
Journal of

Marine Science
and Engineering

Article

A Control Algorithm for Sea–Air Cooperative Observation
Tasks Based on a Data-Driven Algorithm

Kai Hu 1,2 , Xu Chen 1 , Qingfeng Xia 3,4,5,* , Junlan Jin 1,2 and Liguo Weng 1,2

����������
�������

Citation: Hu, K.; Chen, X.; Xia, Q.;

Jin, J.; Weng, L. A Control Algorithm

for Sea–Air Cooperative Observation

Tasks Based on a Data-Driven

Algorithm. J. Mar. Sci. Eng. 2021, 9,

1189. https://doi.org/10.3390/

jmse9111189

Academic Editor: Kyung-Ae Park

Received: 16 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;
nuistpanda@163.com (K.H.); 20181223010@nuist.edu.cn (X.C.); 20201249090@nuist.edu.cn (J.J.);
002311@nuist.edu.cn (L.W.)

2 Jiangsu Provincial Collaborative Innovation Center for Atmospheric Environment and Equipment
Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China

3 School of Automation, Wuxi University, Wuxi 214105, China
4 School of Management and Engineering, Nanjing University, Nanjing 210093, China
5 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,

Shenyang 110016, China
* Correspondence: fenix@jlxy.nju.edu.cn; Tel.: +86-18625186392

Abstract: There is tremendous demand for marine environmental observation, which requires
the development of a multi-agent cooperative observation algorithm to guide Unmanned Surface
Vehicles (USVs) and Unmanned Aerial Vehicles (UAVs) to observe isotherm data of the mesoscale
vortex. The task include two steps: firstly, USVs search out the isotherm, navigate independently
along the isotherm, and collect marine data; secondly, a UAV takes off, and in its one round trip, the
UAV and USVs jointly perform the task of the UAV reading the observation data from USVs. In this
paper, aiming at the first problem of the USV following the isotherm in an unknown environment, a
data-driven Deep Deterministic Policy Gradient (DDPG) control algorithm is designed that allows
USVs to navigate independently along isotherms in unknown environments. In addition, a hybrid
cooperative control algorithm based on a multi-agent DDPG is adopted to solve the second problem,
which enables USVs and a UAV to complete data reading tasks with the shortest flight distance of
the UAV. The experimental simulation results show that the trained system can complete this tas,
with good stability and accuracy.

Keywords: sea and air observation; multi-agent collaboration; data-driven; deep reinforcement learning

1. Introduction

A mesoscale eddy is a kind of marine phenomenon characterized by long-term closed
circulation with a time scale from days to months and a spatial scale from tens of kilo-
meters to hundreds of kilometers. It has a nonnegligible impact on weather prediction,
marine chemistry, and the biological environment [1]. The current means of object-oriented
observation are insufficient, so it is necessary to develop an automatic sea–air cooperative
observation system to promote the study of mesoscale eddy-related air–sea interactions and
their weather and climate effects. The system’s primary goal is to realize the cooperative
tasks of many kinds of intelligent equipment, such as USVs, UAVs, and so on. As shown in
Figure 1, the observation of seawater isotherms will help us to understand the formation
and propagation of mesoscale eddies. This observation includes two missions:

• Mission 1: USVs search for the isotherm of the mesoscale eddy, self-navigate along
the isotherm, and collect ocean data;

• Mission 2: A UAV takes off, and in its one round trip, the UAV and USVs cooperatively
move and the UAV reads all observation data from the USVs one by one with a
limited distance.

J. Mar. Sci. Eng. 2021, 9, 1189. https://doi.org/10.3390/jmse9111189 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-7181-9935
https://orcid.org/0000-0003-3437-2016
https://orcid.org/0000-0003-0829-6750
https://orcid.org/0000-0001-6458-121X
https://orcid.org/0000-0001-8281-5323
https://doi.org/10.3390/jmse9111189
https://doi.org/10.3390/jmse9111189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9111189
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9111189?type=check_update&version=3

J. Mar. Sci. Eng. 2021, 9, 1189 2 of 26

Figure 1. Statistical characteristics of mesoscale processes.

The ocean environment is dynamic and variable; thus, it is difficult to build an
accurate environment and multi-agent system control model. Therefore, traditional control
algorithms, which depend on model design, are difficult to build. In recent years, the rapid
development of Reinforcement Learning (RL) and data-driven control theory has provided
a new idea for solving the problem of multi-agent cooperative control.

For mission 1, in the field of USV and USV control, many outstanding researchers
have designed USV schemes and control platforms [2–4]. Most studies are based on the
ideas of path planning and trajectory tracking control to realize USV navigation, using
GPS for remote path control and achieving a very accurate motion control effect. However,
for mission 1 as stated in this paper, what we need is a scheme for the autonomous control
of a USV in an unknown environment. This involves finding isotherms by autonomous
decision-making and the control of the USV itself. Moreover, due to the “migration”
movement of the mesoscale eddy itself, the water temperature in the same area also
changes all the time, which leads to a very dynamic environment.

For mission 2, regarding the cooperative work between UAV and USVs, Polvara [5]
introduced an end-to-end control technology based on deep reinforcement learning to land
an Unmanned Aerial Vehicle on a visual marker located on the deck of a USV. At present,
there is no relevant discussion about mission 2. However, whether we consider the tracking
of the UAV in the unknown environment in task 1, or the cooperative control of the UAV
and UAV in task 2, the main development direction of these two fields has pointed to the
Reinforcement Learning scheme [6–10].

RL can find the optimal behavior from an unknown environment through the interac-
tion between the system and its territory when the external environment does not provide
a clear training signal. In 1990, Werbos [11] proposed adaptive dynamic programming
based on RL. In 2014, Modares [12] proposed an online learning algorithm, Integral Re-
inforcement Learning (IRL), which is used to solve the optimal tracking control problem
of linear or nonlinear systems whose system models are partially unknown. However,
for multi-agent systems, the state of agents will change with time, and each agent is faced
with emotional decision-making problems, which are uncertain and must be made in
real-time. As a result, traditional decision-making methods such as RL are not suitable
for solving continuous action control problems [13]. In recent years, Deep Reinforcement
Learning (DRL) has received extensive attention [14–16]; it provides an optimal decision-
making strategy for complex, high-dimensional multi-agent systems and can perform tasks
effectively in challenging environments. Some classical DRL algorithms and their brief
introductions are shown in Table 1.

J. Mar. Sci. Eng. 2021, 9, 1189 3 of 26

Table 1. Summary of DRL algorithms.

Classification Name Introduction

DQN Two identical Q network structures are proposed, but they cannot deal
with continuous action control.

Value-based RL Double DQN [17] The DQN training algorithm is improved to decouple the selection and
evaluation of actions.

Dueling DQN [18] The DQN is improved, and the Q value is divided into the state value and
the action dominance function.

Policy-based RL PG [19] The value-based approach is replaced with a policy-based approach.

AC [20] A strategy network and value network are combined.
Hybrid algorithm A3C [21] A general asynchronous and concurrent reinforcement learning framework

is proposed, and the evaluation network is optimized.
DDPG The evaluation and policy network is used to update the model parameters

iteratively, but it is not suitable for random environment scenarios.
NAF [22] A network is trained to output both an action and Q value simultaneously,

but the algorithm is not mature.

The Deep Q Learning (DQN) algorithm is the pioneer of DRL, proposed by Deep-
Mind [23] in 2013. It implements end-to-end learning from perception to action. Later,
Wu [24] solved the path planning problem of single USV and multi-USV formation by
using the DQN algorithm. Because the DQN algorithm selects an action by calculating the
maximum Q value, the estimated value function is larger than the actual value function.
With the expansion of the action space, the estimation error will continue to increase,
and so the DQN algorithm cannot be applied to high-dimensional continuous motion
control. In 2015, Lillicrap [25] proposed the Deep Deterministic Strategy Gradient (DDPG)
algorithm based on the Actor–Critic (AC) framework. In 2019, Wang [26] realized the
self-adjustment of a multi-AUV sliding mode controller at different speeds by using the
DDPG algorithm. It is worth noting that the above control methods based on RL still have
high requirements for the system model. With the application of digital sensor technology,
people can obtain a great deal of data-carrying system information. Some researchers have
proposed the use of these data to develop data-driven control protocols. The data can be
used in the optimal control of a single agent and the cooperative control of multiple agents.
In 2010, Xing [27] proposed an autonomous obstacle avoidance and trajectory tracking
strategy based on data-driven control theory to solve the problem of multi-agent formation
security. In 2019, Zhang [28] proposed an optimal formation control method based on a
data-driven approach to solve the problem of multi-agent formation with virtual leaders. In
2017, Foerster [29] proposed a counterfactual multi-agent (COMA) policy gradient, which
uses a counterfactual baseline that marginalizes out a single agent’s action, while keeping
the other agents’ actions fixed. In 2019, Xiong [30] proposed a distributed data-driven
control algorithm for multi-agent systems (MAS) based on a model-free adaptive control
(MFAC) method.

