude of 32–44 N◦ and a longitude of 120–132 E◦. The
wind field forecast data for this area include the waters around the Korean Peninsula
(Figure 1). The ETOPO1 global data from the National Geophysical Data Center (NGDC)
were used for the ocean bathymetric grid, and Global Self-consistent, Hierarchical, High-
resolution Shoreline (GSHHS) data were used to obtain the high-resolution shoreline data.
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Figure 1. Numerical domain and topography for the rapid refresh wave forecast model (+ indicates
the ocean data buoys).

In order to perform the rapid wave forecast, the computational grids are evenly
distributed (1/12◦ × 1/12◦ resolution) over the entire domain with a total number of
21,025 cells (145 × 145). The model uses 25 spectral frequency bins ranging from 0.0412
to 0.4056 Hz with a logarithmic increment factor of 1.1 and 36 directional bins with a
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resolution of 10 degrees. The wave forecast system is implemented with ST4 source
packages. Equation (1) is for the wind input parameterization in ST4.

Sin =
ρa

ρw

βmax

κ2 eZZ4
(u∗

C

)2
× max[cos(θ − θu), 0]2σF(k, θ) (1)

where Sin is a wind–wave source term, βmax is a growth parameter, Z is the effective
wave age, κ is von Kármán constant, C is the phase speed, u∗ is the wind friction velocity,
and F(k, θ) represents the spectral densities. In this way, the wind–wave source term
contains parameterizations for the input wind field and directly affects the calculation of
the wave spectral energy. In addition, since interactions between variables are included,
step-by-step numerical simulation experiments should be performed according to variables
in constructing sensitivity experiments [38].

To verify the forecast performance of the wave model, we used data that were observed
at 30 min intervals using 16 ocean data buoys operated by the KMA. Figure 1 depicts the
installation locations of the ocean data buoys. The observation data provide the significant
wave height, marine weather observations on wave direction, wind speed, pressure, and
other factors. As ocean data are provided in real time, it is extremely useful for rapidly
ascertaining and responding to marine weather conditions.

2.2. Sea Wind Data

To generate rapid refresh wave forecast information, it is necessary to obtain the sea
wind forecast results of an atmospheric model that can generate forecasts by reflecting
rapidly changing atmospheric conditions. In this study, the 10 m sea wind forecast results
of KLAPS, which performs forecasts at 1 h intervals for 12 h, served as the input wind field.
Additionally, the wave model was set to perform forecasts every hour for 12 h considering
the execution time and forecast time of the atmospheric model. The boundary conditions
were obtained using the forecast results provided by a regional wave forecast model based
on WW3, which was executed at 12 h intervals. The results that were forecast by running
the model for 1 h prior to the execution formed the initial conditions of this study.

As the forecast results of the wave model are affected by the accuracy of the sea
winds that are used as the input wind field, it is necessary to closely examine the wind–
wave interaction growth parameter (βmax) as seen in Equation (1), which quantifies the
direct effect of the input wind field on wave development [38,41–43]. Therefore, it plays a
dominant role in the wave development and propagation processes and exhibits a more
significant effect on the wave forecast results than other physical parameters. As this is
the most dominant variable with respect to wind–wave development, a previous study
examined the effect of changes in the physical variables of the rapid refresh wave model by
varying the value of βmax between 1.15 and 3.25, and the wave model was executed for the
non-typhoon season [44].

Conversely, the forecast results for each experimental condition in this study were
evaluated considering the typhoon season as seen in Table 1. These parameters in the wave
model are important to determine the accuracy of the forecast performance because the
wind–wave interaction growth parameter must be adjusted to different wind fields [11].

Table 1. Numerical experimental conditions of wind–wave interaction growth parameter (Repro-
duced with permission from Roh et al., J. Korean Soc. Coast. Ocean Eng.; published by J. Korean Soc.
Coast. Ocean Eng., 2020.) [44].

