
Journal of

Marine Science
and Engineering

Article

Complete Coverage Path Planning of an Unmanned Surface
Vehicle Based on a Complete Coverage Neural
Network Algorithm

Peng-Fei Xu 1,2,* , Yan-Xu Ding 1 and Jia-Cheng Luo 3

����������
�������

Citation: Xu, P.-F.; Ding, Y.-X.; Luo,

J.-C. Complete Coverage Path

Planning of an Unmanned Surface

Vehicle Based on a Complete

Coverage Neural Network Algorithm.

J. Mar. Sci. Eng. 2021, 9, 1163.

https://doi.org/10.3390/jmse9111163

Academic Editors: Antoni Burguera,

Alessandro Ridolfi and

Francisco Bonin-Font

Received: 6 September 2021

Accepted: 11 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China;
191303060002@hhu.edu.cn

2 School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

3 National Engineering Research Center of Dredging, Shanghai 200136, China; luojiacheng@cccc-drc.com
* Correspondence: xupengfei@hhu.edu.cn; Tel.: +86-137-7070-3715

Abstract: In practical applications, an unmanned surface vehicle (USV) generally employs a task of
complete coverage path planning for exploration in a target area of interest. The biological inspired
neural network (BINN) algorithm has been extensively employed in path planning of mobile robots,
recently. In this paper, a complete coverage neural network (CCNN) algorithm for the path planning
of a USV is proposed for the first time. By simplifying the calculation process of the neural activity,
the CCNN algorithm can significantly reduce calculation time. To improve coverage efficiency
and make the path more regular, the optimal next position decision formula combined with the
covering direction term is established. The CCNN algorithm has increased moving directions of the
path in grid maps, which in turn has further reduced turning-angles and makes the path smoother.
Besides, an improved A* algorithm that can effectively decrease path turns is presented to escape the
deadlock. Simulations are carried out in different environments in this work. The results show that
the coverage path generated by the CCNN algorithm has less turning-angle accumulation, deadlocks,
and calculation time. In addition, the CCNN algorithm is capable to maintain the covering direction
and adapt to complex environments, while effectively escapes deadlocks. It is applicable for USVs to
perform multiple engineering missions.

Keywords: unmanned surface vehicle; complete coverage path planning; biological inspired neural
network algorithm; A* algorithm

1. Introduction

The demand for the exploration and development of ocean coerce human beings to
employ surface and underwater vehicles to explore and study water environments [1]. With
the development of artificial intelligence, the unmanned surface vehicle (USV) has replaced
human in certain fields to reduce cost and improve efficiency of exploration. Currently, USV
has become a basic tool in marine exploration [2]. A USV refers to an intelligent platform
that relies on shipborne sensors to navigate on the surface in an autonomous or semi-
autonomous manner [3]. It is extensively employed in marine environment investigation,
marine resources exploration, guard patrol, anti-mine, and anti-submarine missions [4].

The path planning of a USV implies that a USV selects an optimal or suboptimal
obstacle avoidance path that can be connected from the starting point to the destination in
the task area with reference to a certain index (such as the lowest work generation value,
the shortest path length, and the shortest calculation time consumption) [5]. According
to different planning purposes, the path planning can be categorized as point-to-point
path planning and complete coverage path planning [6]. Point-to-point path planning
is primarily used for the rapid movement of USVs in water environment. An optimal

J. Mar. Sci. Eng. 2021, 9, 1163. https://doi.org/10.3390/jmse9111163 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-9297-4336
https://doi.org/10.3390/jmse9111163
https://doi.org/10.3390/jmse9111163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9111163
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9111163?type=check_update&version=2

J. Mar. Sci. Eng. 2021, 9, 1163 2 of 19

collision-free path from the origin to the destination is planned by the algorithm. Complete
coverage path planning requires a USV to pass through every region of the workspace, and
reduce repetition rate and turns of the path as much as possible [7]. In practical engineering
applications, complete coverage path planning is often applied for the all-round search or
information collection of the task area. Typical engineering applications include the use of
USVs for terrain, velocity, water quality, and hydrological measurements [8].

Complete coverage path planning is extensively employed in the robotic navigation,
such as the exact cell [9], boustrophedon cellular [10], morse [11], and line-sweep-based de-
compositions [12], etc. Traditional algorithms often plan paths according to fixed planning
templates and are unable to dynamically adjust with environments, which is less smart. In
a complex environment, the repetition rate will increase significantly. Recently, a neural
network algorithm based on bionics is increasingly used in the field of complete coverage
path planning for robotics. Yang [13] has proposed the biological inspired neural network
(BINN) algorithm and applied it to the complete coverage path planning of cleaning robots.
The BINN algorithm does not need any templates, even in unknown environments. And
it’s capable of planning more reasonable and shorter collision-free complete coverage
paths. However, the BINN algorithm has certain defects, such as a complex process of
calculation that is time-consuming and easy path deviation. Many scholars have improved
the BINN algorithm to solve these drawbacks. Guo and Balakrishnan [14] have realized the
continuous steering control of the robot covering the bounded area in a limited time based
on the biological excitation neural network. Fan et al. [15] have proposed an improved
algorithm employing the template method for the possible local optimal solution of the
BINN algorithm. Zhu et al. [16] have simplified the calculations of the shunting equation
and proposed an improved algorithm based on the BINN algorithm for the AUV complete
coverage path planning, which can effectively reduce the path planning time and improve
the efficiency. Zhao et al. [17] have proposed a new optimal decision formula to solve
the problem of the local path yaw, and applied it to the complete coverage path planning
of USVs.

The BINN algorithm is mainly used for mobile robots on land (such as cleaning robots).
When it is applied for a USV in water, due to the differences in the dynamics between a land
robot and a USV, the BINN algorithm causes a series of problems, such as time-consuming,
too many navigation direction changes, excessive turning-angles, and difficult to maintain
a covering direction.

In this paper, with the aim of addressing the aforementioned problems, a complete
coverage neural network (CCNN) algorithm is proposed for the path planning of a USV.
The CCNN algorithm simplifies the differential equation for calculating the neural activity
into a simple equation with the environmental correction term. An optimal next position
decision formula combining with the covering direction term is established for the better
selection of the next position. Also, compared with the BINN algorithm, the CCNN
algorithm increases 4 more moving directions of the path in grid maps, which contributes
to a smoother path. With the aid of the turn avoidance (TA) inspection, the continuous
turns to avoid repetition are further reduced. Furthermore, an improved A* algorithm
that adds turning cost into the heuristic function is introduced to escape deadlocks. As a
consequence, the CCNN algorithm can generate a coverage path with a smaller turning-
angle and fewer navigation direction changes in shorter calculation time, compared with
the BINN algorithm. Also, it’s able to maintain a fixed covering direction and escape the
deadlock effectively.

The rest of this paper is organized as follows. In Section 2, the principle and process
of the CCNN algorithm is described in detail. In Section 3, simulations studies have
been carried out to compare the effects of multiple algorithms in artificial and real-world
environments. Finally, concluding remarks are summarized in Section 4.

J. Mar. Sci. Eng. 2021, 9, 1163 3 of 19

2. Complete Coverage Neural Network (CCNN) Algorithm
2.1. The Dynamics Model of USV

In general, dynamics of a USV in 6 degrees of freedom (6 DOF) include surge, sway,
heave, roll, pitch and yaw. However, the USV with dual-propeller propulsion system
merely stresses the model of horizontal motion components in 3 degrees of freedom
(3 DOF), including surge, sway, and yaw [18], as shown in Figure 1.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 20

2. Complete Coverage Neural Network (CCNN) Algorithm

2.1. The Dynamics Model of USV

In general, dynamics of a USV in 6 degrees of freedom (6 DOF) include surge, sway,

heave, roll, pitch and yaw. However, the USV with dual-propeller propulsion system

merely stresses the model of horizontal motion components in 3 degrees of freedom (3

DOF), including surge, sway, and yaw [18], as shown in Figure 1.

Figure 1. Motions in 3 DOF of USV.

Suppose there is no side thruster on the USV, and effects of disturbance forces are

not stressed for the sake of simplicity. The motion equation of the USV in 3 DOF can be

described as follows [19]:

()M C D (1)

()J v (2)

where 𝑀 = 𝑑𝑖𝑎𝑔(𝑚11, 𝑚22, 𝑚33) is the matrix of inertia parameters. C(ν) is the Coriolis

and centripetal matrix. 𝐷 = 𝑑𝑖𝑎𝑔(𝑑11, 𝑑22, 𝑑33) is the matrix of hydrodynamic damping

parameter. 𝜂 = [𝑥 𝑦 𝜓]𝑇 is the position vector of a USV in earth-fixed frame. 𝜈 = [𝑢 𝑣 𝑟]𝑇

is the velocity vector of a USV in body-fixed frame consisting of the velocities u in surge

and v in sway, and yaw rate r. 𝜏 = [𝜏1 0 𝜏3]
𝑇 is the control vector, 𝜏1 and 𝜏3 are the surge

force and the yaw torque input, respectively.

