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Abstract: In this study, the propagation and evolution characteristics of internal solitary waves
on slope topography in stratified fluids were investigated. A numerical model of internal solitary
wave propagation based on the nonlinear potential flow theory using the multi-domain boundary
element method was developed and validated. The numerical model was used to calculate the
propagation process of internal solitary waves on the topography with different slope parameters,
including height and angle, and the influence of slope parameters, initial amplitude, and densities
jump of two-layer fluid on the evolution of internal solitary waves is discussed. It was found that
the wave amplitude first increased while climbing the slope and then decreased after passing over
the slope shoulder based on the calculation results, and the wave amplitude reached a maximum at
the shoulder of the slope. A larger height and angle of the slope can induce larger maximum wave
amplitude and more obvious tail wave characteristics. The wave amplitude gradually decreased,
and a periodic tail wave was generated when propagating on the plateau after passing the slope.
Both frequency and height of the tail wave were affected by the geometric parameters of the slope
bottom; however, the initial amplitude of the internal solitary wave only affects the tail wave height,
but not the frequency of the tail wave.

Keywords: internal solitary waves; boundary element method; numerical simulation; potential flow

1. Introduction

Internal solitary waves are observed in many domains through synthetic aperture
radar images and the measurement data of acoustic Doppler current profiler in oceans
worldwide [1–6]. ISWs can propagate over long distances in the ocean owing to their large
amplitude and concentrated energy [7], and they shoal with the influence of topography
when propagating to the continental shelf area. The shoaling of ISWs upon sloping in
oceans plays an important role in controlling the stratification and vertical distribution of
biogeochemical matter in the water column [8–10]. In particular, the interaction between
ISWs and the seabed is considered an important factor that promotes sediment suspension
on the seabed and instability [11,12]. Meanwhile, strong ISW-induced shear flow during
the shoaling process is a non-negligible threat to offshore engineering structures, such as
oil drilling rigs, marine risers, and subsea pipelines [13,14].

The evolution characteristics of internal solitary waves on slope topography are very
complicated, including various forms, such as breaking, fission, and polarity reversal.
The evolution characteristics of internal solitary waves on slope topography have been
studied extensively using experiments and numerical simulations aimed at changing the
wave profile and flow field characteristics [15–22]. The breaking types of ISWs are studied
using experiments and numerical simulations aimed at changing the wave profile and
flow field characteristics [23–25]. However, ISWs can propagate over mild slopes without
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breaking, such as fission, polarity reversal, and the formation of trailing waves. Polarity
inversion, wave fission and the forming of trailing waves are typical phenomenon while
ISWs propagating over a gentle slope bottom. Most ISWs are depression waves due to
stratification properties in the ocean, but the depression ISWs can change to elevation
waves on the slope when the depth of upper layer is larger than that of the lower layer.
Helfrich et al. conducted numerical simulations supplemented by inverse-scattering theory
to investigate the change in polarity of the incident waves as they pass through the turning
point of approximately equal layer depths, and the separation of the leading waves was
observed [26]. Orr and Mignerey observed the conversion of nonlinear internal depression
solitons to elevation internal waves through high-frequency acoustic flow visualization [27].
Meanwhile, the trailing waves following the initial waves can appear due to the dispersion
effect while ISWs passing the slope topography. Shroyer et al. observed nonlinear internal
waves propagating to the New Jersey coast and found the trailing face of the initial
depression wave [28]. Zhi et al. found a trailing wave train when ISWs transforms
over the slope using asymptotic theory and numerical simulation [29]. Lamb and Xiao
conducted high-resolution two-dimensional numerical simulations of incompressible Euler
equations to study the evolution of internal solitary waves shoaling onto a shelf, and the
shoaling internal solitary waves generally fission into several waves [30]. The previous
numerical studies on the evolution of ISWs propagating over slope bottom were mainly
based on CFD method, and the boundary element method was rarely used to calculate
these topics based on potential flow theory.

