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Abstract: This paper describes a numerical investigation of ripples generated on the front face of deep-
water gravity waves progressing on a vertically sheared current with the linearly changing horizontal
velocity distribution, namely parasitic capillary waves with a linear shear current. A method of fully
nonlinear computation using conformal mapping of the flow domain onto the lower half of a complex
plane enables us to obtain highly accurate solutions for this phenomenon with the wide range of
parameters. Numerical examples demonstrated that, in the presence of a linear shear current, the
curvature of surface of underlying gravity waves depends on the shear strength, the wave energy can
be transferred from gravity waves to capillary waves and parasitic capillary waves can be generated
even if the wave amplitude is very small. In addition, it is shown that an approximate model valid for
small-amplitude gravity waves in a linear shear current can reasonably well reproduce the generation
of parasitic capillary waves.

Keywords: water waves; gravity-capillary waves; shear current; fully nonlinear computation;
conformal mapping

1. Introduction

It is well known that a vertically sheared current affects the nonlinear motion of
surface waves progressing on water and plays important roles in the ocean (see reviews
by Peregrine [1]). In this work, we focus on its effects on ripples produced on the forward
face of progressive gravity waves, which are referred to as “parasitic capillary waves” [2].
The complete understanding of parasitic capillary waves helps us accurately estimate
the sea surface elevation from satellite images for remote sensing of ocean surfaces. The
generation of such capillary waves is intimately related to the curvature of the water surface
of underlying gravity waves as well as the characteristics of the current. Until now, few
attempts have been made yet to systematically investigate the interaction between parasitic
capillary waves and a vertically sheared current. The aim of this work is to numerically
study this nonlinear interaction.

Since Cox’s experiments [3] and Longuet-Higgins’ theoretical work [4], parasitic
capillary waves have been studied by various authors [2]. The essential mechanism for the
generation of parasitic capillary waves is the nonlinear and unsteady interaction between
short capillary waves and long gravity waves in an inviscid flow [5,6], which should be
studied via fully nonlinear computations. For the irrotational plane flow, we can formulate
this problem within the framework of potential theory and conformally map the unsteady
flow domain onto a fixed domain such as a strip of uniform thickness or a unit disk in a
complex plane, where the free surface is mapped onto its boundary that remains unchanged
in time. Murashige & Choi [7] showed that this unsteady conformal mapping technique,
which is referred to as the Unsteady Hodograph Transformation (UHT) method, is suitable
for fully nonlinear computations of parasitic capillary waves, and that the UHT method is
advantageous in reducing aliasing errors due to spectral approximation.
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When a vertically sheared current exists and its horizontal velocity distribution
changes linearly, as shown in Figure 1a, the background vorticity is constant and, therefore,
any perturbed flows must be irrotational due to conservation of vorticity. Thus we can
incorporate this linear shear current into the aforementioned unsteady conformal mapping,
or the UHT, technique. In fact, in the presence of a linear shear current, this UHT method
has been previously applied to fully nonlinear computation of the two-dimensional un-
steady motion of pure gravity periodic waves [8,9] and capillary-gravity solitary waves [10].
It should be noted that the presence of a linear shear current in deep water may be unreal-
istic in the sense that the fluid velocity tends to infinity with depth. However, our interest
is in the short wave motion of parasitic capillary waves, which is limited near the water
surface. Therefore, the detailed vorticity distribution far away from the surface might be
irrelevant and the linear shear near the surface would be sufficient.
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Figure 1. Two-dimensional periodic motion of deep-water gravity-capillary waves on a linear shear
current and conformal mapping of the flow domain into a complex plane. (a) The z-plane (z = x + iy);
(b) The ζ-plane (ζ = ξ + iη).

In this work, we numerically examine the effects of the strength of a linear shear
current on the generation of parasitic capillary waves using the UHT method. The paper is
organized as follows. Formulation of the problem using conformal mapping is presented
in Section 2. The method of computation based on a pseudo-spectral method is shown in
Section 3. Numerical solutions for the generation of parasitic capillary waves with a linear
shear current are summarized in Section 4 and discussed in Section 5. Section 6 concludes
this work.