Case No. βmax

Case00 1.65
Case01 1.15
Case02 2.05
Case03 2.45
Case04 2.85
Case05 3.25
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2.3. Verification Method

The experimental conditions for the aforementioned βmax were applied, and the
wave model was run from 00 UTC on 1 September 2019 to 23 UTC on 30 September
2019. Typhoons Lingling and Tapah, which occurred in September 2019, were modeled
numerically. The rapid changes in the atmosphere due to the typhoons were the direct
cause of large amounts of damage. Therefore, this period is considered the most suitable
for evaluating the forecast performance of the proposed rapid refresh wave forecast model.

Figure 2 depicts the best track data of the typhoons provided by the Joint Typhoon
Warning Center (JTWC). The results were compared with the observed significant wave
heights based on the best track data collected during the same period, and the forecast
performance was evaluated for each experimental condition.
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Figure 2. Best tracks of Lingling (2–8 September 2019) and Tapah (19–23 September 2019) provided
by the Joint Typhoon Warning Center (JTWC).

To evaluate the forecast performance of the wave model, the significant wave height,
wave period, and wave direction results for the entire run time and all observation points
of the wave model (Figure 1) were divided by the forecast time from +00 h to +12 h.
Equations (2) and (3) were used to calculate the mean error (bias) and root mean square
error (RMSE) using the observed values at all observation points, respectively [45].

bias =

(
n

∑
i=1

wi(Fi − Ai)i

)
/

n

∑
i=1

wi (2)

RMSE =

√
n

∑
i=1

wi(Fi − Ai)/

√
n

∑
i=1

wi (3)

where Fi denotes the forecast value, Ai indicates the observed value, and wi represents the
weighting factor. The monthly forecast results for each experimental condition in terms
of the significant wave height, wave period, and wave direction observed by the marine
weather buoys were averaged for the run time of the entire model. Thus, the overall
forecast performance of the wave model was evaluated by considering the forecast lead
time from +00 h to +12 h. In addition to the significant wave height, the effects of changes
in βmax on the wave period and wave direction were analyzed using the same method.
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3. Results
3.1. Verification of the Sea Wind Forecast Performance

Before evaluating the prediction performance of the wave model based on the changes
in βmax, we examined the sea winds as the input wind forcing data around the Korean
Peninsula for one month. The analysis time was from 00 UTC on 1 September 2019 to
23 UTC on 30 September 2019. Table 2 lists the monthly averaged bias and RMSE of sea
winds at all observation points for each forecast lead time calculated using Equations (1)
and (3). The bias for each forecast lead time verifies that the model initially exhibited a
tendency toward underestimation. However, the model tended to overestimate with the
increase in the forecast lead time. The average RMSE for one month was approximately
2.5 m/s, and according to the forecast lead time, the difference was not large.

Table 2. Values of bias and root mean square error (RMSE) of sea wind data averaged over all
observation points.

Forecast
Lead Time

(h)

bias
(m/s)

RMSE
(m/s)

Avg. Avg.

0 −1.34 2.90
1 −1.12 2.21
2 −0.44 2.04
3 0.05 2.02
4 0.39 2.09
5 0.62 2.15
6 0.73 2.18
7 0.75 2.17
8 0.72 2.14
9 0.67 2.10
10 0.65 2.11
11 0.62 2.11
12 0.59 2.10

In general, a high prediction performance is shown at the beginning of prediction
time, whereas the prediction performance of the input wind field of KLAPS used in this
study tended to decrease as the prediction time increased. This phenomenon is due to
an optimization option that improves the predictive performance of the standby model.
Therefore, to improve the forecast performance of the wave model, the effects of forecast
error in the atmospheric model must be minimized. This implies that the effects of changes
in input wind forcing and wave interactions need to be considered.

3.2. Results of the Numerical Experiments and Evaluation of the Effects of Wind–Wave Interaction
Growth Parameter

To evaluate the effects of changes in βmax, the forecast results for each experimental
condition were divided considering the forecast time.