As an efficient numerical method, the boundary element method (BEM) is widely
used in the calculation of water wave problems based on potential flow theory, which has
excellent adaptability to complex boundaries due to the fact that only the boundary of the
computational domain needs to be discretized. Longuet-Higgins and Cokelet introduced
the boundary element method for the simulation of steep free surface waves [31]. Since
then, BEM has been widely used for simulating the surface wave [32–36]. Meanwhile,
comparisons of two-dimensional numerical results with laboratory experiments have
shown that the potential theory can predict the characteristics of wave shoaling over slopes
accurately [37–39]. Koo simulated the interaction of internal linear periodic waves with
linear free surface waves using the BEM [40]. Gou et al. studied wave diffraction in a
two-layer fluid using the BEM with linear boundary conditions [41]. Evans and Ford
studied steady ISWs using an integral equation approach, assuming the rigid-lid condition
at the top surface [42]. The existing investigations on internal waves using the BEM are
mainly for linear periodic waves or steady solitary waves.

In this study, the evolution characteristics of ISWs propagating over slope bottom in a
stratified fluid were investigated using a nonlinear numerical model based on the potential
flow theory. The numerical simulations were conducted using multi-domain boundary
element method which is an effective method to calculate evolution of water waves. The
evolution of ISWs on variable bottom was rarely investigated using boundary element
method in the existing investigation. A series of numerical cases were calculated with
different slope parameters and initial wave amplitudes to study the relationship between
the wave evolution characteristics and slope topography. The variations in wave amplitude,
wave profile, and tail waves over different slope topographies were discussed.

2. Numerical Simulation
2.1. Physical Model

A system of two-layer fluids whose densities are denoted by ρk and thicknesses by
hk, with k = 1 for the upper fluid layer and k = 2 for the lower layer, is shown in Figure 1.
The bottom of the fluid system is a rigid slope seabed with different geometric parameters.
Cartesian coordinates are defined with the x-axis at the mean position of the interface
between the two liquid layers. The surface at the top of the upper layer is denoted as
z = h1, and the interface between the two liquid layers is z = η2(x, t).
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Figure 1. Schematic of the numerical simulation domain, where the fluid of density ρ1 and depth h1

overlies the fluid of density ρ2 and depth h2. Height of the slope is hs, and horizontal length of the
slope is Ls.

The flows in the two layers are assumed to be irrotational and incompressible. The
fluid velocities uk for the two fluid layers can, thus, be expressed as the gradient of the
potentials ϕk, that is, uk = ∇ϕk. The velocity potentials satisfy the Laplace equation:

∇2 ϕk = 0, k = 1, 2. (1)

The kinematic boundary conditions at the interface are that the normal velocity is
continuous at the interface.

∂ϕ1

∂n
=

∂ϕ2

∂n
on z = η2(x, t), (2)

where n is the unit-outward normal of the domain considered.
The dynamic boundary condition is that the pressure is continuous at the interface.

Using the Bernoulli equation, this can be expressed as:

ρ1

(
∂ϕ1

∂t
+

1
2
|∇ϕ1|2 + gη2

)
= ρ2

(
∂ϕ2

∂t
+

1
2
|∇ϕ2|2 + gη2

)
on z = η2(x, t). (3)

The impenetrable boundary condition at the rigid seabed requires:

∂ϕ2

∂n
= 0 on z = −h2. (4)

The top of the upper liquid layer is set as a rigid lid:

∂ϕ1

∂n
= 0 on z = h1. (5)

Using Green’s second identity, the velocity potentials in the upper and lower fluid
layers can be expressed as the line integrals along their boundaries Γ1 and Γ2, respectively.

c(r)ϕk(r) =
∫
Γk

(
G(r, q)

∂ϕk(q)
∂n

− ϕk(q)
∂G(r, q)

∂n

)
dl(q), (6)
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where r is the field point, q is the source point, G (r, q) = −1/(2π)ln|r − q| is the Green
function, and c(r) is the solid angle of the boundary at r. Equation (6) can be further
denoted as:

c(r)ϕk(r) =
∫
Γk

(
ψk(q)G(r, q)− ϕk(q)

∂G(r, q)
∂n

)
dl(q), (7)

where ψk(q) =
∂ϕk(q)

∂n .

2.2. Numerical Model

The boundary integral equation is solved using the boundary element method. Both
boundaries Γ1 and Γ2 are discretized into n constant line elements Γij from point qj to qj+1.
Equation (7) are discretized are discretized using the constant elements as follows:

c(r)ϕi(r) = −

n

∑
j=1

ϕk
(
rj
)∫
Γkj

∂G(r, q)
∂n

dl(q)

+

n

∑
j=1

ψk
(
rj
)∫
Γkj

G(r, q)dl(q)

. (8)

With the constant elements used, we consider rj =
1
2

(
qj + qj+1

)
, r = ri in Equation (8),

and we have c(ri) = 0.5. In addition, we denote ϕkj = ϕk
(
rj
)
.