Our contributions to achieving the engineering missions mentioned above in un-
known, dynamic, and variable ocean environments are as follows:

1. Mission 1 requires the USV to follow the isotherm of the mesoscale eddy, which
can be regarded as the navigation problem of the USV in an unknown environment.
Because the state of the USV at sea will change with time, with the instability of this
environment, it is difficult to understand and predict its strategy, which makes it
challenging for the Q learning algorithm to converge. Unlike the supervised learn-
ing algorithm, which requires a large amount of sample data, the DDPG algorithm
does not need an accurate mathematical model of the controlled object, which is of
great significance for controlling a USV in unknown environments. In this scenario,
the DDPG algorithm has certain advantages in dealing with high-dimensional contin-

J. Mar. Sci. Eng. 2021, 9, 1189 4 of 26

uous state and action space problems. Therefore, we use the DDPG algorithm to learn
these system data and train the data-driven DDPG controller of the related system to
complete the task of the USV tracking isotherm.

2. Mission 2 requires multiple USVs and a UAV to be guided to work together and
transmit a large amount of data. The control network of this kind of sea–air cross-
domain heterogeneous system is very complex; in addition, under the condition of
long distances at sea, the communication conditions are limited, so it is difficult to
build an accurate environment and control model. Moreover, for the scenario of
heterogeneous cooperation between drones, it is not a simple extension to train each
agent separately. From the perspective of either the USV or UAV, the environment
will become unstable. Because they update their respective strategies independently,
it is difficult to guarantee the convergence of the algorithm. In view of the DDPG
algorithm’s deficiency in solving heterogeneous cooperative control, a cooperative
control strategy of a heterogeneous multi-agent-based DDPG (MADDPG) is adopted
in this paper.

The structure of this paper is as follows: the first section introduces the research back-
ground. The second section briefly analyzes the Markov decision process and the classical
Q learning algorithm. In the third section, the USV tracking isotherm method based on
data-driven and DRL approaches is proposed. In the fourth section, the sea–air cooperative
observation method based on DRL is proposed. In the fifth section, the performances of the
algorithms are verified by experimental simulation. The sixth section concludes our work.

2. Reinforcement Learning

One of the primary purposes of RL is to give full play to the interaction between
the agent and the environment, take the environmental feedback and the agent’s state as
inputs, and learn knowledge more effectively by updating strategies in the ever-changing
complex environment.

2.1. Markov Decision Process (MDP)

As shown in Figure 2, the MDP describes the learning environment, in which a goal
can be learned via continuous interactions between an agent and the environment [6]. It
can be represented as a four-element tuple:

M = [S, A, P, R] (1)

where S = {s1, s2, . . . , st} represents the dynamic environment with a finite set of states,
st denotes the state at time t, A = {a1, a2, . . . , at} represents actions executed by an agent,
at denotes action at time t, R is the reward function, and P is the transition probability
function, expressed as

P[st+1 = s
′ |st = s, at = a] (2)

where st+1 represents the next state after the execution of action a in the state s. The inter-
action between the agent and environment is shown as Figure 2. The agent is not only a
learner but also a decision-maker—it selects action at with observed environment state st.
The environment, in response to the actions taken by agent, updates its state to st+1 and
returns an immediate rt+1 to the agent.

J. Mar. Sci. Eng. 2021, 9, 1189 5 of 26

state
action

Agent

Environment

reward

Figure 2. The agent–environment MDP interaction framework.

2.2. Q Learning

The aim of Q learning is to find an optimal control policy π∗ for a given MDP [22]. π∗

maximizes the action value function:

Q∗(s, a) = max
π

(E[
∞

∑
k=0

γk(rt+k|st = s, at = a, π)]) (3)

where γ ∈ [0, 1] is the discount factor that determines the return function. Q learning
is an off-policy approach to solving MDPs and directly approximates the action value
function via

Q(s, a)←Q(s, a) + α[r + γ max(Q(s
′
, a)−Q(s, a))] (4)

where α ∈ [0, 1] is the learning rate. Note that the Q learning algorithm needs to initialize
a Q table to record the expectation of the action value function, making it only suitable
for dealing with simple situations with a small action and state space. However, most
problems in the real world require a large number of states and action spaces, which makes
it unrealistic to build a Q table containing all states and actions.

3. USV Tracking Isotherm Algorithm
3.1. Deep Deterministic Policy Gradient Algorithm

While Q-Learning or DQN solves problems with high-dimensional observation spaces,
it can only handle discrete and low-dimensional action spaces. Many tasks of interest,
most notably physical control tasks, have continuous (real valued) and high-dimensional
action spaces. Q-Learning or DQN cannot be straightforwardly applied to continuous
domains since it relies on a finding the action that maximizes the action-value function,
which in the continuous valued case requires an iterative optimization process at every
step. Lillicrap [25] proposed the DDPG algorithm, which combines AC with insights
from DQN; it can learn competitive policies for all of our tasks using low-dimensional
observations (e.g., cartesian coordinates or joint angles) using the same hyper-parameters
and network structure. A key feature of the approach is its simplicity: it requires only
a straightforward Actor–Critic architecture and is a learning algorithm with very few
“moving parts”, making it easy to implement and scale to more difficult problems and
larger networks. It has achieved good performance in the track optimization of USVs, flight
control of UAVs, cooperative navigation of multi-mobile robots, and so on [8–10].

As shown in Figure 3, in the DDPG algorithm, depth neural networks with parameters
θµ and θQ are used to represent the deterministic strategy a = π(s|θµ) and action value
function Q(s, a|θQ). Among them, the policy network corresponds to the Actor in the
AC framework to update the policy. The value network approximates the value function
corresponding to the state action and provides relevant gradient information, which
corresponds to the Critic in the AC framework.

J. Mar. Sci. Eng. 2021, 9, 1189 6 of 26

Environment

state

Agent

Loss function

ActorNet

TargetNetMainNet

𝑠,𝑎, 𝑟, 𝑠,

Experience pool

Mini-Batch

CriticNet CriticNet ActorNet

Policy gradient

update

update()aQ

a 'a

()'aQ()iaQ

Figure 3. DDPG network training process.

Firstly, the objective function is defined as the total return with discount, shown as

J(θµ) = Eθµ [r1 + γr2 + γ2r3 + · · ·+ γnrn] (5)

where J is used to measure the performance of a strategy µ, and θµ is the parameter of the
policy network. A CNN is used to approximate the µ function, which is called the policy
network. Eθµ [·] represents the expected value of the total return.

Secondly, the objective function is optimized end-to-end by a random gradient method
to improve the total return, the gradient of the objective function with respect to θµ is
equivalent to the expected gradient of the Q-valued function with respect to θµ:

∂J(θµ)

∂θµ = Es[
∂Q(s, a|θQ)

∂θµ] (6)

where θµ is the parameter of the Q network. A CNN is used to simulate the Q function
and called a Q network.

Then, according to the deterministic strategy a = π(s|θµ), we obtain

∂J(θµ)

∂θµ = Es[
∂Q(s, a|θQ)

∂a
∂π(s|θµ)

∂θµ] (7)

where π(s|θµ) represents the conditional probability density related to the strategy. Q(s, a|θQ)
represents the parameter probability distribution, which randomly selects an action according
to the parameter vector θQ. The update of the policy network parameters can be completed
by raising the Q value.