Figure 3 depicts the results of executing the Case00 wave model. Here, βmax was 1.65,
which served as the control case for the numerical experiment in this study. Figure 3a–c
illustrate the time when the model was run at 12:00 UTC on 6 September 2019 and the
forecast results six and twelve hours later. Figure 3d–i illustrate the forecast results of the
model when run at 18:00 UTC on 6 September 2019 and 00:00 UTC on 7 September 2019,
respectively. We compared the results for 18:00 UTC on 6 September 2019 (Figure 3b) that
were forecast at 12:00 UTC on 6 September 2019 with the results when the model was run
6 h later (Figure 3d). Furthermore, we compared the results for 00:00 UTC on 7 September
2019 (Figure 3c) that were forecast at 12:00 UTC on 6 September 2019 and the results for
00:00 UTC on 7 September 2019 (Figure 3e) that were forecast at 18:00 UTC on 6 September
2019 with Figure 3g. A similar rapid energy dissipation effect was observed based on the
forecast time. Overall, the significant wave height forecast by the model generally increased
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with the strong input wind forcing around typhoons, and the forecast performance was
affected by the initial forecast result. The initial condition was used for the restart file from
the model running one hour previous. We determined that the difference existed in the
forecast results of the model based on the βmax experimental conditions.
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Figure 3. Simulated significant wave height and input sea wind vectors of Case00 (βmax = 1.65) in
the numerical experiment results: (a) 6 September 2019 12:00 UTC (+00 h); (b) 6 September 2019 18:00
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Figures 4 and 5 illustrate the forecast results for each experimental condition, and the
changes in significant wave height (Hsig.) at all buoy positions were determined based on
the set βmax values. Figure 4 compares the observed and simulated results at the forecast
lead times of 00 h, 06 h, and 12 h for Case00, Case01, and Case02. Similarly, Figure 5
depicts the comparison for Case03, Case04, and Case05. The simulated results indicate
an underestimated significant wave height, and the beginning of the forecast lead time
exhibits a significant difference under all experimental conditions. Furthermore, certain
differences were observed in the forecast tendencies depending on the forecast lead time.
Nevertheless, we concluded that as the set βmax value increased, the simulated significant
wave height increased.
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3.3. Comparison of Forecast Performance Based on the Changes in the Wind–Wave Interaction
Growth Parameter

The bias and RMSE calculated using Equations (1) and (3) for each forecast lead time
based on the numerical experimental results were used to analyze the effect of the change
in βmax on forecast performance. Figure 6a,b illustrate an analysis of the significant wave
height, wave period, and wave direction. When βmax was less than the initial setting value
(βmax = 1.65), the numerical model exhibited a tendency toward underestimation during the
entire analysis period, and the forecast error increased. Conversely, when βmax was greater
than the initial setting value, the model tended to overestimate, and the forecast error
decreased. However, when βmax was set to a value greater than a fixed range, the forecast
error increased with the increase in the forecast lead time. In the results of averaging the
forecast error for each forecast lead time, the experimental conditions of Case06 indicated
the smallest forecast error in the typhoon season. This is because when a strong wind
field is generated, the actual phenomena interact and react more quickly than the model
forecast. When βmax was set based on the non-typhoon season, the wave development and
propagation processes caused by the typhoon were not sufficiently reflected. Moreover, the
sea wind forecast error and tendencies influenced the forecast performance of the wave
model [44].
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Figure 6. (a) bias and (b) root mean square error (RMSE) of significant wave height; (c) bias and
(d) RMSE of the wave period; (e) bias and (f) RMSE of the wave direction for each forecast lead
time according to βmax settings (Case00: βmax = 1.65, Case01: βmax = 1.15, Case02: βmax = 2.05,
Case03: βmax = 2.45, Case04: βmax = 2.85, Case05: βmax = 3.25).