1
2

ϕki +

n

∑
j=1

ϕkj

∫
Γkj

∂G(ri, q)
∂n

dl(q)

 =

n

∑
j=1

ψkj

∫
Γkj

G(ri, q)dl(q)

. (9)

The two fluid layers have different densities such that the multi-domain boundary
element method [43] should be adopted. For the two-layer computation domain, the
boundary elements can be divided into two types, which are self nodes and common
nodes, as shown in Figure 2. The boundary integral Equation (9) can be expressed as
Equation (10).

1
2

ϕki +

ns

∑
j=1

ϕs
ki

∫
Γs

kj

∂G(ri ,q)
∂n dl(q)

+

nc

∑
j=1

ϕc
ki

∫
Γc

kj

∂G(ri ,q)
∂n dl(q)


=

ns

∑
j=1

ψs
kj

∫
Γs

kj

G(ri, q)dl(q)

+

nc

∑
j=1

ψc
kj

∫
Γc

kj

G(ri, q)dl(q)


(10)

where the superscript s and c denote self nodes and common nodes, respectively.
The boundary conditions of the left and right boundaries Γf are that fluid flux is zero

as there is enough distance from solitary waves to the two boundaries. For the rigid-lid
surface Γt and bottom Γb, impenetrable conditions are applied so the normal velocity is
zero. Based on the pressure continuity and normal velocity continuity conditions at the
interface, the two regions can be connected to solve the problem, and the multi-domain
boundary element method is introduced to develop numerical model for the problem of
internal solitary waves propagation and evolution. A specific calculation procedure can be
found in the literature [44].
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denote self and common nodes, respectively.

In fact, the normal velocity is continuous, but velocity potential of two-layer fluid is
not continuous at the interface. Therefore, the interface between the two liquid layers is
updated by Equation (11) because the interface displacement is mainly produced by the
flow of the upper layer according to the literature [45].

Dr2

Dt
= ∇ϕ1. (11)

For the interface, ϕ = ϕ2 − γϕ1 is introduced to update the velocity potential ex-
pressed explicitly. Therefore, the time-stepping scheme of the velocity potential at the
interface can be derived from Equation (3) and is expressed as:

Dϕ

Dt
= −1

2
|∇ϕ2|2 −

γ

2
|∇ϕ1|2 +∇ϕ1 · ∇ϕ2 + (γ−1)gη2. (12)

The interface and their potential distribution are updated using the fourth-order
Runge–Kutta method. The initial solitary waves are given based on analytical theory, and
the propagation processes are then calculated using fully nonlinear numerical models.
For small-amplitude solitary waves, the initial condition is provided by the KdV theory
solutions for a two-layer fluid [46]. The numerical simulations are performed using
calculation codes developed based on MATLAB, and the flowchart which numerical
simulations followed in the present study is shown in Figure 3.
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3. Results
3.1. Numerical Model Validation

The verification of convergence in grid size and time step was conducted, and a com-
parison of the interfacial profiles simulated by the multi-domain boundary element method
with various grid sizes is shown in Figure 4. It was found that the computational results
converge when the grid size is ∆x = 0.02 along the length of the computational domain
and the time step is ∆t = 0.01, grid size of ∆x = 0.02, and time step ∆t = 0.01 are adopted
in the present numerical simulations. To evaluate the BEM model, we compared the time
history of the displacement of the interface between the two liquid layers obtained from
the computations with that of the experiments [47], as shown in Figure 5. Wave profiles
are non-dimensionalized using the top layer thickness h1 and the calculated wave speed c.
The computational results were obtained using BEM with a rigid lid boundary condition at
the free surface, and the computational results of the BEM are in good agreement with the
experimental data.
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In order to further verify the accuracy of the numerical model, the fluid velocity in the
inner region was calculated using the present method. The velocity potential in the inner
region can be expressed as integral Equation (13).