Finally, as with the DQN algorithm, the DDPG algorithm updates the evaluation net-
work by updating the value network, and its gradient information is expressed as follows:

∂J(θµ)

∂θQ = Es,a,r,s′∼D[TargetQ−Q(s, a|θQ)
∂Q(s, a|θQ)

∂θµ] (8)

TargetQ = r + γQ
′
(s
′
, π(s

′ |θµ
′
)|θQ

′
) (9)

J. Mar. Sci. Eng. 2021, 9, 1189 7 of 26

where D represents the experience playback pool and TargetQ represents the target Q value.
θ(µ

′
) is the target policy network parameter copied by θµ, and θ(Q

′
) is the target Q network

parameter copied by θQ, which updates the value network by gradient descent.
Because the target policy is a deterministic strategy, in contrast to the execution

strategy, the evaluation of the value function of the DDPG algorithm adopts the Q-learning
approach with different strategies. More specifically, the loss function (TD error) of the
online Q network is calculated as follows:

L =
1
N ∑

(
yi −Q

(
si, ai

∣∣∣θQ
))2

(10)

where yi is the “label” obtained by the target policy network and the target Q network,
which is defined as follows:

yi = ri + λQ
′
(

si+1, µ
′
(

si+1

∣∣∣∣θµ
′
)∣∣∣∣θQ

′
)

(11)

The data sample (s, a, r, s
′
) in the process of interaction between the agent and the

environment is stored in the experience pool, and a small sample is randomly selected
from the sample pool for neural network training, which breaks the relationship between
the samples. At the same time, because the update of the Q-value function directly leads to
unstable training, a separate target network is set up in DDPG to evaluate TD deviation.
Finally, DDPG updates the network to the target network as follows:{

θQ
′
← δθQ + (1− δ)θQ

′

θµ
′
← δθµ + (1− δ)θµ

′ (12)

where δ is the update coefficient, and its value is generally small (0.1 or 0.01).

3.2. USV Tracking Isotherm Algorithm

As we can see from Figure 1, the spatial scale of mesoscale eddies ranges from tens
of kilometers to hundreds of kilometers. In our ideal observation task, satellite, several
USVs and UAVs are used. Firstly, a satellite is used to roughly observe the formation of the
mesoscale and find its center and boundary. Then, our mother ship drives to the center
and places USVs, which drive to the mesoscale boundary with a cross formation (shown
in Figure 4). After collecting data all the way, we can find points with the most largest
temperature change. Finally, USVs drive to these points and begin to execute our algorithm
to find isotherms.

Figure 4. Finding start positions.

J. Mar. Sci. Eng. 2021, 9, 1189 8 of 26

This paper uses three USVs as a demonstration. According to the observation mission
plan (shown in Figure 5), Task 1 needs USV1, USV2, and USV3 to be guided to search for
isotherms in their respective areas and navigate independently along the isotherms. If the
isotherm is regarded as the target point or target trajectory, this mission can be regarded as
the navigation problem of an unmanned vehicle in an unknown environment.

USV1

USV2

USV3

Isotherm

Isotherm

Isotherm

Figure 5. Multiple USVs cooperate to search isotherms.

The principle block diagram of DDPG for USV tracking isotherm control is shown
in Figure 6.

DDPG

environment

Partial model of

USV

Output best action

Input partial state

Feedback

environment reward

Actual track

Target track

(Isotherm)

Sample

Figure 6. Principle block diagram of USV tracking isotherm.

(1) MDP for USV tracking isotherm
The Markov decision model includes the design of the state space, action space,

and return function.
State: The state space is defined as the USV’s position coordinate (x, y) and heading

direction ϕ. As a result, the angle θt between the USV and the target trajectory can
be calculated and normalized to [−1, 1]. In addition, the state space also includes the
environmental state information returned by the temperature sensor. The temperature
sensor collects the water temperature data Kt of the current position and normalizes it
to [0, 1]. According to the change of water temperature, we can judge whether a USV is
sailing at the desired isotherm. The definition of state space is as follows:

s = {θt, Kt} (13)

Action: Considering the motion characteristics of the USV, it is assumed that the line
speed of the USV remains constant during the voyage. In contrast to most existing path
planning methods for USVs using reinforcement learning, this paper defines a fine action
space, and the formula is as follows:

a = {a1, a2, · · · , a13, back} (14)

J. Mar. Sci. Eng. 2021, 9, 1189 9 of 26

where the action space a is a vector containing 14 elements, and a1 ∼ a13 are angle values
ranging from −60◦(a1) to 60◦(a13) with increments of 10◦ (the range of this value can
be changed according to the dynamic characteristics of the unmanned vehicle), and it
is normalized to [−1, 1]. back indicates a return to the nearest situation where reward is
1—this is a remedial strategy, similar to a Windows system restart, to prevent a USV from
getting lost when it encounters an isotherm with a large corner angle. This action will be
executed when a series of reward values are below a threshold.

In essence, this design depends on the characteristics of the mesoscale eddy. As we
can see from Figure 4, for a warm eddy, the hotter it is toward the center, the colder it is
away from the center. For a cold eddy, the opposite would be true. Thus, for a USV, when
it (in fact, our algorithm) knows whether it us moving clockwise or counterclockwise in a
warm or cold eddy, this action space is comparably easy to design and learn.

In addition, according to the defined state and action spaces, the state transition with
a given action ai by adhering to the kinematics of a USV can be calculated as

x
′
= x + x cos ϕ

′
(15)

y
′
= y + y sin ϕ

′
(16)

ϕ
′
= ϕ + ai (17)

where s = [x, y, ϕ] is the state in the current step, s
′
= [x

′
, y
′
, ϕ
′
] is the state in the next step,

and ai is the chosen action in the current step.
Reward: To generate the shortest path to the target trajectory (isotherm)—that is,

to ensure that each step of the action can bring the USV close to the isotherm—in this paper,
the following set of return functions are designed:

r =
{

rarrive, i f |Kt − K0| ≤ Kgoal
rdirection, others

(18)

where rarrive = 1 is the terminal reward function. Taking USV1 as an example, K0 represents
the temperature collected by USV1 in the starting point, and Kt represents the water
temperature where USV1 is located at the current time. If the absolute difference between
Kt and K0 is less than or equal to the threshold Tgoal , then USV1 is within the isotherm
search range and activates the function. At the same time, in order to guide USV1 to sail
continuously toward the target trajectory, a steering function is defined as

rdirection = w1(θt − θt−1)− w2|Kt − Kt−1| (19)

where Kt and Kt−1 represent the water temperature in the area where the USV is located
at time t and t− 1, and θt represents the angle between the USV heading and the target
trajectory at time t. w1 represents the reward coefficient and w2 represents the punishment
coefficient, both of which are adjusted according to the parameter adjustment process.
If the previous action moves the USV away from the isotherm, a penalty is given; if the
previous action brings the USV close to the isotherm, a certain reward is given. This
means that the USV is not sparsely rewarded in the process of exploration and accelerates
the convergence speed of the algorithm. In addition, the distance between the USVs is
also considerable, so there is no need to consider the problem of avoiding obstacles and
colliding with each other.

(2) Design of network structure
As shown in Figure 7, the policy network uses a CNN with one input and one

output. The network’s input is the environmental state information; that is, the water
temperature information and the current motion state information of the USV. The output
is the action instruction. The evaluation network uses a CNN with two inputs and one
output. The network’s input includes the action of the environment state information and
policy network’s output. The evaluation network output is the evaluation index of the

J. Mar. Sci. Eng. 2021, 9, 1189 10 of 26

current strategy; that is, the Q value of the action. At the same time, the action matrix is
also input into the evaluation network. Finally, the third layer neuron of the network input
by the state–space matrix is merged with the second layer neuron node of the action matrix
input network, and the output value is obtained through the ReLU activation function.

There will be many temperature acquisitions in one action decision-making round.
In essence, this action decision-making is mainly based on the prior knowledge generated
by temperature change trends and mesoscale eddy characteristics mentioned above.