Compared with a USV, the dynamics model of a mobile robot on land (such as clean-

ing robot) does not have hydrodynamic damping term. It concludes ground friction and

propulsion resistance as constraints term to the motion equation [20]. Since ground fric-

tion is much larger than hydrodynamic damping, a mobile robot on land can easily per-

form braking, turning in place, and other complex movements. However, it’s much more

difficult for a USV to perform precise motion control. Especially in the presence of water

currents, an excessively large turning-angle may cause the USV to be washed away by

water currents, making it difficult to approach the scheduled path. Therefore, when con-

ducting the complete coverage path planning of a USV, it’s better to reduce the turning-

angle and navigation direction changes, maintain a certain covering direction, and fully

consider the impact of the environment on the planning results.

2.2. Principle of the BINN Algorithm

Hodgkin and Huxley [21] have proposed the circuit model of the nerve cell mem-

brane and the dynamic equation describing the cell membrane (Hodgkin and Huxley

model), Grossberg [22] has proposed the shunting equation based on the Hodgkin and

Figure 1. Motions in 3 DOF of USV.

Suppose there is no side thruster on the USV, and effects of disturbance forces are
not stressed for the sake of simplicity. The motion equation of the USV in 3 DOF can be
described as follows [19]:

M
.
ν + C(ν)ν + Dν = τ (1)

.
η = J(ψ)v (2)

where M = diag(m11, m22, m33) is the matrix of inertia parameters. C(ν) is the Coriolis
and centripetal matrix. D = diag(d11, d22, d33) is the matrix of hydrodynamic damping
parameter. η = [x y ψ]T is the position vector of a USV in earth-fixed frame. ν = [u v r]T is
the velocity vector of a USV in body-fixed frame consisting of the velocities u in surge and
v in sway, and yaw rate r. τ = [τ1 0 τ3]

T is the control vector, τ1 and τ3 are the surge force
and the yaw torque input, respectively.

Compared with a USV, the dynamics model of a mobile robot on land (such as
cleaning robot) does not have hydrodynamic damping term. It concludes ground friction
and propulsion resistance as constraints term to the motion equation [20]. Since ground
friction is much larger than hydrodynamic damping, a mobile robot on land can easily
perform braking, turning in place, and other complex movements. However, it’s much
more difficult for a USV to perform precise motion control. Especially in the presence
of water currents, an excessively large turning-angle may cause the USV to be washed
away by water currents, making it difficult to approach the scheduled path. Therefore,
when conducting the complete coverage path planning of a USV, it’s better to reduce the
turning-angle and navigation direction changes, maintain a certain covering direction, and
fully consider the impact of the environment on the planning results.

2.2. Principle of the BINN Algorithm

Hodgkin and Huxley [21] have proposed the circuit model of the nerve cell membrane
and the dynamic equation describing the cell membrane (Hodgkin and Huxley model),
Grossberg [22] has proposed the shunting equation based on the Hodgkin and Huxley
model and applied it to biology and machine vision, sensing and motion control, and other

J. Mar. Sci. Eng. 2021, 9, 1163 4 of 19

fields. Based on the shunting equation proposed by Grossberg [22], Yang [13] has proposed
the biologically inspired neural network (BINN) algorithm and applied it to the complete
coverage path planning of mobile robots, and achieved good results. It should be noted
that while the BINN method is called neural network, it has significant differences from
the traditional neural networks. The traditional neural network often contains the input
layer, output layer, hidden layer, and neuronal transfer function. For the BINN, there is no
such function [16]. The idea of the BINN model is to consider the dynamically changing
environment as a neural network architecture with dynamic neural activity. Neurons are
divided into unclean, cleaned, and obstacle neurons in the network, as shown in Figure 2.
The unclean neurons will attract the robot in the whole workspace, while the obstacle
neurons have local effect to avoid collisions. The collision-free path of a mobile robot is
planned in real time based on the dynamic activity of each neuron in the neural network.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 4 of 20

Huxley model and applied it to biology and machine vision, sensing and motion control,

and other fields. Based on the shunting equation proposed by Grossberg [22], Yang [13]

has proposed the biologically inspired neural network (BINN) algorithm and applied it

to the complete coverage path planning of mobile robots, and achieved good results. It

should be noted that while the BINN method is called neural network, it has significant

differences from the traditional neural networks. The traditional neural network often

contains the input layer, output layer, hidden layer, and neuronal transfer function. For

the BINN, there is no such function [16]. The idea of the BINN model is to consider the

dynamically changing environment as a neural network architecture with dynamic neural

activity. Neurons are divided into unclean, cleaned, and obstacle neurons in the network,

as shown in Figure 2. The unclean neurons will attract the robot in the whole workspace,

while the obstacle neurons have local effect to avoid collisions. The collision-free path of

a mobile robot is planned in real time based on the dynamic activity of each neuron in the

neural network.

(a) (b)

Figure 2. A neural network based on a grid map in the BINN algorithm: (a) Grid Map. (b) Corre-

sponding neural network.

The shunting equation proposed by Grossberg [22] has the following form:

1

()([] []) ()[]
k

i
i i i ij j i i

j

dx
Ax B x I x D x I

dt

(3)

where 𝑥𝑖 represents the activity of the ith neuron. Here A represents the attenuation rate,

B and D represent the upper and lower limits of the neural activity, respectively. Here k

is the number of neurons adjacent to the ith neuron. 𝐼𝑖 is the external input, which can be

defined as:

0i

unclean

cleaned

obstacle

E

I

E

(4)

where E is a very large positive constant. The terms [𝐼𝑖]
+ + ∑ 𝜔𝑖𝑗[𝑥𝑗]

+𝑘
𝑗=1 and [𝐼𝑖]

− are

the excitatory and inhibitory inputs, respectively. Function [𝑎]+ is the Relu function de-

fined as [𝑎+] = max {𝑎, 0}, and [𝑎−] = max {−𝑎, 0}. 𝜔𝑖𝑗 represents the connection weight

for the ith and the jth neurons, which can be defined as:

0

0

/ 0

0

ij ij

ij

ij

d d r

d r

(5)

where 𝑟0 is the neuron connection radius, which is related to the detection range of the

robot. And 𝑑𝑖𝑗 represents the Euclidean distance between the ith and the jth neuron.

Figure 2. A neural network based on a grid map in the BINN algorithm: (a) Grid Map. (b) Corre-
sponding neural network.

The shunting equation proposed by Grossberg [22] has the following form:

dxi
dt

= −Axi + (B− xi)([Ii]
+ +

k

∑
j=1

ωij[xj]
+)− (D + xi)[Ii]

− (3)

where xi represents the activity of the ith neuron. Here A represents the attenuation rate, B
and D represent the upper and lower limits of the neural activity, respectively. Here k is
the number of neurons adjacent to the ith neuron. Ii is the external input, which can be
defined as:

Ii =

E unclean
0 cleaned
−E obstacle

(4)

where E is a very large positive constant. The terms [Ii]
+ +

k
∑

j=1
ωij
[
xj
]+ and [Ii]

− are the

excitatory and inhibitory inputs, respectively. Function [a]+ is the Relu function defined as
[a+] = max{a, 0}, and [a−] = max{−a, 0}. ωij represents the connection weight for the ith
and the jth neurons, which can be defined as:

ωij =

{
µ/dij 0 ≤ dij < r0

0 dij ≥ r0
(5)

where r0 is the neuron connection radius, which is related to the detection range of the
robot. And dij represents the Euclidean distance between the ith and the jth neuron.

Further, for the complete coverage path planning of mobile robots, navigation direction
changes should be avoided as much as possible. Yang [23] has proposed a next position

J. Mar. Sci. Eng. 2021, 9, 1163 5 of 19

decision formula to optimize the selection of the next position. For the given current robot
position pc, the next position pn is obtained by

pn ⇐ xpn = max
{

xj + cyj, j = 1, 2, · · ·, k
}

(6)

yj = 1−
∆θj

π
(7)

∆θj =
∣∣atan2(ypj − ypc, xpj − xpc)− atan2(ypc − ypp, xpc − xpp)

∣∣ (8)

where the current position is pc
(

xpc, ypc
)
, the previous position is pp

(
xpp, ypp

)
, and the

next position is pn
(

xpn, ypn
)
. c is a positive constant and k is the number of neighboring

neurons of the pcth neuron, i.e., all the possible next positions of the current position pc.
Variable xj is the neural activity of the jth neuron that is the same as that in Equation (3). yj
is a monotonically increasing function of the difference between the current to next robot
moving directions. ∆θj is the turning-angle between the current moving direction and next
moving direction. Here, atan2 indicates the function used to calculate the four-quadrant
inverse tangent of fixed-point values in C language, which can be defined as:

atan2(y, x) =

arctan(y
x) x > 0

arctan(y
x) + π y ≥ 0, x < 0

arctan(y
x)− π y < 0, x < 0

π
2 y > 0, x = 0

−π
2 y < 0, x = 0

unde f ined y = 0, x = 0

(9)

While the robot is planning the coverage path, the activities of neurons with different
attributes change over time, as shown in Figure 3a. Then the robot uses the next position
decision formula to select the next waypoint until it covers all neurons. As shown in
Figure 3b, y(4,5) = 1, y(5,6) = 0.5, according to the next position decision formula, (4,5)
is the next waypoint. In Figure 3b, the dark gray grid represents the obstacle neuron,
the white grid represents the unclean neuron, the dark green grid represents the cleaned
neuron, and the green grid S represents the starting point. The dashed line indicates the
generated path.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 6 of 20

(a) (b)

Figure 3. The BINN algorithm path planning procedure: (a) The neural-activity landscape (b) Pro-

gress of selecting the next position.