2. Formulation of the Problem
2.1. Formulation in the Physical Plane

Consider the unsteady and periodic motion of deep-water gravity-capillary waves
progressing to the left on a linear shear current, as shown in Figure 1a. It is assumed that
the fluid motion is two-dimensional in the vertical cross-section (x, y) along the wave
propagation direction, and that the fluid is inviscid and incompressible. The origin is
placed such that the wave profile y = ỹ(x, t) satisfies the zero mean level condition:∫ λ

0
ỹ(x, t)dx = 0. (1)

It is convenient to formulate the problem in the flow domain over one wavelength λ in
the frame of reference moving to the left with the wave speed c so that the total horizontal
velocity is given by U = c + Ωy, where the shear strength Ω is constant. Note that waves
for Ω > 0 and Ω < 0 are referred to as upstream and downstream propagating waves,
respectively. Then the fluid velocity vector U can be written as

U =

(
U
V

)
=

(
Ωy
0

)
+

(
u
v

)
. (2)
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From conservation of vorticity for two-dimensional inviscid flows, the vorticity re-
mains constant if it is initially constant. Thus the perturbed wave motion given by (u, v) is
irrotational and can be described by the complex velocity potential f defined by

f (z, t) = φ(x, y, t) + iψ(x, y, t) with
∂ f
∂z

= w = u− iv, (3)

where z = x + iy and w = u− iv denote the complex coordinate and the complex velocity,
respectively, and t is the time. In addition, from the mass conservation law given by
Ux + Vy = 0, one can introduce a streamfunction Ψ defined by

U = Ψy and V = −Ψx. (4)

From (2) and (3), Ψ is related to ψ = Im{ f } by

Ψ =
1
2

Ωy2 + ψ. (5)

With the characteristic speed c and wavelength λ, all physical variables are non-
dimensionalized as follows:

z∗ = kz , t∗ = ckt , f∗ =
f

(c/k)
, ỹ∗ = kỹ , h∗ = kh, (6)

where k = 2π/λ is the wavenumber and h is the wave crest-to-trough height. Then the
following dimensionless parameters appear in the problem:

Ω∗ =
Ω√
gk

, c∗ =
c√
g/k

, We =
ρc2λ

T
, α =

h
λ

, (7)

where g is the gravitational acceleration, We is the Weber number, ρ is the density of fluid,
T is the surface tension, α is the wave steepness, and c∗ is related to the Froude number
Fλ by

Fλ =
c√
gλ

=
1√
2π

c∗. (8)

Henceforth the asterisks for dimensionless variables will be omitted for brevity.
The kinematic and dynamic boundary conditions at the water surface y = ỹ(x, t) are

given, respectively, by

ỹt +

(
φx +

Ω
c

ỹ
)

ỹx = φy at y = ỹ(x, t), (9)

and

φt +
1
2
(φx

2 + φy
2) +

1
c2 ỹ +

Ω
c
(ỹφx − ψ)− 2π

We

ỹxx

(1 + ỹ2
x)

3/2 = B(t) at y = ỹ(x, t), (10)

where an arbitrary function B(t) can be absorbed into φ. Also, the bottom boundary
condition as y→ −∞ is given by(

u
v

)
→

(
1
0

)
or

∂ f
∂z

= φx + iψx → 1 as y→ −∞. (11)

2.2. Unsteady Conformal Mapping of the Flow Domain

Similarly to the previous studies [7–9], we introduce a new complex plane, the ζ-plane
(ζ = ξ + iη) shown in Figure 1b, where the flow domain is conformally mapped onto the
lower half η < 0 and the time-varying water surface is always mapped onto the real axis
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η = 0. In the ζ-plane, we choose z = z(ζ, t) and f = f (ζ, t) as dependent variables. Then,
the free surface conditions (9) and (10) are transformed, respectively, to

yt = −xξ ·
1
J

Ψξ + yξ · H
[

1
J

Ψξ

]
at η = 0, (12)

and

φt − φξ · H
[

1
J

Ψξ

]
+

1
2

1
J
(φξ

2 − ψξ
2) +

1
c2 y +

Ω
c

(
1
J

φξ yxξ − ψ

)
− 2π

We

yξξ xξ − xξξyξ

J3/2 = B(t) at η = 0, (13)

where
Ψξ = ψξ +

Ω
c

yyξ and J = xξ
2 + yξ

2. (14)

Here the Hilbert transformH[Φ(ξ)] of a real valued function Φ(ξ) defined by

H[Φ(ξ)] :=
1
π

P.V.
∫ ∞

−∞

Φ(ξ ′)

ξ ′ − ξ
dξ ′, (15)

where P.V. denotes Cauchy’s principal value. The bottom condition (11) is satisfied with

z → ζ and f → ζ as η → −∞. (16)