ReLU+

21

softplus tanh

3001 21
Hidden layer1

Hidden layer2

Input

Output

21 4001

softplus tanh

3001 21 4001

21 3001
State

The optimal policy

in the current state

Evaluation indicators

of the current policy

Action

action

tanh

Policy Network

Evaluation Network

Figure 7. Design of strategy network and evaluation network structure.

4. Sea–Air Cooperative Control Algorithm
4.1. Multi-Agent Deterministic Policy Gradient Algorithm (MADDPG)

The distance between maritime agents is very long; the Beidou system can communi-
cate, but its bandwidth is very small, at only 77 bytes per minute, so the Beidou system can
only used for the transmission of limited control data. An ordinary radio system cannot
realize long-distance communication, but it has a high bandwidth in a short distance.
Therefore, we use Beidou to control the agents’ movement and allow the UAV to read a
large amount of data from the USVs in a short distance. However, even so, the bandwidth
of Beidou control is very small, and agents only can communicate once in more than
10 min. Therefore, we face the problem of sea–air cooperative control under the condition
of limited communication.

Mission 2 is to conduct the rendezvous of multiple USVs with a UAV in a specific time
and domain so that the UAV can collect data by flying one round per day. As shown in
Figure 8, taking three USVs and one UAV as an example, the main task of this mission
is to guide USV1, USV2, and USV3 to adjust their current speed based on their distance
and direction to rendezvous with the UAV at different times. At the same time, the UAV
should adjust its speed according to the position information of USVs. It is hoped that the
result of control can be finished in the UAV’s one round trip. In summary, mission 2 can
be regarded as the problem of multiple USVs cooperating to track multiple target points
(UAVs at different times); that is, sea–air heterogeneous cooperative control.

The scenario of heterogeneous cooperation between drones is not a simple extension
of training each agent separately; in this case, whether from the perspective of the UAV
or USVs, the environment will become unstable. Because they update their respective
strategies independently, traditional RL cannot guarantee the algorithm’s convergence,
and the policy-based algorithm will also increase the number of the USVs, which aggravates
the problem and causes more considerable variance. In summary, the DDPG algorithm
is no longer suitable for sea–air heterogeneous cooperative control scenarios. Of course,
through the modeling of the environment and agents, some researchers use the model-
based strategy method; that is, updating the learning strategy according to the gradient

J. Mar. Sci. Eng. 2021, 9, 1189 11 of 26

backpropagation in deep learning or predicting the next state of the environment based
on certain assumptions and communication with each other, but this does not apply
to situations in which maritime communication is limited. The environment is limited,
and the cost is too high. It does not meet the requirements of developing a sea–air interface
networking observation system with high precision, low cost, low risk, and automation.

USV1

USV2

USV3

Isotherm

UAV

Isotherm

Isotherm

Figure 8. Heterogeneous cooperation between USVs and a UAV.

As communication between agents at sea is limited and we need a system structure
of centralized training and distributed execution, we have to choose an algorithm from
MADDPG and its few derived algorithms. COMA [29] is one of the famous algorithms
derived from MADDPG; it uses a global evaluation function to evaluate all current actions
and states, which improves the efficiency of information sharing in training and the
cooperation ability between agents, but it cannot be used in a continuous action space like
MADDPG. Furthermore, considering the algorithm based on classical architecture, we
can easily verify whether the performance of the main MADDPG algorithm is feasible in
our project; thus, to facilitate further improvement in the future, we adopt the MADDPG
algorithm in mission 2.

In detail, we use θ to represent the parameter set of all agents:

θ = {θ1, θ2, · · · , θn} (20)

We use π to represent the policy set of all agents:

π = {π1, π2, · · · , πn} (21)

A Markov game composed of multiple agents is a series of states configured by all
agents; that is, the global environmental state (observed), which is expressed as

s = {o1, o2, · · · , on} (22)

where s represents the global observation, and oi represents the observation of the i-th
agent; that is, the state. Then, the cumulative expected return of the i-th agent at time t is

J(θi) = ∑s∼ρπ ,ai∼πi

[
t =

∞

∑
t=0

γtr(i, t)

]
(23)

where J() represents the total reward, ρπ(s) represents the discount status distribution,
and γ is the discount factor, which is used to calculate the expectation of cumulative return
in the future. Then, the corresponding random policy gradient is

∇θi J(θi) = Es∼ρπ ,ai∼πi

[
∇θi log πi(ai|on)θi

π(s, a1, · · · , an)
]

(24)

J. Mar. Sci. Eng. 2021, 9, 1189 12 of 26

where Es∼ρπ [] represents the expected value of the discounted state distribution ρ(s),
and∇θi log πi(ai|on) is the score function. πi(ai|on) is a conditional probability distribution
in state on for each action ai. θi

π(s, a1, · · · , an) represents the state action-value function of
the i-th agent, and the output of this value is obtained by taking the actions of all agents
and the global environment state as inputs. This can be extended to the deterministic policy
µ, which represents the deterministic policy set of all agents:

µ = {µ1, µ2, · · · , µn} (25)

The gradient formula of its deterministic strategy is as follows:

∇θi J(θi) = Es,a∼D

[
∇θi µi(ai|oi)∇ai θi

µ(s, a1, · · · , an)
∣∣∣ai=µi(oi)

]
(26)

where D represents the experience playback pool, which is used to store the empirical data
of all agents interacting with the environment. Each piece of empirical data is made up of a
set of

(
s, s
′
, a1, · · · , an, r1, · · · , rn

)
, and the set of target strategies is represented as follows:

µ
′
=
{

µ1
′
, µ2

′
, · · · , µn

′}
(27)

Under the centralized training mode, MADDPG still uses the idea of a time difference
and the idea of a target network to update the evaluation network parameters. If the target
network contains parameter Qi

′
with lag update, the objective function used to evaluate

the network approximation is

y = ri + γQi
µ
′(

s
′
, a2

′
, · · · , an

′)∣∣∣∣a′ j=µ
′

j(oj)
(28)

The loss function (TD error) is calculated from the above formula:

L(θi) = Es,a,r,s′
[
(Qi

µ(s, a1, · · · an)− y)2
]

(29)

where Qi
µ represents the target network, and s

′
represents the next state after the execution

of action a in state s.
Obviously, it is necessary to obtain the action strategies of all agents in the environment

due to the approximation of the global state action value function. Therefore, it is necessary
to obtain the action output value of each agent in the process of centralized training, but the
communication between agents in many scenarios is limited, so centralized training can
also be achieved by estimating the strategies of other agents.

In order to improve the stability of the algorithm and let each agent learn multiple
strategies, the overall effect of all strategies is used to improve the stability of the algorithm.
Specifically, the strategy µi of the i-th agent is composed of a set of k sub-policies. If only
one sub-strategy µi

(k) is used in each round of training, the overall return of the policy set
is maximized as follows:

Je(µi) = Ek∼uni f (1,K),s∼ρµ ,a∼µi
(k) [Ri(s, a)] (30)

where uni f (1, K) is a set of values uniformly distributed from 1 to K, and a set of sub-
empirical playback pools Di

(k) is constructed for each sub-strategy k. To optimize the
overall effect of the policy set, the update gradient for each sub-policy is as follows:

∇
θi
(k) Je(µi) =

1
K

Es,a∼Di
k

[
∇

θi
(k)µi

(k)(ai|oi)∇ai θi
µi (s, a1, · · · , an)

∣∣∣ai=µi
(k)(oi)

]
(31)

where ∇ai θi
µi (s, a1, · · · , an) represents the gradient of the action-value function, which

includes the actions of all agents a = {a1, · · · an} and the environmental state quantity s. oi

J. Mar. Sci. Eng. 2021, 9, 1189 13 of 26

represents the observation of the i-th agent. Generally speaking, s includes the status of all
agents and some additional information. Taking the convergence of drones as an example,
the input of the evaluation network is the status of all drones and their positions, and the
output θi

µi (s, a) is returned to the strategic network to evaluate the actions performed by
the actors.

In summary, the MADDPG algorithm is essentially an extension of the DDPG al-
gorithm, which has the following characteristics: first, the optimal strategy is obtained
by autonomous learning and can output the optimal global action by knowing the local
information; secondly, the MADDPG algorithm does not need to know the dynamic model
of the environment, and the algorithm can be applied not only to multi-agent cooperation
but also to multi-agent competition.