2.3. Principle of the CCNN Algorithm

The BINN algorithm is a complete coverage path planning method mainly used for

indoor cleaning robots. A cleaning robot is easy to operate, the BINN algorithm does not

need to consider the robot’s dynamics. However, as mentioned above, the dynamics of a

USV is quite different from that of a cleaning robot. When it plans a coverage path for a

USV, a series of problems will arise, such as easy path deviation, hard to maintain the

covering direction, and low adaptability to complex environment, etc. To solve these

problems and improve the effectiveness, inspired by the principle of the BINN algorithm,

a CCNN algorithm for complete coverage path planning of the USV has been proposed

in this paper. The basic idea in CCNN algorithm of environment modeling and neural

activity calculation is the same as BINN algorithm. The main improvements of the CCNN

algorithm lie in the calculation process of neural activity, the next position decision for-

mula and the moving directions of the path.

The neural activity calculation formula employed in the CCNN algorithm is given

as:

1

1 k
j

i i

j ij

x I
k d

(10)

where 𝑥𝑖 represents the activity of the ith neuron. 𝐼𝑖 represents the attribute of the ith

neuron, defined as:

0i

unclean

cleaned

obstacle

a

I

a

(11)

where a is the upper limit of neural activity.

In Equation (10),
1

𝑘
∑

𝜔𝑗

𝑑𝑖𝑗

𝑘
𝑗=1 is the environmental correction term and k is the number

of neighboring neurons of the jth neuron. 𝑑𝑖𝑗 represents the Euclidean distance between

the ith neuron and the jth neuron. Further, 𝜔𝑗 represents the gain coefficient of the envi-

ronmental correction term, defined as:

1

2

3

j

unclean

cleaned

obstacle

D a

D a

D a

(12)

where 𝐷1 is the gain coefficient of the unclean neurons, 𝐷2 the gain coefficient of the

cleaned neurons and 𝐷3 the gain coefficient of the obstacle neurons.

The next position decision formula is optimized as:

Figure 3. The BINN algorithm path planning procedure: (a) The neural-activity landscape
(b) Progress of selecting the next position.

2.3. Principle of the CCNN Algorithm

The BINN algorithm is a complete coverage path planning method mainly used for
indoor cleaning robots. A cleaning robot is easy to operate, the BINN algorithm does

J. Mar. Sci. Eng. 2021, 9, 1163 6 of 19

not need to consider the robot’s dynamics. However, as mentioned above, the dynamics
of a USV is quite different from that of a cleaning robot. When it plans a coverage path
for a USV, a series of problems will arise, such as easy path deviation, hard to maintain
the covering direction, and low adaptability to complex environment, etc. To solve these
problems and improve the effectiveness, inspired by the principle of the BINN algorithm,
a CCNN algorithm for complete coverage path planning of the USV has been proposed
in this paper. The basic idea in CCNN algorithm of environment modeling and neural
activity calculation is the same as BINN algorithm. The main improvements of the CCNN
algorithm lie in the calculation process of neural activity, the next position decision formula
and the moving directions of the path.

The neural activity calculation formula employed in the CCNN algorithm is given as:

xi = Ii +
1
k

k

∑
j=1

ωj

dij
(10)

where xi represents the activity of the ith neuron. Ii represents the attribute of the ith
neuron, defined as:

Ii =

a unclean
0 cleaned
−a obstacle

(11)

where a is the upper limit of neural activity.

In Equation (10), 1
k

k
∑

j=1

ωj
dij

is the environmental correction term and k is the number of

neighboring neurons of the jth neuron. dij represents the Euclidean distance between the ith
neuron and the jth neuron. Further, ωj represents the gain coefficient of the environmental
correction term, defined as:

ωj =

D1a unclean
D2a cleaned
D3a obstacle

(12)

where D1 is the gain coefficient of the unclean neurons, D2 the gain coefficient of the
cleaned neurons and D3 the gain coefficient of the obstacle neurons.

The next position decision formula is optimized as:

pn ⇐ xpn = max
{

xj + cyj, j = 1, 2, · · ·, k
}

(13)

yj = b(1− ∆θ1

π
)− (1− b) sin(∆θ2) (14)

∆θ1 = arccos(
→

vpc ·
→

vpp∣∣∣ →vpc

∣∣∣∣∣∣ →vpp

∣∣∣) (15)

∆θ2 = arccos(
→

vpc ·
→

vp1∣∣∣ →vpc

∣∣∣∣∣∣ →vp1

∣∣∣) (16)

where the current position is pc
(
xpc, ypc

)
, the previous position is pp

(
xpp, ypp

)
, and the next

position is pn
(

xpn, ypn
)
. Here

→
vpc =

(
xpn − xpc, ypn − ypc

)
,
→

vpp =
(

xpc − xpp, ypc − ypp
)
.

→
vp1 is the covering direction, up is (0,−1), down is (0,1), left is (−1,0), right is (1,0), upper
left is (−1,−1), and lower left is (−1,1), the upper right is (1,−1), the lower right is (1,1).
Further, c is the gain coefficient of the covering direction term, and b is a positive constant,
viz., b ∈ (0, 1). ∆θ1 represents the included angle between the current direction and the

J. Mar. Sci. Eng. 2021, 9, 1163 7 of 19

previous direction, viz., ∆θ1 ∈ [0, π]. ∆θ2 represents the included angle between the current
direction and the covering direction, viz., ∆θ2 ∈ [0, π/2].

2.3.1. Improve on the Calculation Process of Neural Activity

The BINN algorithm calculates the neural activity by solving ordinary differential
equation Equation (3). For the cleaned neuron, the initial value is the activity of the unclean
neuron at the current moment. Because the activity of the unclean neuron changes with
time, the initial conditions of cleaned neurons are different. So, the calculation equation
of each cleaned neuron is different. As shown in Figure 4, the time for the robot to pass
through a grid is 0.01 s; 3 cleaned neurons will produce 3 different activity change curves.
With the expansion of the path, the number of equations to be solved increases linearly,
consuming a lot of computing resources, resulting in long calculation time.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 7 of 20

max{ , 1,2, , }n pn j jp x x cy j k

(13)

1
2(1) (1)sin()jy b b

(14)

1 arccos()
| || |

pc pp

pc pp

v v

v v

 (15)

1

2

1

arccos()
| || |

pc p

pc p

v v

v v

 (16)

where the current position is 𝑝𝑐(𝑥𝑝𝑐 , 𝑦𝑝𝑐), the previous position is 𝑝𝑝(𝑥𝑝𝑝, 𝑦𝑝𝑝), and the

next position is 𝑝𝑛(𝑥𝑝𝑛, 𝑦𝑝𝑛) . Here 𝑣𝑝𝑐⃗⃗ ⃗⃗ ⃗ = (𝑥𝑝𝑛 − 𝑥𝑝𝑐 , 𝑦𝑝𝑛 − 𝑦𝑝𝑐) , 𝑣𝑝𝑝⃗⃗ ⃗⃗ ⃗⃗ = (𝑥𝑝𝑐 − 𝑥𝑝𝑝, 𝑦𝑝𝑐 −

𝑦𝑝𝑝). 𝑣𝑝1⃗⃗ ⃗⃗ ⃗⃗ is the covering direction, up is (0,−1), down is (0,1), left is (−1,0), right is (1,0),

upper left is (−1,−1), and lower left is (−1,1), the upper right is (1,−1), the lower right is (1,1).

Further, c is the gain coefficient of the covering direction term, and b is a positive constant,

viz., 𝑏 ∈ (0,1). ∆𝜃1 represents the included angle between the current direction and the

previous direction, viz., ∆𝜃1 ∈ [0, 𝜋]. ∆𝜃2 represents the included angle between the cur-

rent direction and the covering direction, viz., ∆𝜃2 ∈ [0, 𝜋/2].