We can numerically update the dependent variables y and φ with respect to time t
using (12) and (13). Note that, at the water surface η = 0, x and ψ are related to y and φ by

xξ = 1−H[yξ ] and ψξ = H[φξ − 1] at η = 0. (17)

The excess kinetic energy EK(t), potential energy EP(t) and surface energy ES(t) due
to the presence of waves can be obtained as

EK(t) =
1
2

c2

(2π)3

{∫ π

−π
(ψ− y)(φξ − xξ)dξ +

Ω
c

∫ π

−π
(φξ − xξ)y2dξ +

1
3

(
Ω
c

)2∫ π

−π
y3xξdξ

}

EP(t) =
1
2

1
(2π)3

∫ π

−π
y2xξdξ

ES(t) =
1

(2π)2
c2

We

∫ π

−π

(√
xξ

2 + yξ
2 − 1

)
dξ


, (18)

where each integral is taken along the water surface −π ≤ ξ ≤ π and η = 0 over one
period, and each energy is non-dimensionalized by ρgλ3.

3. The Method of Computation

Following the previous work [7] (§5.2), we adopt a pseudo-spectral method to solve (12)
and (13) for the two unknown variables y = y(ξ, t) and φ = φ(ξ, t) at the water surface
η = 0. First, from the analyticity of z and f and the bottom boundary condition (16),
y = y(ξ, t) and φ = φ(ξ, t) can be expanded and approximated, respectively, by the
following truncated Fourier series

y(ξ, t) '
N/2

∑
k=0
{bk(t) cos kξ − ak(t) sin kξ}, (19)

and

φ(ξ, t) ' ξ +
N/2

∑
k=0
{ck(t) cos kξ + dk(t) sin kξ}, (20)

where ak(t), bk(t), ck(t), and dk(t) are all real. For numerical computation, ξ ∈ [−π, π] is
discretized with an equal interval as
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ξ j := −π + j · 2π/N (j = 0, 1, · · · , N). (21)

When N is set to be a power of 2, the real coefficients ak(t), bk(t), ck(t), and dk(t) can
be numerically determined from yj(t) := y(ξ j, t) and φj(t) := φ(ξ j, t) (j = 0, 1, · · · , N)
using the fast Fourier transform (FFT). We can numerically update yj(t) and φj(t) with
respect to the time t using the 4th-order Runge-Kutta method for numerical integration
of (12) and (13) by setting a suitable value of the time increment ∆t. Note that the Hilbert
transform of cos kξ and sin kξ are given, respectively, by

H[cos kξ] = −sgn(k) sin kξ

H[sin kξ] = sgn(k) cos kξ

}
with sgn(k) :=


+1 (k > 0)

0 (k = 0)
−1 (k < 0)

. (22)

To estimate the accuracy of the computed results, we monitor an error index Eerror(t)
based on the energy conservation law, which is defined by

Eerror(t) := |ET(t)− ET(0)|/ET(0) with ET(t) = EK(t) + EP(t) + ES(t), (23)

where EK(t), Ep(t), and ES(t) are given by (18), and ET(t) denotes the total energy of waves.

4. Numerical Results
4.1. Initial Values

We assume that symmetric pure gravity waves initially progress in permanent form
on a linear shear current. The maximum wave steepness α of the limiting steady waves
changes with the shear strength Ω, and thus, similarly to [9], it is convenient to introduce a
parameter γ defined by

γ = 1− q(0)crest/q(0)trough, (24)

where q(0)crest and q(0)trough denote the fluid velocity at the wave crest and trough of steady
waves, respectively. In this work, we focus on the case of downstream propagating waves,
namely Ω < 0 because parasitic capillary waves can be easily generated even on small-
amplitude gravity waves with a linear shear current for this case, as will be shown in
Section 4.2. For Ω ≤ 0, the parameter γ ∈ [0, 1] monotonically increases with the wave
steepness α and γ = 1 always corresponds to the limiting wave.

On the assumption of symmetric profile, we can approximate the x and y coordinates
of the water surface of 2π-periodic steady waves, x(0)(ξ) and y(0)(ξ), respectively, by the
truncated Fourier series as

x(0)(ξ) ' ξ +
M

∑
k=1

b(0)k sin kξ and y(0)(ξ) '
M

∑
k=0

b(0)k cos kξ. (25)

When the parameter γ and the shear strength Ω are given, we may numerically
determine the unknown Fourier coefficients b(0)k in (25) using Newton’s method such
that the free surface conditions (12) and (13) with the zero mean level condition (1) and
the condition (24) for γ are satisfied. See [9] (§3) for the detailed description of our
computational method for these steady waves in the ζ-plane.