4.2. Sea–Air Cooperative Control Algorithm

According to the MADDPG in the previous section, the environmental state of the
confluence of multiple USVs and a UAV is defined. Before that, it is first necessary to
determine the environment status of a single USV and UAV:

UAV

USV

Isotherm

Figure 9. Schematic diagram of the environmental status of a single USV and UAV.

Taking USV1 as an example, to achieve the convergence of USV1 and the UAV within
a set time domain, the relative distance between the USV and UAV needs to be considered
(as shown in Figure 9). Assuming that the position coordinate of UAV at the current time
is (xUAV, yUAV) and the position coordinate of USV is (xUSV1, yUSV1), then the distance
between the two at time t is

dt(USV1, UAV) =

√
(xUAV − xUSV1)

2 + (yUAV − yUSV1)
2 (32)

According to the sea–air cooperative observation mission scenario in Section 2, three
USVs move along different isotherms, respectively, and their trajectories will not be changed
by the UAV. The UAV’s velocity can be adjusted in the range of 3∼10 knots, where the most
energy-saving speed is 5 knots. At the same time, UAV adopts compound wings—it can
perform vertical takeoff and landing, but due to the limited energy of UAV, its maximum
theoretical distance is 200 km, which limits the heading of the UAV to be fixed; it always
flies to the center of the mesoscale eddy from the mother ship located outside eddy. Af-
ter reaching the maximum distance of 100 km, it turns back to mother ship 1 or goes straight
to mother ship 2 or an island, and the linear velocity can only be adjusted in the range of
0∼100 km/h. This is because the changes of linear acceleration and angular acceleration
will consume energy from the UAV, which is not conducive to a UAV completing the
collection of all the observed data by USVs in one flight.

The environment states of the three USVs and the UAV are defined as

S = {dt(USV1, UAV), dt(USV2, UAV), dt(USV3, UAV)} (33)

J. Mar. Sci. Eng. 2021, 9, 1189 14 of 26

The action space controlled by three USVs and the UAV is defined as

A =
{

at
USV1 , at

USV2 , at
USV3 , at

UAV
}

(34)

where at
USV1 and at

UAV represent the linear velocities of USV1 and the UAV. Then, ac-
cording to the scenario of the sea–air cooperative observation mission, the USV needs
to rendezvous with the UAV within a specified time domain. Therefore, when setting
the reward function of collaborative control for a single USV and UAV, time, distance,
and energy factors need to be taken into account:

r =
{

rconverge, i f dt(USVi, UAV) ≤ dmax
rdistance, others

(35)

where rconverge represents the rendezvous reward function, which is a positive value. One
of the key standards for the successful convergence of a USV and UAV is to complete the
task of the “reading” of observation data. dmax means the maximum distance at which a
drone can collect observation data from a drone. When the distance dt

USV1 between USV
and UAV is less than or equal to dmax, the confluence is considered successful and the
function is activated. rdistance stands for the distance reward function, which is used to
guide the USV and UAV to converge with the shortest time and minimum energy loss.
The smaller the distance between USV and UAV, the greater the rewards. The expression
of the distance reward function is as follows:

rdistance = −λ1(dt − dt−1)− λ2

(∣∣∣vt
UAV − vt−1

UAV
∣∣∣) (36)

where λ1 represents the distance reward factor, dt represents the distance between the USV
and UAV obtained by the current sample, and dt−1 represents the distance at the previous
step. A difference is found between dt−1 and upper dt; if (dt−1 − dt) is positive, it means
that the distance between USV and UAV is decreasing, and the action of the previous step
brings them closer, thus giving them a certain reward; otherwise, the action of the previous
step is moving them further away, and thus a certain punishment is given. λ2 represents
the penalty coefficient and vt

UAV represents the linear velocity at time t. When the last
moment and the current linear speed change too much, a certain punishment is given. This
is because the change of the UAV’s linear speed will lead to excessive energy loss, which is
not conducive to the UAV meeting the maximum range flight requirements.

Finally, when defining the global reward function, it is necessary to consider that the
collaborative algorithm based on MADDPG should not only input the actions of the policy
network output of USV1 but also input the output of the USV2 and USV3 policy networks
to form a combined state action evaluation network. Therefore, in order to realize the
cooperative control of multiple USVs and a UAV, the reward function should be adjusted
accordingly. After the execution of the action reaches a new state, the distances between
USV1, USV2, USV3, and the UAV are calculated in turn, which are used as the standard
for evaluating rewards and punishments. The purpose of the collaborative algorithm is
to enable all USVs to successfully converge with the UAV. The expression of the global
reward function is as follows:

r =
{

1, i f dt(USVi, UAV) ≤ dmax

−λ1 ∑i=Nt
i (d(UAV, USVi))− λ2

(
vUAV

t − vUAV
t−1

)
, others

(37)

where Nt indicates the total number of USVs participating in the networking at this stage,
which is less than or equal to 3. Whenever a USV completes the communication task, it
will be excluded from the networking task. At the same time, λ2

(
vUAV

t − vUAV
t−1

)
means that

the change of speed of the UAV will lead to a loss of energy, and when the change of the
linear velocity of the UAV is small, the relative penalty value is small.

J. Mar. Sci. Eng. 2021, 9, 1189 15 of 26

In addition, as can be seen from Figure 8, USV1, USV2, and USV3 are controlled by
three separate processes. When USV3, which is located on the outermost isotherm, first
completes the rendezvous with UAV, this first step is easy to realize, because the takeoff
time of UAV is controllable, and the initial state of this control task is conducive to the
realization. Then, USV1 and USV2 continue to carry out the rendezvous task; moreover,
they can finish the mission when the UAV turns back. In other words, there are two
opportunities for USV1 and USV2.

For the reward function, to achieve the global goal, each USV should not consider its
mission in isolation. Therefore, in addition to reaching the reward, the single-step return
function of a single USV during exercise is adjusted to all USVs’ related positions related to
the distance to the UAV. According to formula (37), the distance reward function rdistance is
summed up to three USVs. The closer the three USVs are to the UAV, the greater the global
reward value.

Agent 2Agent 1

State 1

Policy
network 1

New
state
and

reward 1

Action 1

… …

… …

… …

Experience
pool n

Experience
pool 2

Experience
pool 1

 RSAS ,,, '

 rsas ,,, ' rsas ,,, ' rsas ,,, '

Evaluation
network n

Target
network n

Target
Q value

TD error

Policy
gradient

Q
value

Evaluation
Network 1

Target
nEtwork 1

Target
Q value

TD error

Policy
gradient

Q
value

… …

… …
Update

Update

Action 2

Policy
network 1

State 2

Agent n

State n

Policy
network n

New
state
and

reward n

Action n

New
state
and

reward 2

Update Update
Environment

Figure 10. The framework of MADDPG algorithm.

The framework of the MADDPG algorithm is shown in Figure 10. For each agent,
its state si is inputted into its policy network, and the action ai is obtained. The action
is executed in the simulation environment to reach the new state si

′
and get a reward ri.

At the same time, the interactive data are stored in their exclusive experience pool Di in
the form of a tuple

〈
si, ai, si

′
, ri

〉
. In the new state si

′
, the agent will continue to interact

with the environment according to its current policy network and continue to generate
data. Thus, other agents also interact with the environment and store experience inputs in
their own experience pools. When updating the network, we take agent i as an example:
first, according to the size of the batch, a series of random numbers are generated with the
capacity of the experience pool as the maximum value. Then, a batch of data at the same
time is sampled from the experience pool of all robots with random numbers as the index,
and a batch of tuples

〈
S, A, S

′
, R
〉

is obtained by splicing them. The S and S
′

values of each
tuple are the combined state of all agents at the same time, and A is the combined action
of all agents. Reward R only relates to the reward value of agent i. Next, S

′
is input into

the target policy network i to get action A. Then, S
′

and A
′

are jointly inputted into the
target evaluation network i to obtain the estimated target Q value for the next time. Then,
the evaluation network is used to obtain the actual Q value, the TD deviation is used to
update the evaluation network, and the policy gradient of the Q value is used to update the
policy network. Other agents update the network, and thus the main difference is input.