In addition to the analysis results regarding significant wave height, we analyzed
the wave period and wave direction to understand the influence of the changes in the
physical parameters, which indicate the wind forcing and wave interactions, on the physical
components of the wave. Figure 6c,d depict the results of examining the wave period
based on the βmax values under different experimental conditions. As the forecast lead
time increased, the model tended to underestimate under all experimental conditions.
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The forecast error exhibited a trend of increasing slightly at approximately 2.4 s for all
forecast lead times despite the varying experimental conditions. Figure 6e,f illustrate the
analysis results for the wave direction. We observed a positive bias under all experimental
conditions at approximately 30–40◦ for each forecast lead time. Conversely, the forecast
error was distributed at 50–60◦, and it was difficult to discern a trend based on the βmax
values under different experimental conditions.

3.4. Forecast Performance of the Threshold Significant Wave Height

Figures 7–9 illustrate the significant wave height (Hsig.) for each forecast lead time
under different βmax conditions and the observed significant wave height at the observation
points of 22107, 22102, and 22105. In the non-typhoon season, no significant difference
was observed between the forecast and observed results when the significant wave height
was small. However, as the typhoon was northbound, the water surface displacement
increased rapidly, and we observed relatively high wave heights even after the maximum
significant wave height was attained. Above all, it seems to be significantly affected by the
quality of the input wind field, and in general, the prediction error was relatively large
at the beginning of the forecast lead time. In periods when the significant wave height
increased and decreased rapidly, the peak wave heights were slightly different between
the observation and model simulations. This can be attributed to the wave energy that
was maintained larger than the forecast of the model. Moreover, a relatively large water
surface displacement continued as the typhoon moved, and nonlinear effects that were
more complex than those of the forecast of the wave model occurred due to the effects of
the tracks of the typhoons, distance from the typhoon center, and wind intensity [46–48].
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Table 3 summarizes the forecast performance for a threshold significant wave height
averaged at all buoy observations corresponding to the numerical experiment conditions.
The threshold wave height exists in the ranges of 0.0 m < Hsig ≤ 3.0 m, 3.0 m < Hsig ≤ 5.0 m,
and 5.0 m < Hsig. We examined the significant wave height observation results and model
forecast results based on the forecast lead time from 00 UTC on 1 September to 23 UTC
on 30 September. We determined that βmax = 3.25 in Case05 estimates the lowest forecast
error in the entire experiment in the typhoon season. Furthermore, the effect of the growth
parameter between wave and wind was identified as an important factor in determining
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the forecast error in the range of low significant wave heights, whereas the impact of the
parameter was insufficient in the range of high significant wave heights.

Table 3. Averaged root mean square error (RMSE) of the threshold significant wave height for each forecast lead time.

Time
(h)