Figure 2a,b show the computed results of the wave profile y = ỹ(0)(x), the slope
θ(0)(x), and the curvature κ(0)(x) of pure gravity steady waves progressing in permanent
form on a linear shear current for γ = 0.2 and 0.1 with some different values of the shear
strength Ω, respectively. Here θ(0)(x) and κ(0)(x) are given by

tan θ(0)(x) =
dỹ(0)

dx
=

y(0)ξ

x(0)ξ

and κ(0)(x) =
y(0)ξξ x(0)ξ − x(0)ξξ y(0)ξ

J(0)3/2 , (26)
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where J(0) = (x(0)ξ )2 + (y(0)ξ )2. The number of Fourier modes in (25) is set to M = 128,
and the computed results using Newton’s method are obtained with an error tolerance
smaller than 10−11. It is found that, in the presence of a linear shear current with Ω < 0,
the curvature κ(0)(x) can be relatively large near the crest x = 0 even if the wave steepness
α is very small such as α = O(10−3) or O(10−4). Table 1 summarizes the wave speed c and
the wave steepness α of each steady wave solution for given γ and Ω.
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Figure 2. Pure gravity steady waves progressing in permanent form on a linear shear current with the shear strength Ω.
The slope θ(0)(x) and the curvature κ(0)(x) are given by (26), and the parameter γ is defined by (24). The number of Fourier
modes in (25) is set to M = 128. (a) γ = 0.2 (black line — : Ω = 0.0, red line — : Ω = −1.0, blue line — : Ω = −2.0, green
line — : Ω = −3.0, magenta line — : Ω = −4.0). (b) γ = 0.1 (black line — : Ω = 0.0, red line — : Ω = −2.0, blue line — :
Ω = −4.0, green line — : Ω = −6.0, magenta line — : Ω = −8.0).

Table 1. The wave speed c and the wave steepness α of pure gravity steady waves on a linear shear
current in Figure 2. The parameter γ is defined by (24) and Ω is the shear strength. See the definition
of dimensionless parameters in (7).

γ Ω c α

0.2 0.0 1.00604 × 10+0 3.49321 × 10−2

0.2 −1.0 6.22553 × 10−1 1.32682 × 10−2

0.2 −2.0 4.19196 × 10−1 5.90622 × 10−3

0.2 −3.0 3.08239 × 10−1 3.11534 × 10−3

0.2 −4.0 2.41766 × 10−1 1.86715 × 10−3

0.1 0.0 1.00138 × 10+0 1.67068 × 10−2

0.1 −2.0 4.15398 × 10−1 2.85668 × 10−3

0.1 −4.0 2.37640 × 10−1 9.20809 × 10−4

0.1 −6.0 1.64103 × 10−1 4.30888 × 10−4

0.1 −8.0 1.24961 × 10−1 2.45879 × 10−4
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4.2. Generation of Parasitic Capillary Waves

Figures 3–5 show the time evolution of the wave profile ỹ(x, t), the slope θ(x, t), the
surface energy ratio ES(t)/ET(t), and the energy spectrum Sk(t), respectively, of gravity-
capillary waves on a linear shear current. The initial values at t = 0 are set to the pure
gravity waves in Figure 2 of which the values of the parameter γ, the shear strength Ω, the
wave speed c and the wave steepness α are summarized in Table 1. The surface energy
ES(t) and the total energy ET(t) are given by (18) and (23), respectively, and the slope
θ(x, t) and the energy spectrum Sk(t) are defined, respectively, by

tan θ(x, t) =
yξ

xξ
and Sk(t) = ak(t)

2 + bk(t)
2 (k = 0, 1, 2, · · · , N/2), (27)

where ak(t) and bk(t) are the Fourier coefficients in (19). In all computations, the Weber
number is fixed to 1/We = 0.006, and the number N of Fourier modes in (19) and (20)
and the time increment ∆t of the 4th-order Runge-Kutta method for numerical integration
of (12) and (13) are set to N = 256 and ∆t = 2π/2048, respectively. Note that the time t is
non-dimensionalized as shown in (6) and the period of pure gravity steady waves used as
the initial values is equal to 2π. In the previous paper [7], we examined the convergence
and the stability of this computational method for parasitic capillary waves without a shear
current in detail. Similarly, we determined the values of N and ∆t in this work such that
an error tolerance |Eerror(t)| < 10−8 is satisfied for all t where the error index Eerror(t) is
defined by (23).