2.3.1. Improve on the Calculation Process of Neural Activity

The BINN algorithm calculates the neural activity by solving ordinary differential

equation Eq.3. For the cleaned neuron, the initial value is the activity of the unclean neu-

ron at the current moment. Because the activity of the unclean neuron changes with time,

the initial conditions of cleaned neurons are different. So, the calculation equation of each

cleaned neuron is different. As shown in Figure 4, the time for the robot to pass through

a grid is 0.01 s; 3 cleaned neurons will produce 3 different activity change curves. With

the expansion of the path, the number of equations to be solved increases linearly, con-

suming a lot of computing resources, resulting in long calculation time.

(a) (b)

Figure 4. Activities of different cleaned neurons in BINN algorithm: (a) Generated path. (b) Activi-

ties of different cleaned neurons.

The CCNN algorithm adopts a simplified neural activity calculation formula fused

with environmental correction term (Equation (10)). It has avoided the computational

complexity caused by solving differential equations, and effectively reduced calculation

time. In a 10 × 10 grid map with no obstacles, the calculation time of the BINN algorithm

is 68 times that of the CCNN algorithm, as shown in Figure 5 and Table 1. The environ-

mental correction term reflects the influence of different neurons on the planning path.

Figure 4. Activities of different cleaned neurons in BINN algorithm: (a) Generated path. (b) Activities
of different cleaned neurons.

The CCNN algorithm adopts a simplified neural activity calculation formula fused
with environmental correction term (Equation (10)). It has avoided the computational
complexity caused by solving differential equations, and effectively reduced calculation
time. In a 10× 10 grid map with no obstacles, the calculation time of the BINN algorithm is
68 times that of the CCNN algorithm, as shown in Figure 5 and Table 1. The environmental
correction term reflects the influence of different neurons on the planning path. The gain
coefficients of different neurons can be modified to adapt to the different environments,
making the planned path more regular.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 8 of 20

The gain coefficients of different neurons can be modified to adapt to the different envi-

ronments, making the planned path more regular.

Table 1. Calculation time in different algorithm.

Algorithm BINN CCNN

Calculation time/s 105.9 1.55

2.3.2. Improve on the Next Position Decision Formula

In the next position decision formula of BINN algorithm, the four-quadrant inverse

tangent function atan2 is used to calculate the included angle between the current moving

direction and the next moving direction (Equation (8)). The path will be biased to the left

and down. Therefore, the next position decision formula of BINN algorithm is only suit-

able for the ideal situation where the starting point is in the upper left corner. When the

starting point is in the lower right corner, the planned path deviation will occur, resulting

in multiple turns and reducing the coverage efficiency, as shown in Figure 6a.

The CCNN algorithm optimizes the next position decision formula by encapsulating

the covering direction term. In Equation (14), ∆𝜃1 reflects the included angle between the

current direction and the previous direction. Compared with the function atan2 in the

BINN algorithm, function arccos does not consider the absolute direction. It calculates the

relative included angle only, which improves the applicability in different environments.

Further, ∆𝜃2 reflects the included angle between the current direction and the covering

direction. When the included angle is smaller, the covering direction can be better main-

tained. Through the function sin, the influence of the direction can be eliminated and a

more regular coverage planning path can be obtained, as shown in Figure 6.

Figure 5. Generated path in 10 × 10 grid map with no obstacles.

(a) (b) (c)

Figure 6. Influence of the covering direction term on the generated path: (a) BINN algorithm. (b) CCNN algorithm without

covering direction term. (c) CCNN algorithm with covering direction term.

Figure 5. Generated path in 10 × 10 grid map with no obstacles.

J. Mar. Sci. Eng. 2021, 9, 1163 8 of 19

Table 1. Calculation time in different algorithm.

Algorithm BINN CCNN

Calculation time/s 105.9 1.55

2.3.2. Improve on the Next Position Decision Formula

In the next position decision formula of BINN algorithm, the four-quadrant inverse
tangent function atan2 is used to calculate the included angle between the current moving
direction and the next moving direction (Equation (8)). The path will be biased to the
left and down. Therefore, the next position decision formula of BINN algorithm is only
suitable for the ideal situation where the starting point is in the upper left corner. When the
starting point is in the lower right corner, the planned path deviation will occur, resulting
in multiple turns and reducing the coverage efficiency, as shown in Figure 6a.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 8 of 20

The gain coefficients of different neurons can be modified to adapt to the different envi-

ronments, making the planned path more regular.

Table 1. Calculation time in different algorithm.

Algorithm BINN CCNN

Calculation time/s 105.9 1.55

2.3.2. Improve on the Next Position Decision Formula

In the next position decision formula of BINN algorithm, the four-quadrant inverse

tangent function atan2 is used to calculate the included angle between the current moving

direction and the next moving direction (Equation (8)). The path will be biased to the left

and down. Therefore, the next position decision formula of BINN algorithm is only suit-

able for the ideal situation where the starting point is in the upper left corner. When the

starting point is in the lower right corner, the planned path deviation will occur, resulting

in multiple turns and reducing the coverage efficiency, as shown in Figure 6a.

The CCNN algorithm optimizes the next position decision formula by encapsulating

the covering direction term. In Equation (14), ∆𝜃1 reflects the included angle between the

current direction and the previous direction. Compared with the function atan2 in the

BINN algorithm, function arccos does not consider the absolute direction. It calculates the

relative included angle only, which improves the applicability in different environments.

Further, ∆𝜃2 reflects the included angle between the current direction and the covering

direction. When the included angle is smaller, the covering direction can be better main-

tained. Through the function sin, the influence of the direction can be eliminated and a

more regular coverage planning path can be obtained, as shown in Figure 6.

Figure 5. Generated path in 10 × 10 grid map with no obstacles.

(a) (b) (c)

Figure 6. Influence of the covering direction term on the generated path: (a) BINN algorithm. (b) CCNN algorithm without

covering direction term. (c) CCNN algorithm with covering direction term.
Figure 6. Influence of the covering direction term on the generated path: (a) BINN algorithm. (b) CCNN algorithm without
covering direction term. (c) CCNN algorithm with covering direction term.

The CCNN algorithm optimizes the next position decision formula by encapsulating
the covering direction term. In Equation (14), ∆θ1 reflects the included angle between the
current direction and the previous direction. Compared with the function atan2 in the BINN
algorithm, function arccos does not consider the absolute direction. It calculates the relative
included angle only, which improves the applicability in different environments. Further,
∆θ2 reflects the included angle between the current direction and the covering direction.
When the included angle is smaller, the covering direction can be better maintained.
Through the function sin, the influence of the direction can be eliminated and a more
regular coverage planning path can be obtained, as shown in Figure 6.

2.3.3. Improve on the Moving Directions

The activity of the unclean neuron in BINN algorithm are much higher than those of
the cleaned neurons and obstacle neurons. Therefore, the path often shifts towards the area
with more unclean neurons. Further, the next position decision formula of BINN algorithm
only considers the included angle with the previous direction. At the edge of the map, the
path is in danger of a yaw from the covering direction. Therefore, the moving directions of
path in BINN algorithm is limited to only four, i.e., up, down, left, and right. The USV can
only make a 90◦ turn, as shown in Figure 7a. For a USV, larger turning-angle and more
navigation direction changes will make it difficult to track the planned path and will affect
the operation results. With the aid of the environmental correction term and the covering
direction term, the CCNN algorithm can solve the problem of easy yaw at the corner of the
edge. It can increase the moving directions to eight, i.e., up, down, left, right, upper left,
lower left, upper right, and lower right. As a result, the USV can make 45◦ and 90◦ turns,
as shown in Figure 7b, which has reduced the turning-angle effectively.

J. Mar. Sci. Eng. 2021, 9, 1163 9 of 19

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 20

2.3.3. Improve on the Moving Directions

The activity of the unclean neuron in BINN algorithm are much higher than those of

the cleaned neurons and obstacle neurons. Therefore, the path often shifts towards the

area with more unclean neurons. Further, the next position decision formula of BINN al-

gorithm only considers the included angle with the previous direction. At the edge of the

map, the path is in danger of a yaw from the covering direction. Therefore, the moving

directions of path in BINN algorithm is limited to only four, i.e., up, down, left, and right.

The USV can only make a 90° turn, as shown in Figure 7a. For a USV, larger turning-angle

and more navigation direction changes will make it difficult to track the planned path and

will affect the operation results. With the aid of the environmental correction term and the

covering direction term, the CCNN algorithm can solve the problem of easy yaw at the

corner of the edge. It can increase the moving directions to eight, i.e., up, down, left, right,

upper left, lower left, upper right, and lower right. As a result, the USV can make 45° and

90° turns, as shown in Figure 7b, which has reduced the turning-angle effectively.

(a) (b)

Figure 7. Direction of motion of different algorithm: (a) BINN algorithm. (b) CCNN algorithm.