0.0 m < Hsig ≤ 3.0 m 3.0 m < Hsig ≤ 5.0 m 5.0 m < Hsig

00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

0 0.56 0.61 0.53 0.51 0.49 0.48 0.29 0.33 0.28 0.28 0.28 0.28 0.28 0.35 0.25 0.23 0.22 0.22
1 0.56 0.61 0.53 0.51 0.49 0.48 0.30 0.33 0.28 0.28 0.28 0.28 0.28 0.35 0.25 0.23 0.22 0.22
2 0.55 0.61 0.52 0.50 0.48 0.48 0.28 0.32 0.27 0.26 0.27 0.27 0.26 0.33 0.23 0.21 0.20 0.19
3 0.53 0.59 0.50 0.48 0.47 0.47 0.26 0.31 0.25 0.25 0.25 0.26 0.23 0.31 0.20 0.19 0.18 0.19
4 0.51 0.57 0.49 0.47 0.47 0.46 0.25 0.29 0.24 0.25 0.26 0.27 0.21 0.29 0.18 0.17 0.17 0.19
5 0.49 0.55 0.47 0.46 0.46 0.46 0.25 0.28 0.25 0.26 0.28 0.30 0.20 0.27 0.18 0.17 0.18 0.21
6 0.47 0.53 0.46 0.45 0.45 0.46 0.24 0.27 0.25 0.27 0.29 0.31 0.18 0.25 0.16 0.17 0.20 0.23
7 0.46 0.51 0.45 0.45 0.45 0.47 0.24 0.25 0.25 0.27 0.30 0.32 0.17 0.24 0.16 0.18 0.22 0.25
8 0.45 0.50 0.44 0.44 0.45 0.47 0.23 0.25 0.25 0.28 0.30 0.33 0.16 0.23 0.16 0.19 0.23 0.27
9 0.44 0.49 0.44 0.44 0.46 0.48 0.23 0.25 0.25 0.28 0.31 0.34 0.16 0.22 0.16 0.20 0.24 0.28
10 0.44 0.48 0.43 0.44 0.46 0.49 0.23 0.24 0.25 0.27 0.30 0.34 0.16 0.21 0.17 0.21 0.25 0.29
11 0.43 0.47 0.43 0.45 0.47 0.50 0.24 0.25 0.25 0.28 0.32 0.35 0.16 0.21 0.17 0.20 0.24 0.28
12 0.43 0.46 0.43 0.45 0.47 0.50 0.24 0.24 0.25 0.28 0.32 0.35 0.15 0.20 0.17 0.20 0.25 0.29

4. Conclusions

To construct a rapid refresh wave forecast model, we used KLAPS sea wind forecast
data and examined the forecast performance of the wave model based on the changes in
the physical parameter for the wind and wave interaction (βmax). The wave model was
executed by varying βmax during the typhoon season, and the bias and RMSE for each
forecast lead time were calculated to identify the βmax numerical experimental condition
that minimized the forecast error.

During the typhoon season, when βmax increased beyond a fixed range, the model
tended to overestimate the significant wave height, which simultaneously increased the
forecast error with the increase in the forecast lead time. Additionally, when βmax was less
than the initial setting value of 1.65, the forecast error increased. Although a difference
existed due to the experimental conditions, an error of approximately 0.6 m was generally
observed. Furthermore, the model tended to underestimate the wave period, and a forecast
error of approximately 2.4 s was observed. In the case of wave direction, the forecast error
was distributed in the range of 50–60◦; however, it was difficult to observe any trends
based on the changes in βmax. The βmax that minimized the forecast error was identified
by examining the significant wave height, and the obtained results were used in the rapid
refresh wave model to analyze the forecast performance for the typhoon season. The
forecast error was high during the initial forecast lead times, and the forecast error tended
to decrease with the increase in the forecast lead time.

We concluded that the interaction between the waves and a strong wind field, such
as a typhoon, was not sufficiently reflected due to the low βmax that was used based on
the results of a forecast performed during the non-typhoon season. Moreover, the inherent
forecast error and tendencies of the atmospheric model influenced the forecast results of the
wave model. The prediction results of the wave model are affected by the numerical scheme,
the propagation and the integration time steps, wave–current interaction, and nonlinear
interactions, and may cause differences from the observation results. However, in this
paper, since numerical simulation experiments were conducted only in consideration of the
effect of the input wind field, it is difficult to determine the effect on various factors in which
the aforementioned prediction error occurs. Therefore, in subsequent studies, numerical
simulations should be performed on the effects of the spectral and spatial resolutions
and the effects of wave–current and wave–wave interactions on wave prediction. The
prediction results of the wave model are verified using buoy observations and satellite data.



J. Mar. Sci. Eng. 2021, 9, 1230 12 of 14

The results of this study can be used to effectively generate rapid refresh wave fore-
cast data and marine weather status data that reflect rapidly changing marine weather
conditions. Furthermore, the results of this study can aid in developing a rapid response
technology for extreme weather conditions.
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