ϕk(r) =
∫
Γk

(
ϕk(q)

∂G(r, q)
∂n

− ψk(q)G(r, q)
)

dl(q). (13)

The fluid velocity in the inner region can be expressed as Equation (14) by differentiat-
ing Equation (13).

uk(r) = ∇ϕk(r) =
∫
Γk

(ϕk(q)Qn(r, q)− ψk(q)Q(r, q)) dl(q), (14)

where, Q(r, q) = r
2πr2 , Qn(r, q) = 1

2πr2

(
n− 2r

r2 (r · n)
)

.
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The velocity of fluid in two layers region is obtained by solving Equation (14) using
boundary element method, and the results agree well with the data in literature [48], as
shown in Figure 6.
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Figure 6. The fluid horizontal velocity distribution in the inner region of internal solitary waves flow
field and the comparison with literature [48].

c0 is the long wave speed defined by c2
0 = gh1h2(ρ2−ρ1)

ρ1h2+ρ2h1
.

To investigate the effect of a slope on the evolution of ISWs, a series of numerical
simulation cases for different slope bottoms and wave parameters were conducted, as
shown in Table 1. The densities of two layer fluids are set as ρ1 = 856, ρ2 = 996, and the
depths are set as h1 = 0.05, h2 = 0.25.
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Table 1. Main parameters of performed simulation cases.

a/h1 hs β h1/h2 ρ1/ρ2

0.5 0.14~0.18 20◦ 0.2 0.859
0.4 0.14~0.18 20◦ 0.2 0.859
0.3 0.14~0.18 20◦ 0.2 0.859
0.2 0.14~0.18 20◦ 0.2 0.859
0.4 0.18 15◦ 0.2 0.859
0.4 0.18 10◦ 0.2 0.859
0.4 0.18 5◦ 0.2 0.859

3.2. Wave Evolution

The evolution of internal solitary waves was conducted, and the validation of am-
plitude variation while ISWs propagating over slope bottom in regard to mesh sizes is
exhibited in Figure 7. It can be found that the convergence of present method to calculate
the wave evolution can be ensured for the mesh scale ∆x = 0.02. The wave amplitude
variations for different slope heights and initial amplitudes when slope angle β = 20◦ are
plotted in Figure 8. In the first stage (horizontal location x from−1 m to 0), the amplitude is
nearly constant when the ISWs propagates above the flat bottom before slope topography,
which is the natural attribute of solitary waves. In the second stage (from the slope start
point x = 0 to the slope shoulder), the amplitude increases sharply for the up-slope topogra-
phy and reaches a maximum at the shoulder of the slope, which can explain why the ISWs
are observed around the offshore and coastal areas frequently. In the third stage (after the
slope shoulder), the amplitude decreases significantly when the ISWs passes the shoulder
and propagates over the plateau. The maximum amplitude increases with an increase in
the slope height and can reach a nearly 20% increase from the original amplitude for the
slope height hs = 0.18 m and initial dimensionless amplitude a0/h1 = 0.4. The amplitude
decreases more sharply and reaches a smaller value after the location nearly x =1.25 m
(Figure 4b) for a larger slope height owing to the energy reassignment while shoaling
along the plateau because the wave suffers more energy rearrangement on the large height
slope bottom.
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Figure 7. Validation of amplitude variation while ISWs propagating over slope bottom in regard to
mesh sizes for the case a0/h1 = 0.4 and hs = 0.18.
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Figure 8. Variation in dimensionless amplitude for different initial amplitudes and slope height along
the propagation direction. The cases for the initial dimensionless amplitudes a0/h1 = 0.2 (a) and 0.4
(b), angle β = 20◦, respectively.

The wave amplitude variations at different initial amplitudes are shown in Figure 9.
It can be seen from the figure that the dimensionless maximum amplitude with respect to
a0 increases with an increase in the initial amplitude, and a more notable decrease can be
found for large wave heights above the slope bottom. Meanwhile, internal solitary waves
with different initial amplitudes reach the maximum displacement at a similar location (the
slope shoulder nearly horizontal location x = 0.5 m). Figure 10 shows the change of internal
solitary wave amplitude under different slope angles (the slope angle β = 5◦, 10◦, 15◦,
20◦, respectively). The maximum dimensionless amplitudes increase with the increasing
of slope angles, and the attenuation of the internal solitary wave is more obvious for a
steeper slope.
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The variation of ISWs amplitudes versus different densities jump of two-layer fluids
is shown in Figure 11, and it can be found that ISWs reach a larger value of amplitude for
the larger densities jump. Meanwhile, the degree of attenuation is not affected by densities
jump obviously, which is different with the effect of slope parameters and initial amplitude.
Figure 12 shows the variation in the dimensionless maximum wave amplitude am/a0 for
different slope heights, which indicates that the amplitude maximum increases with an
increase in the slope height owing to the strong interaction between the wave and the
bottom of the slope with a larger height. The increase in the maximum amplitude becomes
sharper for the higher slope, which also indicates the apparent effect of slope topography
on the evolution of internal solitary waves.
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Figure 11. Variation in dimensionless wave amplitude for different densities jump of two-layer fluids
with initial wave amplitude a0/h1 = 0.4.
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Figure 12. Variation in dimensionless maximum wave amplitude for different slope heights with
initial dimensionless wave amplitude a0/h1 = 0.2, 0.3, 0.4, and 0.5.