When the path come across the obstacle neurons, the BINN algorithm will deviate

from the original covering direction and produce more turns, as shown in Figure 8a. Un-

der the same circumstance, the CCNN algorithm will plan an obstacle avoidance path,

and return to the original coverage path to continue scanning after bypassing the obstacle

neurons. However, owing to the low activities of the cleaned neurons, the path will bypass

the cleaned neurons to avoid repeated scanning, resulting in the continuous turns of the

subsequent path, as shown in Figure 8b. Therefore, the turning avoidance (TA) inspection

has been introduced to solve this problem. Once a cleaned neuron appears in front of the

current position and the USV is about to take a turn, the TA inspection is performed to

scan the neurons in the forward direction. If there are unclean neurons and no obstacle

neurons in the inspection range, the path will avoid a turn and cross the front cleaned

neurons to reach the unclean neurons and continue covering the remaining task area, as

shown in Figure 8c. Otherwise, the path will take a turn to bypass the cleaned neuron.

Although the repetition rate increases, the navigation direction changes decrease, and the

covering direction is maintained.

Figure 7. Direction of motion of different algorithm: (a) BINN algorithm. (b) CCNN algorithm.

When the path come across the obstacle neurons, the BINN algorithm will deviate
from the original covering direction and produce more turns, as shown in Figure 8a. Under
the same circumstance, the CCNN algorithm will plan an obstacle avoidance path, and
return to the original coverage path to continue scanning after bypassing the obstacle
neurons. However, owing to the low activities of the cleaned neurons, the path will bypass
the cleaned neurons to avoid repeated scanning, resulting in the continuous turns of the
subsequent path, as shown in Figure 8b. Therefore, the turning avoidance (TA) inspection
has been introduced to solve this problem. Once a cleaned neuron appears in front of the
current position and the USV is about to take a turn, the TA inspection is performed to scan
the neurons in the forward direction. If there are unclean neurons and no obstacle neurons
in the inspection range, the path will avoid a turn and cross the front cleaned neurons to
reach the unclean neurons and continue covering the remaining task area, as shown in
Figure 8c. Otherwise, the path will take a turn to bypass the cleaned neuron. Although
the repetition rate increases, the navigation direction changes decrease, and the covering
direction is maintained.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 20

(a) (b) (c)

Figure 8. Influence of the TA inspection on the generated path: (a) BINN algorithm. (b) CCNN algorithm without TA

inspection. (c) CCNN algorithm with TA inspection.

2.4. Deadlock Escape Strategy Based on Improved A* Algorithm

A deadlock situation of a USV is the fact that the neighboring neuron of the central

neuron is either visited, obstacle, or with smaller neural activity. An improved A* algo-

rithm has been adopted to escape the deadlock in this paper. When the path falls into the

deadlock, the algorithm will look for the unclean neuron, closest to the deadlock, as the

escape point and automatically plan the path to the escape point, through the improved

A* algorithm, to escape the deadlock.

The A* algorithm is a classical heuristic algorithm, which plans the optimal path

through the heuristic function. The algorithm expands from the starting point to the

neighboring area, and it calculates the cost value of each of the expand point and selects

the expand point with the lowest cost value as the next point of the path. This process is

repeated until the goal point is reached and the final path is generated. The heuristic func-

tion 𝑓(𝑛) of A* algorithm is given as:

() () ()f n h n g n
 (17)

where 𝑓(𝑛) is the total cost at the current point n, 𝑔(𝑛) the moving cost from the starting

point s to current point n, and ℎ(𝑛) the estimated path cost from the current point n to

the goal point g, which is generally calculated in the following ways.

When mobile points can move up, down, left, and right, h(n) can be calculated using

Manhattan distance formula:

(,) | | | |n n n g n gh x y x x y y

(18)

The mobile points can move up, down, left, right, top left, top right, bottom left, and

bottom right. The Chebyshev distance formula can be used here. The moving cost for the

up, down, left, and right motion is 1, whereas the moving cost for the upper left, upper

right, lower left, and lower right is the diagonal distance 2 .

(,) 2 min(| |,| y |) || | | y ||n n n g n g n g n gh x y x x y x x y

(19)

Generally, it is favorable to have less navigation direction changes. However, the

heuristic function in A* algorithm only considers the path length, resulting in larger turn-

ing-angle and less smooth path, which makes it difficult for the navigation and path track-

ing control of a USV. Therefore, an improved A* algorithm has been proposed in this pa-

per with respect to the dynamics characteristics of a USV and the shortage of excessive

turns of A* algorithm, by adding the cost of the turning-angle to the heuristic function,

the number of turns in the path has been reduced. The path with the smallest turning-

angle accumulation and the shortest path length is selected as the optimal path. The im-

proved function 𝑔(𝑛) is given as

Figure 8. Influence of the TA inspection on the generated path: (a) BINN algorithm. (b) CCNN algorithm without TA
inspection. (c) CCNN algorithm with TA inspection.

2.4. Deadlock Escape Strategy Based on Improved A* Algorithm

A deadlock situation of a USV is the fact that the neighboring neuron of the central
neuron is either visited, obstacle, or with smaller neural activity. An improved A* algorithm
has been adopted to escape the deadlock in this paper. When the path falls into the deadlock,
the algorithm will look for the unclean neuron, closest to the deadlock, as the escape point

J. Mar. Sci. Eng. 2021, 9, 1163 10 of 19

and automatically plan the path to the escape point, through the improved A* algorithm,
to escape the deadlock.

The A* algorithm is a classical heuristic algorithm, which plans the optimal path
through the heuristic function. The algorithm expands from the starting point to the
neighboring area, and it calculates the cost value of each of the expand point and selects
the expand point with the lowest cost value as the next point of the path. This process
is repeated until the goal point is reached and the final path is generated. The heuristic
function f (n) of A* algorithm is given as:

f (n) = h(n) + g(n) (17)

where f (n) is the total cost at the current point n, g(n) the moving cost from the starting
point s to current point n, and h(n) the estimated path cost from the current point n to the
goal point g, which is generally calculated in the following ways.

When mobile points can move up, down, left, and right, h(n) can be calculated using
Manhattan distance formula:

h(xn, yn) =
∣∣xn − xg

∣∣+∣∣yn − yg
∣∣ (18)

The mobile points can move up, down, left, right, top left, top right, bottom left, and
bottom right. The Chebyshev distance formula can be used here. The moving cost for the
up, down, left, and right motion is 1, whereas the moving cost for the upper left, upper
right, lower left, and lower right is the diagonal distance

√
2.

h(xn, yn) =
√

2×min(
∣∣∣xn − xg

∣∣∣, ∣∣∣yn − yg

∣∣∣)+∣∣∣∣∣∣xn − xg

∣∣∣−∣∣∣yn − yg

∣∣∣∣∣∣ (19)

Generally, it is favorable to have less navigation direction changes. However, the
heuristic function in A* algorithm only considers the path length, resulting in larger turning-
angle and less smooth path, which makes it difficult for the navigation and path tracking
control of a USV. Therefore, an improved A* algorithm has been proposed in this paper
with respect to the dynamics characteristics of a USV and the shortage of excessive turns
of A* algorithm, by adding the cost of the turning-angle to the heuristic function, the
number of turns in the path has been reduced. The path with the smallest turning-angle
accumulation and the shortest path length is selected as the optimal path. The improved
function g(n) is given as

g(n) =

a cos(
→
vn ·
→
vp∣∣∣→vn

∣∣∣∣∣∣→vp

∣∣∣)
Ca

+ ln (20)

where
→
vn =

(
xn − xp, yn − yp

)
is the vector from the parent point p to the current point n.

Further,
→
vp =

(
xp − xpp, yp − ypp

)
is the vector from the grandparent point pp to the parent

point p. Ca represents the conversion ratio of the turning-angle and ln is the moving cost
from the parent point p to the current point n. The cost of moving up, down, left, and right
is one, and the cost of moving upper left, upper right, lower left, and lower right is

√
2.

To compare the effects of path planning between A* and improved A* algorithms, the
simulation environment is set to 20 × 40 grid map and four vertical obstacles have been
arranged along the horizontal direction in the environment. The generated path and the
results from simulation are shown in Figure 9 and Table 2.

According to Figure 9 and Table 2, the A* algorithm generates the largest number
of turns, though it can obtain a shorter path in a complex environment, thus resulting
in a large turning-angle accumulation. Compared with the A* algorithm, the number
of turns and turning-angle accumulation have been greatly reduced in the improved A*
algorithm despite the increase in path length. The effect of Ca = π/8 is more significant
than that of Ca = π/4 for an improved A* algorithm with different conversion ratios for
the turning-angle. The number of turns and the turning-angle accumulation have been

J. Mar. Sci. Eng. 2021, 9, 1163 11 of 19

further reduced. Compared with the A* algorithm, the reduction in the number of turns
and the turning-angle accumulation are 71.0% and 84.6%, respectively, in the improved A*
algorithm with Ca = π/8. For different environments, the path can be more suitable for
the USV by changing conversion ratio of the turning-angle Ca.