5. Simulation Results and Analysis

This section provides a detailed analysis and discussion of the simulation results of
thhe proposed algorithms. The experimental contents mainly include the following:

J. Mar. Sci. Eng. 2021, 9, 1189 16 of 26

1. The experimental verification of the USV tracking isotherm algorithm;
2. The experimental verification of the sea–air cooperative control algorithm.

The hardware configurations used as follows: one Intel i7-9700K CPU, two-way Nvidia
Geforce GTX2080Ti graphics cards, and 4 × 16 Gb memory. Algorithms were programmed
in the Python language, and the deep learning framework was TensorFlowgpul.4.0.

5.1. Experiment on USV Tracking Isotherm Algorithm

Firstly, the input, output, and return functions of the single USV tracking isotherm
experiment were defined by the Markov decision model in Section 2.2 and the design of
the DDPG algorithm network. Among them, the input parameters included the navigation
information of the current USV and the water temperature information measured by
the temperature sensor. The output parameter was the control instruction of the USV.
The reward function included reaching the target track (isotherm), the reward of being
close to the target track, and the punishment of being far away from the target track.

Table 2. Parameter setting of DDPG algorithm.

Parameters Value

Number of training rounds max-el 1000
Learning rate of the policy network lra 0.0001
Learning rate of the evaluation network lrc 0.001
Discount factor γ 0.99
Capacity of experience pool R-size 10,000
Update parameters of the target network δ 0.01
Coefficient of reward function w1, w2 0.5, 0.5

Next, we set the parameters related to the algorithm (as shown in Table 2). Because of
the unpredictable shape of the mesoscale eddy isotherm, it is difficult to build the environ-
mental model.The elliptical isotherm is designed as the target trajectory, and the DDPG
algorithm is used to guide the USV to move along the target trajectory. As shown in
Figure 11, the blue dotted line represents the target trajectory, the temperature is 10 ◦C and
the red dot indicates the starting position of the USV. The focal coordinate of the elliptical
trajectory is set to (300, 200), the temperature is 15 ◦C, the temperature gradually drops
from 15 ◦C in the center to 10 ◦C on the trajectory, and the lengths of the major and minor
axes are 300 and 150, respectively. The starting point coordinates of the USV are (220,
20). The USV moves counterclockwise along the fitted isotherm, the rate of temperature
sensor acquisition is set to 10 times per second, and the linear velocity remains constant
at 0.15 m/s—almost 3 knot—only changing the angular velocity to adjust the course of
the USV. At the same time, to verify the algorithm’s stability, we add Gaussian white noise
with mean 0 and variance 0.5 ◦C to the virtual eddy.

0 100 200 300 400 500 600 700

x(m)

0

100

200

300

400

y(
m

)

isotherm

start location

 location of USV

Figure 11. Fitting the isotherm of an ellipse.

J. Mar. Sci. Eng. 2021, 9, 1189 17 of 26

Finally, we saved the relevant data regarding the turn reward changes. The reward values
and step sizes under different training rounds are shown in Figures 12 and 13, respectively.

0 100 200 300 400 500 600 700 800 900 1000

Number of training rounds

-20

-10

0

10

20

R
ew

ae
d

round cumulative reward value

average cumulative reward value

Figure 12. Variation curve of cumulative reward values and average cumulative reward values
in rounds.

0 100 200 300 400 500 600 700 800 900 1000

Number of training rounds

0

50

100

150

200

250

300

S
te

p
si

ze

round step size

average step size

Figure 13. Turn step size and average step size variation curve.

The x and y axes in Figure 12 represent the number of training rounds and the
corresponding reward values, respectively. We expected that with the increase of the
number of training rounds, the cumulative total reward value and the average cumulative
reward value would increase. From the curve change trend of the cumulative reward
value and the average cumulative reward value (solved by the window average method
of 50 rounds) in Figure 12, it can be seen that the cumulative reward value in the first
200 rounds was lower. This was because, at the beginning of the experiment, the policy
network mainly output the angular velocity action of the USV according to the initialization
parameter model. The algorithm was still in the stage of exploring the environment,
collecting the environment sample data, and saving it to the experience playback pool.
Because the output action at of the main network was random under the influence of
noise Nt, the reward value of some rounds in the environmental exploration stage was
relatively high, even close to 20. Thus, it was proved that there was a better policy in the
exploration stage; that is, after the angular velocity output of part of the round, the USV was
close to the isotherm. As the number of training rounds increased to 200–500, the reward
value curve increased gradually. This was because, with the increase of the number
of samples in the experience playback pool and the parameter iteration of the policy
evaluation network, the relationship between the reward function and the action strategy
was gradually established. Under the stimulation of the reward function, the strategy
was also improved iteratively. The USV gradually changed from exploring environmental
knowledge to making use of environmental knowledge, the algorithm converged rapidly,
and the USV gradually sailed close to the isotherm.

The x and y axes in Figure 13 represent the number of training rounds and the steps
for the USV to reach the isotherm, respectively. We expected that as the number of training

J. Mar. Sci. Eng. 2021, 9, 1189 18 of 26

rounds increased, the step size would decrease. As can be seen from Figures 12 and 13,
in rounds 500∼1000, USVs could constantly adjust their best course according to the
environmental status information to approach the isotherm with the smallest step size.
The final average cumulative reward value was stable at 15, and the average step size
(solved by window average method) was also stable at 105. From the changing trend of the
cumulative reward curve and step size curve, the algorithm met the task requirements of
the USV tracking isotherm.

We set the sampling times to 100 and the sampling time to 1 s. As shown in
Figures 14 and 15, with the increase of the number of training rounds, regardless of whether
there was a bounded noise disturbance or not, the position of the USV moved closer to the
isotherm. Thus, it can be seen that the algorithm showed good stability under bounded
noise disturbance. The error between the actual track and the target track of the USV
under different rounds without noise was selected. The track error values corresponding
to different training rounds are shown in Table 3. It can be seen from Table 3 that, with the
increase of training times, the output error reduced, which further proved the stability of
the USV tracking isotherm control system based on the DDPG algorithm.

Figure 14. The location points of the USV without disturbance.

0 100 200 300 400 500 600 700

x(m)

0

100

200

300

y(
m

)

isotherm

location of USV

end position

 start location

Figure 15. The location points of the USV under disturbance.

Table 3. Error table between actual track and target track of the USV.

Parameters 110 210 410 610 710 910

Average value 2.142 1.786 1.167 0.815 0.534 0.399
Variance

(
10−3

)
9.119 6.981 4.046 2.473 1.583 1.042

5.2. Experiment of Cooperative Control Algorithm

The input parameters included the motion state information of all current USVs and
the distance information of the UAV relative to all USVs. The output parameters were
the linear speed of all USVs and the UAV. The reward function included all rewards

J. Mar. Sci. Eng. 2021, 9, 1189 19 of 26

for the confluence of USVs and the UAV, all rewards for a USV being close to the UAV,
and penalties for UAV energy loss. Algorithm parameters were set as shown in Table 4.

Table 4. Parameter setting of MADDPG algorithm.

Parameters Value

Number of training rounds max-el 20,000
Learning rate of the policy network lra 0.001
Learning rate of the evaluation network lrc 0.0001
Discount factor γ 0.99
Capacity of experience pool R-size 1,000,000
Update parameters of the target network δ 0.01
Coefficient of reward function λ1, λ2 0.5, 0.5

Then, the USVs’ initial coordinates were (10,0), (20,15), and (50,25), respectively.
The UAV’s initial coordinates were (30,30). USV1, USV2, and USV3 were respectively
controlled by three independent processes. When USV3, located on the outermost isotherm,
first completed the rendezvous task with the UAV, the process stopped and waited for
USV1 and USV2 to continue to perform the confluence task. At the same time, in order
to further approach the marine environment, comparative experiments of multi-agent
cooperation between undisturbed and perturbed multi-agents were carried out based on
the MADDPG algorithm.