Figure 3a,b show the time evolution of the wave profile ỹ(x, t) and the slope θ(x, t)
for the case of γ = 0.2 and 0.1, respectively. It is found that, in the presence of a linear
shear current with Ω < 0, parasitic capillary waves can be generated on small-amplitude
gravity waves, as shown in the two cases (a) γ = 0.2 and Ω = −4.0 with α = O(10−3)
and(b) γ = 0.1 and Ω = −8.0 with α = O(10−4) where the values of the wave steepness α
are summarized in Table 1.

Figures 4 and 5 show the time evolution of the surface energy ratio ES(t)/ET(t) and
the energy spectrum Sk(t) of the computed results in Figure 3, respectively. We can see
that, when parasitic capillary waves are generated, namely in the two cases (a) γ = 0.2
and Ω = −4.0 and (b) γ = 0.1 and Ω = −8.0, the wave energy is transferred from gravity
waves to capillary waves. These results indicate that, even for very small-amplitude waves
such as the wave steepness α = O(10−3) or O(10−3), a nonlinearity works for generation
of parasitic capillary waves.
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Figure 3. Time evolution of the wave profile ỹ(x, t) and the slope θ(x, t) of gravity-capillary waves
on a linear shear current with the shear strength Ω. The initial values are set to pure gravity waves in
Figure 2. See Table 1 for the parameter values of the initial waves. The parameter γ is defined by
(24). 1/We = 0.006, N = 256 and ∆t = 2π/2048. (a) γ = 0.2 (red line — : Ω = −1.0, blue line — :
Ω = −2.0, green line — : Ω = −3.0, magenta line — : Ω = −4.0). (b) γ = 0.1 (red line — : Ω = −2.0,
blue line — : Ω = −4.0, green line — : Ω = −6.0, magenta line — : Ω = −8.0).
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Figure 4. Time evolution of the surface energy ratio ES(t)/ET(t) of the computed results in Figure 3.
The surface energy ES(t) and the total energy ET(t) are given by (18) and (23), respectively. The
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Figure 5. Time evolution of the energy spectrum Sk(t) of the computed results in Figure 3. Sk(t) is
given by (27) and the parameter γ for is defined by (24). (black line — : t = 0, red line — : t = π,
blue line — : t = 2π, green line — : t = 3π). (a) γ = 0.2; (b) γ = 0.1.

5. Discussions

The number of parasitic capillary waves generated on the face of gravity waves has
been of interest and was estimated by Fedorov & Melville [11] by imposing the condition
that the linear wave speeds of gravity and capillary waves are equal under the steady
flow assumption. From [8] (Equation (2.23)), the expression for the linear wave speed in
dimensional form is given by

c =
Ω
2k
±

√
g
k

(
1 +

T
ρg

k2
)
+

(
Ω
2k

)2
. (28)

While the background shear changes the (long) gravity wave speed, but affects little
the (short) capillary wave speed, which can be approximated, from (28), by

c2 =
T
ρ

kcap, (29)

where kcap is the capillary wavenumber and is assumed large. Then, from (7) along
with (29), kcap can be estimated, in terms of the Weber number We, by

kcap

k
=

We
2π
' 26.5, (30)

where 1/We = 0.006 has been used in our computations. This is approximately the
wavenumber, at which the short wave energy grows, as shown in Figure 5. The ratio
between the gravity and capillary wavelengths is λcap/λ = 1/26.5 so that the number
of capillary waves over the front half of the underlying gravity wave is about 13, inde-
pendent of the shear strength Ω. As can be seen in Figure 3, the argument of Fedorov &
Melville [11] seems to provide an estimate that is consistent with our numerical solutions.
Nevertheless, as our solutions are time-dependent and the excited parasitic capillary waves
are modulated, the validity of this argument needs to carefully examined.