The generated path of the escaping the deadlock using the improved A* algorithm is
shown in Figure 10. The red grid in the figure indicates the deadlock.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 20

cos()
| || |

()

n p

n p

n

a

v v
a

v v
g n l

C

(20)

where 𝑣𝑛⃗⃗⃗⃗ = (𝑥𝑛 − 𝑥𝑝, 𝑦𝑛 − 𝑦𝑝) is the vector from the parent point p to the current point n.

Further, 𝑣𝑝⃗⃗⃗⃗ = (𝑥𝑝 − 𝑥𝑝𝑝, 𝑦𝑝 − 𝑦𝑝𝑝) is the vector from the grandparent point pp to the par-

ent point p. 𝐶𝑎 represents the conversion ratio of the turning-angle and 𝑙𝑛 is the moving

cost from the parent point p to the current point n. The cost of moving up, down, left, and

right is one, and the cost of moving upper left, upper right, lower left, and lower right is

√2.

To compare the effects of path planning between A* and improved A* algorithms,

the simulation environment is set to 20 × 40 grid map and four vertical obstacles have been

arranged along the horizontal direction in the environment. The generated path and the

results from simulation are shown in Figure 9 and Table 2.

(a) (b)

(c)

Figure 9. Generated path of the A* algorithm and improved A* algorithm: (a) A* algorithm. (b) Improved A* algorithm

with 𝐶𝑎 = 𝜋/4. (c) Improved A* algorithm with 𝐶𝑎 = 𝜋/8.

Table 2. Simulation results of A* algorithm and improved A* algorithm.

Algorithm Path Length/Grid Turning-Angle Accumulation/°
Number of

Turns

A* 40.3 585.0 7

Improved A*

(𝐶𝑎 = π/4)
41.9 135.0 3

Improved A*

(𝐶𝑎 = π/8)
41.9 90.0 2

According to Figure 9 and Table 2, the A* algorithm generates the largest number of

turns, though it can obtain a shorter path in a complex environment, thus resulting in a

large turning-angle accumulation. Compared with the A* algorithm, the number of turns

and turning-angle accumulation have been greatly reduced in the improved A* algorithm

despite the increase in path length. The effect of 𝐶𝑎 = 𝜋/8 is more significant than that of

𝐶𝑎 = 𝜋/4 for an improved A* algorithm with different conversion ratios for the turning-

Figure 9. Generated path of the A* algorithm and improved A* algorithm: (a) A* algorithm. (b) Improved A* algorithm
with Ca = π/4. (c) Improved A* algorithm with Ca = π/8.

Table 2. Simulation results of A* algorithm and improved A* algorithm.

Algorithm Path Length/Grid Turning-Angle
Accumulation/◦ Number of Turns

A* 40.3 585.0 7
Improved A*
(Ca = π/4)

41.9 135.0 3

Improved A*
(Ca = π/8)

41.9 90.0 2

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 20

angle. The number of turns and the turning-angle accumulation have been further re-

duced. Compared with the A* algorithm, the reduction in the number of turns and the

turning-angle accumulation are 71.0% and 84.6%, respectively, in the improved A* algo-

rithm with 𝐶𝑎 = 𝜋/8. For different environments, the path can be more suitable for the

USV by changing conversion ratio of the turning-angle 𝐶𝑎.

The generated path of the escaping the deadlock using the improved A* algorithm is

shown in Figure 10. The red grid in the figure indicates the deadlock.

Figure 10. Generated path of the escaping the deadlock using the improved A* algorithm.

2.5. CCNN Algorithm Flow

The flow of the CCNN algorithm by integrating the improved A* algorithm to escape

the deadlock is given as follows:

Initialize the map, rasterize the map information, set the unit grid as the scanning

width of the USV, and assign the initial attributes to each neuron (obstacle, unclean,

cleaned).

Parameter initialization: by setting the parameters a, b, c, 𝐷1, 𝐷2, and 𝐷3, besides

setting the trend direction of the coverage path.

Entering the algorithm for pathfinding cycle: first check for the unclean neurons re-

maining in the map. If there are unclean neurons, further judge the deadlock. If there are

no deadlocks, traverse the neurons around the current position and calculate the neural

activity. The neuron with the largest neural activity is selected as the next position. If there

are cleaned neurons in front of the path, the TA inspection is performed. If there are un-

clean neurons in the inspection range, the unclean neuron will be selected as the next po-

sition, or else it will remain unchanged.

If all neurons have been cleaned, the algorithm completes the jump out cycle. If it

enters the deadlock, the improved A* algorithm will be used to escape the deadlock.

Subsequent to jumping out of the cycle, the planning path quality is evaluated. The

repetitive rate, path length, turning-angle accumulation, and other relevant data are cal-

culated.

The flow of the CCNN algorithm is shown in Figure 11.

Figure 10. Generated path of the escaping the deadlock using the improved A* algorithm.

J. Mar. Sci. Eng. 2021, 9, 1163 12 of 19

2.5. CCNN Algorithm Flow

The flow of the CCNN algorithm by integrating the improved A* algorithm to escape
the deadlock is given as follows:

Initialize the map, rasterize the map information, set the unit grid as the scanning
width of the USV, and assign the initial attributes to each neuron (obstacle, unclean, cleaned).

Parameter initialization: by setting the parameters a, b, c, D1, D2, and D3, besides
setting the trend direction of the coverage path.

Entering the algorithm for pathfinding cycle: first check for the unclean neurons
remaining in the map. If there are unclean neurons, further judge the deadlock. If there are
no deadlocks, traverse the neurons around the current position and calculate the neural
activity. The neuron with the largest neural activity is selected as the next position. If
there are cleaned neurons in front of the path, the TA inspection is performed. If there are
unclean neurons in the inspection range, the unclean neuron will be selected as the next
position, or else it will remain unchanged.

If all neurons have been cleaned, the algorithm completes the jump out cycle. If it
enters the deadlock, the improved A* algorithm will be used to escape the deadlock.

Subsequent to jumping out of the cycle, the planning path quality is evaluated.
The repetitive rate, path length, turning-angle accumulation, and other relevant data
are calculated.

The flow of the CCNN algorithm is shown in Figure 11.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 20

Figure 11. The flow of the CCNN algorithm.

3. Simulation Studies

In order to demonstrate the feasibility and efficiency of the proposed complete cov-

erage path planning scheme based on CCNN algorithm, several path planning simulation

studies are conducted in various environments, i.e., artificial environment and real-world

environment. In this section, boustrophedon cellular [10], BINN [23], improved BINN [17]

algorithm are compared to the CCNN algorithm. All simulations are performed in a PC

with Intel i7 2.2 GHz and 16 GB RAM, running by the Visual Studio 2019 Community,

Microsoft in USA.

3.1. Simulation in an Artificial Environment

The artificial environment is set to 15 × 30 grid map with concave obstacles, edge

obstacles, jagged obstacles, etc. To verify the path planning effect of different algorithm in

an artificial environment, the following simulation has been carried out:

The parameters of BINN algorithm are set as, viz., A = 10, B = D = 1, E = 100, μ = 1,

and 𝑟0 = 2. The BINN and improved BINN algorithms adopt the improved A* algorithm

of the Manhattan distance formula with 4 directions of motion to escape the deadlock.

The parameters of the CCNN algorithm are set as a = 1.5, b = 0.5, c = 1, 𝐷1 = 0.1, 𝐷2

= 2, and 𝐷3 = 2. The CCNN algorithm adopts the improved A* algorithm of the Chebyshev

distance formula with 8 directions of motion to escape the deadlock.

The generated path and the simulation results of different algorithms are shown in

Figure 12 and Table 3. The dark gray grid represents the obstacle neuron, the dark green

grid represents the cleaned neuron, the green grid S represents the starting point, the yel-

low grid D represents the destination, and the red grid represents the deadlock. The

dashed line indicates the generated path.

Figure 11. The flow of the CCNN algorithm.

3. Simulation Studies

In order to demonstrate the feasibility and efficiency of the proposed complete cover-
age path planning scheme based on CCNN algorithm, several path planning simulation
studies are conducted in various environments, i.e., artificial environment and real-world
environment. In this section, boustrophedon cellular [10], BINN [23], improved BINN [17]
algorithm are compared to the CCNN algorithm. All simulations are performed in a PC
with Intel i7 2.2 GHz and 16 GB RAM, running by the Visual Studio 2019 Community,
Microsoft in USA.

J. Mar. Sci. Eng. 2021, 9, 1163 13 of 19

3.1. Simulation in an Artificial Environment

The artificial environment is set to 15 × 30 grid map with concave obstacles, edge
obstacles, jagged obstacles, etc. To verify the path planning effect of different algorithm in
an artificial environment, the following simulation has been carried out:

The parameters of BINN algorithm are set as, viz., A = 10, B = D = 1, E = 100, µ = 1,
and r0 = 2. The BINN and improved BINN algorithms adopt the improved A* algorithm
of the Manhattan distance formula with 4 directions of motion to escape the deadlock.