Finally, we saved the relevant data regarding the turn reward changes. After
20,000 rounds of training, the experimental results without disturbance are shown in
Figures 16–18. The x and y axes in Figure 16 represent the number of training rounds,
reward value, and negative Q value, respectively. We expected that with the increase
of the number of training rounds, the reward value and negative Q value curve would
show an upward trend. As can be seen from Figure 16, the total reward value curve of
the MADDPG algorithm fluctuated greatly, and the reward value was low in the first
10,000 rounds. With the increase of the number of training rounds, the relationship
between the reward function and action policy was gradually established. After
10,000 rounds, the algorithm began to converge gradually, and the reward curve began
to rise. It tended to stabilize after 15,000 rounds, and the final average reward value
was stable at −5. At the same time, from the negative Q value (loss function) change
curve of Figure 17, it can be seen that after a period of training, the negative Q value
showed a downward trend. There were some fluctuations, but with the increase of the
number of rounds, the Q value after 10,000 rounds gradually increased to about 0.6
and remained stable. In addition, the sampling time was set to 50 s, with sampling
performed once every 1 s, and the timing reward value curve for a single round
(20,000 rounds) is shown in Figure 18. The time series reward value represents the
network loss function value. From the chart, we can see that the curve of the time
series reward value showed a rising state and approached 0. The above three graphs
prove that the training of the algorithm was stable, and the model was able to converge
to the optimal situation under the current reward function setting.

As with the experiment on the USV tracking isotherm algorithm, we added Gaussian
white noise with mean 0 and variance 0.5 ◦C to the virtual eddy; the experimental results
are shown in Figures 19–21. From these three figures, we can see that the algorithm
converged after adding disturbance, but the effects of the change of reward value, negative
Q value, and time series reward value were worse than without disturbance. Thus, it can
be seen that the perturbation of part of the agent model and the disturbance factors of the
environment had an uncertain impact on the cooperative control system.

J. Mar. Sci. Eng. 2021, 9, 1189 20 of 26

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of training rounds

-80

-70

-60

-50

-40

-30

-20

-10

0

R
ew

ar
d

negative Q value

total reward

average reward

Figure 16. The change curve of the reward value after 20,000 rounds of training.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of training rounds

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

N
eg

at
iv

e
Q

 v
al

ue

Figure 17. Negative Q value variation curve.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

R
ew

ar
d

Figure 18. Timing reward for the 20,000 rounds.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of training rounds

-80

-60

-40

-20

0

R
ew

ar
d

negative Q value

total reward

average reward

Figure 19. The variation curve of reward value in the presence of disturbance.

J. Mar. Sci. Eng. 2021, 9, 1189 21 of 26

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of training rounds

-3

-2.5

-2

-1.5

-1

--0.5

0

N
eg

at
iv

e
Q

 v
al

ue

Figure 20. The variation curve of negative Q value in the presence of disturbance.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-4.5

-3

-1.5

0

R
ew

ar
d

Figure 21. Time series reward under disturbance.

The two testing processes are shown in Figure 22, Figure 22a is test without noise,
Figure 22b is test under noise. The brown, blue, green, and black circles in the figure
represent USV1, USV2, USV3, and the UAV, respectively. The brown, blue, and green dots
represent the confluence of USVs and the UAV. All USVs moved along the curved isoline of
water temperature, and the UAV moved in a straight line. The positions of all agents were
collected every second. As shown in Figure 22, the final policy model without disturbance
enabled the UAV to converge with all USVs successfully. In the last policy model test
under disturbance, the convergence of USV3 and the UAV was not successful; however,
the convergence of USV2 and the UAV was successful. USV3 did not successfully converge
with the drone, but it was close to the rendezvous point. From the test results, it can be
seen that the control policy based on the MADDPG algorithm could effectively solve the
problem of heterogeneous cooperative control in sea–air multi-agent observation tasks
by designing appropriate reward functions. At the same time, through the comparative
experimental analysis with or without disturbance, it was found that the perturbation
of part of the agent model and the disturbance factors of the environment reduced the
stability of the cooperative control system. Therefore, it is necessary to study the multi-
agent reinforcement learning control algorithm further based on a completely model-free
approach in the future.

J. Mar. Sci. Eng. 2021, 9, 1189 22 of 26

Initial position
of UAV

Initial position
of USV3

Initial position
of USV2

Convergence
of USV1
and UAV

Convergence of
USV3 and UAV

 Convergence of
USV2 and UAV

Initial position
 of USV1

(a)

Convergence
failed

Initial position

of USV3

Successful
converged

Almost
successfully
converged

Initial position
of USV1

Initial position
of USV2

Initial position
of UAV

(b)

Figure 22. Test of multi-agent coordination effect with or without disturbance. (a) is test without
noise and (b) is test under noise.

In order to better show our experimental process, we divided the experimental process
(no Gaussian noise) into 21 pictures, as shown in Appendix A.

From the test of the multi-agent coordination effect with disturbance, we can see that
we are still facing many problems, and the system may produce non-convergence under
noise. We propose that this may be due to the non-static nature of the environment, the
partial observability of the agent to the environment, or the parameter configuration of the
algorithm itself. In addition, we plan to study the problem of the algorithm itself in the next
work and combine the noise parameters in the model with the actual sea situation through
a large number of actual field tests to study and explore the capability boundary of the
algorithm in actual implementation. We also want to plan and study the control problem
of agents in units of 100 to realize tasks with a larger area and more complex content.

6. Conclusions

Starting from the task of mesoscale eddy observation in oceanography, this paper
selects and designs an algorithm for tracking isotherms with UAVs and an algorithm for
reading data under the cooperative control of a UAV and USVs. Experiments show the
feasibility of these algorithms, and this function and simulation system has been developed
into our control system. However, before the actual operation, we are still facing the
problem that the system may produce non-convergence under noise. For this reason, we
will study the relationship between actual sea conditions and noise parameters and study
and compare the effects of more algorithms when dealing with more complex tasks.

Author Contributions: Conceptualization, K.H., X.C., Q.X., J.J. and L.W.; methodology, K.H., X.C.,
Q.X., J.J. and L.W.; software, K.H., X.C., Q.X., J.J. and L.W.; validation, K.H., X.C., Q.X., J.J. and L.W.;
formal analysis, K.H., X.C., Q.X., J.J. and L.W.; investigation, K.H., X.C., Q.X., J.J. and L.W.; resources,
K.H., X.C., Q.X., J.J. and L.W.; data curation, K.H., X.C., Q.X., J.J. and L.W.; writing—original draft
preparation, K.H., X.C., Q.X., J.J. and L.W.; writing—review and editing, K.H., X.C., Q.X., J.J. and
L.W.; visualization, K.H., X.C., Q.X., J.J. and L.W.; supervision, K.H., X.C., Q.X., J.J. and L.W.; project
administration, K.H., X.C., Q.X., J.J. and L.W.; funding acquisition, K.H., X.C., Q.X., J.J. and L.W.; All
authors have read and agreed to the published version of the manuscript.

Funding: Research in this article is supported by Joint Fund of Science and Technology Department
of Liaoning Province and State Key Laboratory of Robotics (No. 2021-KF-22-19) China; the key special
project of the National Key R&D Program (2018YFC1405703), for which I would like to express my
heartfelt thanks.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the data being provided publicly.

Informed Consent Statement: Not applicable.

J. Mar. Sci. Eng. 2021, 9, 1189 23 of 26

Data Availability Statement: The data and code used to support the findings of this study are
available from the corresponding author upon request (fenix@jlxy.nju.edu.cn).

Acknowledgments: I would like to express my heartfelt thanks to the reviewers who gave valuable
revisions to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5. (f) Step 6.

(g) Step 7. (h) Step 8. (i) Step 9.

Figure A1. Cont.

J. Mar. Sci. Eng. 2021, 9, 1189 24 of 26

(j) Step 10. (k) Step 11. (l) Step 12.

Figure A1. Experiment of cooperative control algorithm process without noise (Step 1–Step 12).

(a) Step 13. (b) Step 14. (c) Step 15.

(d) Step 16. (e) Step 17. (f) Step 18.

(g) Step 19. (h) Step 20. (i) Step 21.

Figure A2. Experiment of cooperative control algorithm process without noise (Step 13–Step 21).