As pointed out in the preceding section, the generation of parasitic capillary waves,
or the transfer of energy from gravity waves to capillary waves, is a nonlinear process
that occurs even for small-amplitude waves in the presence of a linear shear. Therefore,
it is of interest to find out which terms in the evolution equations are responsible for the
generation of parasitic capillary waves. Considering that parasitic capillary waves can be
generated on small-amplitude gravity waves, once these terms are identified, the evolution
equations might be able to be simplified.
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For such small-amplitude waves, we may approximate the free surface conditions (12)
and (13) by neglecting high-order nonlinear terms by assuming that xξ − 1, xξξ , y, yξ , yξξ ,
φξ − 1, ψ, ψξ are all small. This approximation allows us to examine which nonlinear terms
are directly related to the generation of parasitic capillary waves. As a result, it is found
that only one nonlinear term in the kinematic condition (12) is mainly responsible for the
generation of capillary waves, and that the free surface conditions (12) and (13) can be
approximated as

yt = −
(

ψξ +
Ω
c

yyξ

)
, (31)

and

φt −H
[

ψξ +
Ω
c

yyξ

]
+

1
2
[
1 + 2{(1− xξ)− (1− φξ)}

]
+

1
c2 y

+
Ω
c
[
y− ψ + y{(1− xξ)− (1− φξ)}

]
− 2π

We
yξξ = B(t) .

(32)

Compared with (12)–(13), notice that we include the second-order nonlinear terms
with Ω are kept while all other terms are linearized.

Figure 6 compares the computed results for the wave profile ỹ(x, t) and the slope
θ(x, t) at t = 3π using the approximate free surface conditions (31) and (32) with those
using the original fully nonlinear conditions (12) and (13) for two cases: (a) γ = 0.2 and
Ω = −4.0 and (b) γ = 0.1 and Ω = −8.0. It is found that the weakly nonlinear solutions
using (31) and (32) reasonably well approximate the fully nonlinear solutions using (12)
and (13) for small-amplitude waves. Therefore, the approximate evolution equations given
by (31) and (32) would be useful to study the generation of parasitic capillary waves on
small-amplitude gravity waves with a linear shear current.
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Figure 6. Comparison of the computed results of the wave profile ỹ(x, t) and the slope θ(x, t) at
t = 3π using the approximate free surface conditions (31) and (32) with those using the fully nonlinear
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conditions (12) and (13). The initial values are set to pure gravity waves in Figure 2. See Table 1 for
the parameter values of the initial waves. The parameter γ is defined by (24). 1/We = 0.006, N = 256
and ∆t = 2π/2048. (black line — : the fully nonlinear solutions using (12) and (13), red line — :
the weakly nonlinear solutions using (31) and (32)). (a) γ = 0.2 and Ω = −4.0; (b) γ = 0.1 and
Ω = −8.0.

6. Conclusions

We have numerically investigated the generation of parasitic capillary waves on grav-
ity waves with a linear shear current. For fully nonlinear computation of this phenomenon,
we have adopted the Unsteady Hodograph Transformation (UHT) method that confor-
mally maps the flow domain onto the lower half of a complex plane, or the ζ-plane, as
shown in Section 2. The time-varying water surface is always mapped onto the real axis
η = 0, and the free surface conditions are transformed into (12) and (13) in the ζ-plane.
This method of computation enables us to obtain highly accurate solutions for a wide range
of the wave steepness, the shear strength, and the surface tension.

We have computed the time evolution of the wave profile ỹ(x, t), the slope θ(x, t) of
the water surface, the surface energy ratio ES/ET, and the energy spectrum Sk(t) defined
by (27) using the UHT method, as shown in Figures 3–5. The initial values at t = 0 are set
to pure gravity steady waves whose curvature κ near the crest can be relatively large even
for small-amplitude waves in the presence of a linear shear current, as shown in Figure 2.
Numerical solutions have shown that the linear shear current with the shear strength
Ω < 0 makes the energy transfer from gravity waves to capillary waves more effectively so
that parasitic capillary waves can be generated even if the amplitude of underlying gravity
waves is very small. For example, the wave steepness α = O(10−3) or O(10−3) is large
enough for the generation of parasitic capillary waves, which is unlikely to happen for the
case of Ω = 0.

Therefore, under the assumption of small wave amplitude, we have found the approxi-
mate free surface conditions (31) and (32), which might be useful for a theoretical study. The
computed results using this approximate model showed that the weakly nonlinear terms
with Ω play a key role in the generation of parasitic capillary waves on small-amplitude
gravity waves with a linear shear current, as demonstrated in Figure 6.

In future investigations, it would be worthwhile to take viscous effects into considera-
tion and compare the computed results with experimental data when they are available.
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