The parameters of the CCNN algorithm are set as a = 1.5, b = 0.5, c = 1, D1 = 0.1, D2 = 2,
and D3 = 2. The CCNN algorithm adopts the improved A* algorithm of the Chebyshev
distance formula with 8 directions of motion to escape the deadlock.

The generated path and the simulation results of different algorithms are shown in
Figure 12 and Table 3. The dark gray grid represents the obstacle neuron, the dark green
grid represents the cleaned neuron, the green grid S represents the starting point, the
yellow grid D represents the destination, and the red grid represents the deadlock. The
dashed line indicates the generated path.

According to Table 3, it can be observed that the boustrophedon cellular algorithm ob-
tains a complete coverage path using the longest path length and the most deadlocks, while
the BINN algorithm effectively reduces the number of deadlocks and further shortens the
path length. It should be noted that the improved BINNN algorithm generates the shortest
path and the least repetitive rate. However, as shown in Table 3, the improved BINNN
algorithm has the maximum turning-angle accumulation and the longest calculation time,
which increases the difficulty of path tracking and reduces the efficiency of the algorithm.
Comparing to the boustrophedon cellular, BINN, and improved BINNN algorithm, the
CCNN algorithm generates a coverage path with the minimum turning-angle accumula-
tion in the shortest calculation time and greatly reduces the number of deadlocks. When
compared with other three algorithms, the turning-angle accumulation of CCNN algorithm
has reduced by 4.0%, 5.2%, and 12.5% respectively, the calculation time has reduced by
39.9%, 98.6% and 98.6% respectively. Therefore, the CCNN algorithm can find a nearly
shortest and the least navigation direction changes path using the shortest time.

More practically, as shown in Figure 12, with the aid of the environmental correction
term and 8 moving directions of the path in grid maps, the path generated by the CCNN
algorithm can produce fewer turns near jagged obstacles and concave obstacles. Besides,
by the optimal next position decision formula combining with the covering direction term,
the CCNN algorithm maintains a consistent overall covering direction. However, the
boustrophedon, BINN, and improved BINNN algorithms produce more turns near various
obstacles, and the covering direction is not regular enough. Clearly, the CCNN algorithm
can better adapt to complex environments and maintain a certain covering direction.

3.2. Simulation in a Real-World Environment

When a USV performs operational tasks, it needs to rely on the online satellite map or
the electronic ocean map for path planning. A real-world environment is more complex
than an artificial environment. The distribution of size and location of obstacles are increas-
ingly random, which will in turn influence the result of path planning. A 750 × 1500 m
ocean area has been set up, where there are islands and shorelines of different sizes. The
image of the real-world environment is shown in Figure 13.

To verify the path planning effect of different algorithms in a real-world environment,
the following simulation has been carried out:

The parameters of the BINN algorithm have been set as, viz., A = 10, B = D = 1,
E = 100, µ = 1, and r0 = 2. The BINN and improved BINN algorithms adopt the improved
A* algorithm of the Manhattan distance formula with 4 directions of motion to escape
the deadlock.

J. Mar. Sci. Eng. 2021, 9, 1163 14 of 19
J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 20

(a)

(b)

(c)

(d)

Figure 12. Generated path of different algorithms in the artificial environment: (a) Boustrophedon cellular algorithm. (b)

BINN algorithm. (c) Improved BINN algorithm. (d) CCNN algorithm.
Figure 12. Generated path of different algorithms in the artificial environment: (a) Boustrophedon
cellular algorithm. (b) BINN algorithm. (c) Improved BINN algorithm. (d) CCNN algorithm.

J. Mar. Sci. Eng. 2021, 9, 1163 15 of 19

Table 3. Simulation results of different algorithms in artificial environment.

Algorithm Path Length/Grid Turning-Angle
Accumulation/◦ Repetitive Rate/% Number of

Deadlocks
Calculation

Time/s

Boustrophedon cellular 457 8515 10.3 20 9.99
BINN 441 8640 16.0 14 414.9

Improved BINN 389 9360 4.9 3 423.6
CCNN 395 8190 5.3 3 6.0

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 16 of 20

Figure 13. The real-world environment.

To verify the path planning effect of different algorithms in a real-world environ-

ment, the following simulation has been carried out:

The parameters of the BINN algorithm have been set as, viz., A = 10, B = D = 1, E =

100, μ = 1, and 𝑟0 = 2. The BINN and improved BINN algorithms adopt the improved A*

algorithm of the Manhattan distance formula with 4 directions of motion to escape the

deadlock.

The parameters of the CCNN algorithm are set as, viz., a = 1.5, b = 0.5, c = 1, 𝐷1 = 0.4,

𝐷2 = 2, and 𝐷3 = 2. The CCNN algorithm adopts the improved A* algorithm of the Che-

byshev distance formula with 8 directions of motion to escape the deadlock.

The generated path and simulation results are shown in Figure 14 and Table 4. The

green grid S represents the starting point, the yellow grid D represents the destination,

and the red grid represents the deadlock. The dashed line indicates the generated path.

Figure 13. The real-world environment.

The parameters of the CCNN algorithm are set as, viz., a = 1.5, b = 0.5, c = 1, D1 = 0.4,
D2 = 2, and D3 = 2. The CCNN algorithm adopts the improved A* algorithm of the
Chebyshev distance formula with 8 directions of motion to escape the deadlock.

The generated path and simulation results are shown in Figure 14 and Table 4. The
green grid S represents the starting point, the yellow grid D represents the destination, and
the red grid represents the deadlock. The dashed line indicates the generated path.

According to Table 4, the CCNN algorithm plans the path with the least number of
deadlocks within the shortest time. Although the path planned by the improved BINN
algorithm is shorter with less repetitive rate (only 6.6% shorter than the CCNN), it has
the maximum turning-angle accumulation and longer calculation time. While the path
generated by the CCNN algorithm has the smallest turning-angle accumulation, which
is reduced by 20.6%, 54.7%, and 61.3% respectively compared with the boustrophedon
cellular, BINN, and improved BINN algorithm. In addition, the CCNN algorithm has
the least deadlocks, which is reduced by 75.0%, 71.4%, and 50.0% respectively compared
with the other 3 algorithms. Less navigation direction changes and deadlocks are more
conducive for path tracking of a USV in a complex environment, which will greatly improve
operation efficiency.

In the real-world environment, the covering direction is supposed to change with
different terrain. As can be seen from Figure 14, the BINN algorithm does not consider the
covering direction, the path is rather chaotic, which makes it difficult for a USV to navigate.
Due to the limitation of the optimal decision formula, the improved BINN algorithm
can only plan the path with vertical covering direction, resulting in a lot of turns. The
boustrophedon cellular algorithm adopts horizontal covering direction, but it does not
consider the specific environment, and plans the path with a fixed template, resulting in
plenty of deadlocks and high repetition rate. The CCNN algorithm maintains horizontal
covering direction in most positions. Through LOS inspection, although repetition rate
increased slightly, continuous navigation direction changes are avoided, which is better
for USV.

J. Mar. Sci. Eng. 2021, 9, 1163 16 of 19
J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 17 of 20

(a)

(b)

(c)

Figure 14. Cont.

J. Mar. Sci. Eng. 2021, 9, 1163 17 of 19
J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 18 of 20

(d)

Figure 14. Generated path of different algorithms in the real-world environment: (a) Boustrophedon cellular algorithm.

(b) BINN algorithm. (c) Improved BINN algorithm. (d) CCNN algorithm.

Table 4. Simulation results of different algorithms in the real-world environment.

Algorithm
Path

Length/km

Turning-Angle

Accumulation/°
Repetitive Rate/% Number of Deadlocks Calculation Time/s

Boustrophedon

cellular
22.65 4877 8.0 8 6.2

BINN 20.85 8550 6.7 7 444.7

Improved

BINN
19.85 9990 2.0 4 440.8

CCNN 21.25 3870 4.4 2 6.1

According to Table 4, the CCNN algorithm plans the path with the least number of

deadlocks within the shortest time. Although the path planned by the improved BINN

algorithm is shorter with less repetitive rate (only 6.6% shorter than the CCNN), it has the

maximum turning-angle accumulation and longer calculation time. While the path gen-

erated by the CCNN algorithm has the smallest turning-angle accumulation, which is re-

duced by 20.6%, 54.7%, and 61.3% respectively compared with the boustrophedon cellu-

lar, BINN, and improved BINN algorithm. In addition, the CCNN algorithm has the least

deadlocks, which is reduced by 75.0%, 71.4%, and 50.0% respectively compared with the

other 3 algorithms. Less navigation direction changes and deadlocks are more conducive

for path tracking of a USV in a complex environment, which will greatly improve opera-

tion efficiency.