J. Mar. Sci. Eng. 2021, 9, 1189 25 of 26

References
1. Burk, S.D.; Thompson, W.T. Mesoscale eddy formation and shock features associated with a coastally trapped disturbance. In

Proceedings of the Oceans 2003. Celebrating the Past. . . Teaming Toward the Future (IEEE Cat. No. 03CH37492), San Diego, CA,
USA, 22–26 September 2003; pp. 1763–1770.

2. Vu, M.T.; Van, M.; Bui, D.H.P.; Do, Q.T.; Huynh, T.-T.; Lee, S.-D.; Choi, H.-S. Study on Dynamic Behavior of Unmanned Surface
Vehicle-Linked Unmanned Underwater Vehicle System for Underwater Exploration. Sensors 2020, 20, 1329. [CrossRef] [PubMed]

3. Cho, H.; Jeong, S.-K.; Ji, D.-H.; Tran, N.-H.; Vu, M.T.; Choi, H.-S. Study on Control System of Integrated Unmanned Surface
Vehicle and Underwater Vehicle. Sensors 2020, 20, 2633. [CrossRef] [PubMed]

4. Jung, D.W.; Hong, S.M.; heon Lee, J.; Cho, H.J.; Choi, H.S.; Vu, M.T. A Study on Unmanned Surface Vehicle Combined with
Remotely Operated Vehicle System. Proc. Eng. Technol. Innov. 2018, 9, 17–24.

5. Polvara, R.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R. Autonomous vehicular landings on the deck of an unmanned surface
vehicle using deep reinforcement learning. Robotica 2019, 37, 1867–1882. [CrossRef]

6. Liu, Y.-J.; Cheng, S.-M.; Hsueh, Y.-L. eNB selection for machine type communications using reinforcement learning based Markov
decision process. IEEE Trans. Veh. Technol. 2017, 66, 11330–11338. [CrossRef]

7. Lin, S.-W.; Huang, Y.-L.; Hsieh, W.-K. Solving Maze Problem with Reinforcement Learning by a Mobile Robot. In Proceedings
of the 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE), Fujian, China, 8–10
November 2019; pp. 215–217.

8. Woo, J.; Yu, C.; Kim, N. Deep reinforcement learning-based controller for path following of an unmanned surface vehicle. Ocean
Eng. 2019, 183, 155–166. [CrossRef]

9. Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Autonomous UAV navigation: A DDPG-based deep reinforcement learning
approach. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14
October 2020; pp. 1–5.

10. Wu, X.; Liu, S.; Zhang, T.; Yang, L.; Li, Y.; Wang, T. Motion control for biped robot via DDPG-based deep reinforcement learning.
In Proceedings of the 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 15–19 August
2018; pp. 40–45.

11. Werbos, P.J.; Miller, W.T.; Sutton, R.S. A menu of designs for reinforcement learning over time. Neural Netw. Control 1990, 3, 67–95.
12. Modares, H.; Lewis, F.L. Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral

reinforcement learning. Automatica 2014, 50, 1780–1792. [CrossRef]
13. Passalis, N.; Tefas, A. Deep reinforcement learning for controlling frontal person close-up shooting. Neurocomputing 2019,

335, 37–47. [CrossRef]
14. Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network

for remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2022–2045. [CrossRef]
15. Xia, M.; Wang, K.; Song, W.; Chen, C.; Li, Y. Non-intrusive load disaggregation based on composite deep long short-term memory

network. Expert Syst. Appl. 2020, 160, 113669. [CrossRef]
16. Chen, B.; Xia, M.; Huang, J. Mfanet: A multi-level feature aggregation network for semantic segmentation of land cover. Remote

Sens. 2021, 13, 731. [CrossRef]
17. Jiang, X.; Ji, Y. HD3: Distributed Dueling DQN with Discrete-Continuous Hybrid Action Spaces for Live Video Streaming. In

Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2632–2636.
18. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning.

In Proceedings of the International conference on machine learning, New York, NY, USA, 19–24 June 2016; pp. 1995–2003.
19. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function

approximation. Adv. Neural Inf. Process. Syst. 2000, 12, 1057–1063.
20. Bhatnagar, S. An actor–critic algorithm with function approximation for discounted cost constrained Markov decision processes.

Syst. Control Lett. 2010, 59, 760–766. [CrossRef]
21. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International conference on machine learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

22. Qi, C.; Hua, Y.; Li, R.; Zhao, Z.; Zhang, H. Deep reinforcement learning with discrete normalized advantage functions for resource
management in network slicing. IEEE Commun. Lett. 2019, 23, 1337–1341. [CrossRef]

23. Mnih, V. , Kavukcuoglu, K. , Silver, D. , Graves, A. , Antonoglou, I. , Wierstra, D. , Riedmiller, M . Playing Atari with Deep
Reinforcement Learning. Computer Science. arXiv 2013 arXiv:1312.5602.

24. Zhou, X.; Wu, P.; Zhang, H.; Guo, W.; Liu, Y. Learn to navigate: Cooperative path planning for unmanned surface vehicles using
deep reinforcement learning. IEEE Access 2019, 7, 165262–165278. [CrossRef]

25. Lillicrap, T. P. ; Hunt, J. J. ; Pritzel, A. ; Heess, N. ; Erez, T. ; Tassa, Y. ;Silver,D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

26. Wang, D.; Shen, Y.; Sha, Q.; Li, G.; Kong, X.; Chen, G.; He, B. Adaptive DDPG design-based sliding-mode control for autonomous
underwater vehicles at different speeds. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan,
16–19 April 2019; pp. 1–5.

http://doi.org/10.3390/s20051329
http://www.ncbi.nlm.nih.gov/pubmed/32121403
http://dx.doi.org/10.3390/s20092633
http://www.ncbi.nlm.nih.gov/pubmed/32380718
http://dx.doi.org/10.1017/S0263574719000316
http://dx.doi.org/10.1109/TVT.2017.2730230
http://dx.doi.org/10.1016/j.oceaneng.2019.04.099
http://dx.doi.org/10.1016/j.automatica.2014.05.011
http://dx.doi.org/10.1016/j.neucom.2019.01.046
http://dx.doi.org/10.1080/01431161.2020.1849852
http://dx.doi.org/10.1016/j.eswa.2020.113669
http://dx.doi.org/10.3390/rs13040731
http://dx.doi.org/10.1016/j.sysconle.2010.08.013
http://dx.doi.org/10.1109/LCOMM.2019.2922961
http://dx.doi.org/10.1109/ACCESS.2019.2953326

J. Mar. Sci. Eng. 2021, 9, 1189 26 of 26

27. Xing, S.; Guan, X.; Luo, X. Trajectory tracking and optimal obstacle avoidance of mobile agent based on data-driven control. In
Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–30 July 2010; pp. 4619–4623.

28. Zhang, H.; Jiang, H.; Luo, Y.; Xiao, G. Data-driven optimal consensus control for discrete-time multi-agent systems with unknown
dynamics using reinforcement learning method. IEEE Trans. Ind. Electron. 2016, 64, 4091–4100. [CrossRef]

29. Foerster, J.N.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. arXiv 2017,
arXiv:1705.08926.

30. Xiong, S.; Hou, Z.; Yu, X. Data-driven Formation Control for a Class of Unknown Heterogeneous Discrete-time MIMO Multi-agent
System with Switching Topology. In Proceedings of the 2019 12th Asian Control Conference (ASCC), Fukuoka, Japan, 9–12 June
2019; pp. 277–282.

http://dx.doi.org/10.1109/TIE.2016.2542134

	Introduction
	Reinforcement Learning
	Markov Decision Process (MDP)
	Q Learning

	USV Tracking Isotherm Algorithm
	Deep Deterministic Policy Gradient Algorithm
	USV Tracking Isotherm Algorithm

	Sea–Air Cooperative Control Algorithm
	Multi-Agent Deterministic Policy Gradient Algorithm (MADDPG)
	Sea–Air Cooperative Control Algorithm

	Simulation Results and Analysis
	Experiment on USV Tracking Isotherm Algorithm
	Experiment of Cooperative Control Algorithm

	Conclusions
	
	References