3.3. Tail Waves

In addition to the change in the wave height, the waveform of the internal solitary
wave changes when it propagates on a slope terrain at different moments at t = 2 s, 4 s, 5
s, 7 s, as shown in Figure 13. In the process of climbing the slope, the lower-layer water
continues to become shallower, which decreases the particle velocity of the leading face
and results in a steeper waveform. When it passes the top of the slope, the leading edge of
the internal solitary wave accelerated, causing the front face to broaden.
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a0/h1 = 0.4 at moments t = 2 s (a), t = 4 s (b), t = 5s (c), t = 7s (d).The start point of the slope is located at x = 0, and the
shoulder of the slope is at x = 0.5 with height hs = 0.18.
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When internal solitary waves propagate on the slope, in addition to changes in
waveform and amplitude, after passing the shoulder of the slope, the front face broadened,
whereas the trailing face remained steep and the periodic trailing waves of the initial
depression wave formed. This is because the lower water depth of the stratified fluid
becomes shallower when passing through the slope terrain, resulting in the redistribution
of energy to produce periodic tail waves. Therefore, the original wave is redistributed to a
new prominent wave following a trailing wave.

The morphological characteristics of the tail waves’ time history profile at the observa-
tion point (horizontal location x = 1 m) under different slope height conditions are shown
in Figure 14. Meanwhile, the moment when wave trough reaches the observation point is
set to zero for the intuitional comparison. It was found that the higher the slope height, the
more apparent the tail wave, which has a larger wave amplitude and a higher frequency.
The maximum displacement of tail waves can reach 50% of ISWs amplitude for the case
hs = 0.18 and a0/h1 = 0.4. The characteristics of the tail wave under different initial wave
amplitude conditions at the horizontal location (x = 1 m) for the slope height hs = 0.18 and
slope angle β = 20◦ are shown in Figure 15. It was found that the characteristics of the
tail waves are also closely related to the value of the initial wave amplitude. The larger
the initial wave amplitude, the more apparent the tail wave, which has a larger wave
amplitude. However, the tail waves generated under different initial amplitude conditions
had the same frequency. Meanwhile, it was also found that the larger the initial wave
amplitude, the more apparent the asymmetry of the evolved waveform, and the smoother
the front face.
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4. Conclusions

In this study, we developed a numerical model to calculate the propagation and
evolution of internal solitary waves on slope topography, and a series of calculations were
performed for different slope geometrical parameters, initial amplitudes, and densities
jump of two-layer fluid. The influence of different slope heights and slope angles on
the evolution characteristics of internal solitary waves was discussed, and the following
conclusions were obtained.

In the process of internal solitary waves propagating over slope topography, the
dimensionless wave amplitude first increased from the slope start point and reached
its maximum value at the shoulder of the slope. Then, the amplitude decreased while
propagating over the plateau. The maximum amplitude increased with the height and
angle of the slope, and the attenuation of amplitude was more apparent after passing the
steeper slope. Meanwhile, the larger initial amplitude and densities jump can induce larger
wave amplitude above the shoulder of the slope topography. In the process of climbing the
slope, the lower water continues to become shallower, which decreases the particle velocity
of the leading face and results in a steeper waveform.

When it passes the top of the slope, the leading edge of the internal solitary wave
accelerated, causing the front face to broaden. After passing the slope, the redistribution
of energy promoted the generation of periodic tail waves, and the original wave is re-
distributed to a new prominent wave following a trailing wave. The greater the initial
amplitude of the internal solitary wave, the more apparent the tail wave produced. Mean-
while, when the slope height is larger, the tail wave produced also had a larger amplitude
and higher frequency. The period of the tail wave is unrelated to the size of the initial wave
amplitude; however, it has a closer relationship with the slope height and angle.
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