In the real-world environment, the covering direction is supposed to change with

different terrain. As can be seen from Figure 14, the BINN algorithm does not consider the

covering direction, the path is rather chaotic, which makes it difficult for a USV to navi-

gate. Due to the limitation of the optimal decision formula, the improved BINN algorithm

can only plan the path with vertical covering direction, resulting in a lot of turns. The

boustrophedon cellular algorithm adopts horizontal covering direction, but it does not

consider the specific environment, and plans the path with a fixed template, resulting in

plenty of deadlocks and high repetition rate. The CCNN algorithm maintains horizontal

covering direction in most positions. Through LOS inspection, although repetition rate

increased slightly, continuous navigation direction changes are avoided, which is better

for USV.

Figure 14. Generated path of different algorithms in the real-world environment: (a) Boustrophedon
cellular algorithm. (b) BINN algorithm. (c) Improved BINN algorithm. (d) CCNN algorithm.

Table 4. Simulation results of different algorithms in the real-world environment.

Algorithm Path Length/km Turning-Angle
Accumulation/◦ Repetitive Rate/% Number of

Deadlocks
Calculation

Time/s

Boustrophedon cellular 22.65 4877 8.0 8 6.2
BINN 20.85 8550 6.7 7 444.7

Improved BINN 19.85 9990 2.0 4 440.8
CCNN 21.25 3870 4.4 2 6.1

Finally, from Figures 12–14 and Tables 3 and 4, the CCNN algorithm enables a USV to
avoid navigation direction changes and deadlocks as much as possible, and significantly
reduces calculation time, which is conducive to the path tracking of USV. In this context, the
proposed CCNN algorithm can efficiently carry out the complete coverage path planning
of a USV.

4. Conclusions

In this paper, inspired by the principle of the BINN, a CCNN algorithm for complete
coverage path planning of a USV is proposed for the first time. The CCNN algorithm
provides a simplified calculation process of the neural activity and an optimal next position
decision formula for path planning, which reflects the influence of the environment and
covering direction on the planning results. It increases the moving directions of the path in
grid maps and makes the path more flexible. An improved A* algorithm, which introduces
turning cost into the heuristic function, is presented to escape deadlocks. The complete
coverage path planning scheme for a USV based on the proposed algorithm is capable
of autonomously planning a collision-free path that can not only significantly reduce
the turning-angle accumulation, deadlocks, and calculation time, but also maintain the
covering direction and adapt to complex environments. Simulations and comprehensive
comparisons in artificial and real-world environments are conducted to demonstrate the
feasibility and efficiency of the CCNN algorithm.

J. Mar. Sci. Eng. 2021, 9, 1163 18 of 19

Author Contributions: Conceptualization, Y.-X.D. and J.-C.L.; methodology, Y.-X.D.; validation,
P.-F.X., Y.-X.D. and J.-C.L.; formal analysis, Y.-X.D.; data curation, Y.-X.D.; writing—original draft
preparation, Y.-X.D.; writing—review and editing, Y.-X.D.; supervision, P.-F.X.; project administration,
P.-F.X.; funding acquisition, P.-F.X. All authors have read and agreed to the published version of
the manuscript.

Funding: National Natural Science Foundation of China (52071131), Marine Science and Technology
Innovation Project of Jiangsu Province (HY2018-15), and China Postdoctoral Science Foundation
(2018M640390).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to Yan Kai, Chen Cheng and Hong-Xia Cheng for their preliminary
preparations for this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiang, X.; Yu, C.; Lapierre, L.; Zhang, J.; Zhang, Q. Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface

Vehicles and Underwater Vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [CrossRef]
2. Huntsberger, T.; Woodward, G. Intelligent Autonomy for Unmanned Surface and Underwater Vehicles. In Proceedings of the

OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011.
3. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control.

2016, 41, 71–93. [CrossRef]
4. Yan, R.-J.; Pang, S.; Sun, H.-B.; Pang, Y.-J. Development and missions of unmanned surface vehicle. J. Mar. Sci. Appl.

2010, 9, 451–457. [CrossRef]
5. Li, J.; Sun, X.-X. Route planning’s method for unmanned aerial vehicles based on improved a-star algorithm. Binggong Xuebao

Acta Armamentarii 2008, 29, 788–792.
6. Yan, M.Z.; Zhu, D.Q. An Algorithm of Complete Coverage Path Planning for Autonomous Underwater Vehicles. Key Eng. Mater.

2011, 467–469, 1377–1385. [CrossRef]
7. Enric, G.; Marc, C. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276.
8. Wang, Y.; Han, Q. Network-Based Fault Detection Filter and Controller Coordinated Design for Unmanned Surface Vehicles in

Network Environments. IEEE Trans. Ind. Inform. 2016, 12, 1753–1765. [CrossRef]
9. Latomabe, J.C. Robot Motion Planning. Commun. Pure Appl. Math. 1991, 48, 1173–1186.
10. Choset, H. Coverage Path Planning: The Boustrophedon Cellular Decomposition; Springer: London, UK, 1998.
11. Acar, E.U.; Choset, H.; Rizzi, A.A.; Atkar, P.N.; Hull, D. Morse Decompositions for Coverage Tasks. Int. J. Robot. Res.

2002, 21, 331–344. [CrossRef]
12. Huang, W.H. Optimal line-sweep-based decompositions for coverage algorithms. In Proceedings of the IEEE International

Conference on Robotics and Automation, 2001 ICRA, Seoul, Korea, 21–26 May 2001; Volume 21, pp. 27–32.
13. Luo, C.; Yang, S.X. A real-time cooperative sweeping strategy for multiple cleaning robots. In Proceedings of the 2000 IEEE

International Symposium on Intelligent Control. Held Jointly with the 8th IEEE Mediterranean Conference on Control and
Automation, Patras, Greece, 19 July 2000.

14. Yi, G.; Balakrishnan, M. Complete coverage control for nonholonomic mobile robots in dynamic environments. In Proceedings of
the IEEE International Conference on Robotics & Automation, Orlando, FL, USA, 15–19 May 2006.

15. Fan, L.L.; Wang, Q.Z.; Sun, F.C. Simulation Research and Improvement on Biologically Inspired Neural Network Path Planning.
J. Beijing Jiaotong Univ. 2006, 30, 84–88. (In Chinese)

16. Zhu, D.; Tian, C.; Sun, B.; Luo, C. Complete Coverage Path Planning of Autonomous Underwater Vehicle Based on GBNN
Algorithm. J. Intell. Robot. Syst. 2018, 94, 237–249. [CrossRef]

17. Hong, Z.; Derun, Z.; Ning, W.; Chen, G. Research on Improved BINN Algorithm for Coverage of Prioritized Area in Path Planning
of Unmanned Surface Vessel. Shipbuild. China 2020, 61, 91–102. (In Chinese)

18. McCue, L. Handbook of Marine Craft Hydrodynamics and Motion Control [Bookshelf]. IEEE Control Syst. Mag. 2016, 36, 78–79.
[CrossRef]

19. Ma, Y.; Nie, Z.; Yu, Y.; Hu, S.; Peng, Z. Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface
vehicle. Ocean Eng. 2020, 213, 107540. [CrossRef]

20. Karavaev, Y.L.; Kilin, A.A. The dynamics and control of a spherical robot with an internal omniwheel platform. Regul. Chaotic
Dyn. 2015, 20, 134–152. [CrossRef]

21. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in
nerve. J. Physiol. 1952, 117, 500–544. [CrossRef] [PubMed]

http://doi.org/10.1007/s40815-017-0401-3
http://doi.org/10.1016/j.arcontrol.2016.04.018
http://doi.org/10.1007/s11804-010-1033-2
http://doi.org/10.4028/www.scientific.net/KEM.467-469.1377
http://doi.org/10.1109/TII.2016.2526648
http://doi.org/10.1177/027836402320556359
http://doi.org/10.1007/s10846-018-0787-7
http://doi.org/10.1109/MCS.2015.2495095
http://doi.org/10.1016/j.oceaneng.2020.107540
http://doi.org/10.1134/S1560354715020033
http://doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237

J. Mar. Sci. Eng. 2021, 9, 1163 19 of 19

22. Öǧmen, H.; Gagné, S. Neural network architectures for motion perception and elementary motion detection in the fly visual
system. Pergamon 1990, 3, 487–505. [CrossRef]

23. Luo, C.; Yang, S.X. A Bioinspired Neural Network for Real-Time Concurrent Map Building and Complete Coverage Robot
Navigation in Unknown Environments. IEEE Trans. Neural Netw. 2008, 19, 1279–1298. [CrossRef]

http://doi.org/10.1016/0893-6080(90)90001-2
http://doi.org/10.1109/TNN.2008.2000394

	Introduction
	Complete Coverage Neural Network (CCNN) Algorithm
	The Dynamics Model of USV
	Principle of the BINN Algorithm
	Principle of the CCNN Algorithm
	Improve on the Calculation Process of Neural Activity
	Improve on the Next Position Decision Formula
	Improve on the Moving Directions

	Deadlock Escape Strategy Based on Improved A* Algorithm
	CCNN Algorithm Flow

	Simulation Studies
	Simulation in an Artificial Environment
	Simulation in a Real-World Environment

	Conclusions
	References

