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Abstract: The modelling of time-varying shallow flows, such as tides and storm surges, is complicated
by the nonlinear dependency of bed shear stress on flow speed. For tidal flows, Lorentz’s linearisation
circumvents nonlinearity by specifying a (steady) friction coefficient r based on a tide-averaged
criterion of energy equivalence. However, this approach is not suitable for phenomena with episodic
and irregular forcings such as storm surges. Here, we studied the implications of applying Lorentz’s
energy criterion in an instantaneous sense, so that an unsteady friction coefficient r(t) adjusts to
the temporal development of natural wind-driven flows. This new bed-stress parametrisation was
implemented in an idealised model of a single channel, forced by time-varying signals of wind stress
(acting over the entire domain) and surface elevation (at the channel mouth). The solution method
combines analytical solutions of the cross-sectionally averaged linearised shallow-water equations,
obtained in the frequency domain, with an iterative procedure to determine r(t). Model results,
compared with a reference finite-difference solution retaining the quadratic bed shear stress, show
that this new approach accurately captures the qualitative and quantitative aspects of the surge
dynamics (height and timing of surge peaks, sloshing, friction-induced tide-surge interaction) for
both synthetic and realistic wind forcings.

Keywords: storm surge; channel model; bottom friction; linearisation; frequency domain

1. Introduction

Bottom friction is important for shallow water flows, e.g., those associated with tides
and storm surges in the marine environment, as discussed in [1]. The nonlinear dependency
of bed shear stress on flow speed contributes to various phenomena such as tide-surge
interactions [2,3] and the deformation of tidal curves [1]. In many natural systems, bottom
friction even acts as the dominant source of nonlinearity, as is the case for the Thames
Estuary, UK; see [2].

At the same time, this nonlinearity may complicate solution techniques in process-
based models. This is particularly the case for the subclass of idealised or exploratory
process-based models, e.g., [4], which aim to study physical phenomena in isolation. These
models usually schematise processes and geometry, thus enabling one to determine the
analytical solution to (parts of) the problem, which in turn allows for rapid extensive
sensitivity analyses.

The nonlinearity of the bed shear stress can be circumvented by a linearisation that
simplifies the solution while being physically acceptable for the problem under considera-
tion. Assuming one-dimensional channel flow, with cross-sectionally averaged velocity u
and bed shear stress τb, the linearisation can be written as
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τb
ρ

= cd|u|u ≈ ru, (1)

where ρ is the water density, cd is the dimensionless drag coefficient of the conventional
quadratic stress parametrisation, here assumed to be constant, and r is the linear friction
coefficient (in m s−1).

For tidal flows, Lorentz [5,6] first proposed such a linearisation. He specified the
(steady) friction coefficient r by requiring that the energy dissipated by the bottom friction
per unit of bed area over a tidal cycle T,

∫
τbdt, is equal for both parametrisations in

Equation (1). Assuming a monochromatic tidal flow signal u = U cos ωt with angular
frequency ω = 2π/T and (yet unknown) amplitude U, this gives

r =
8cdU

3π
(for tidal flows). (2)

The combination of Equations (1) and (2) is known as Lorentz’s linearisation, also
referred to as equivalent linearisation [7]. Two caveats are in order, e.g., [8].

1. Equation (2) can be applied locally, leading to an r-value valid at a single point in
the model domain. However, to facilitate analytical solution, the friction coefficient
r is often assumed to be spatially uniform over the model domain (or over subdo-
mains); the energy criterion introduced above should then be applied in a spatially
integrated sense. This implies that Equation (2) must be replaced with a more complex
expression, involving spatial and tidal averaging; also see Section 2.

2. The solution to the hydrodynamic problem, consisting of flow velocity and surface
elevation as functions of space and time, obviously depends on the friction coefficient r.
However, the solution also depends on the velocity amplitude U through Equation (2)
and thus again on the solution itself, since U is also a flow variable. This cyclic
dependency can be tackled by an iterative procedure that converges to an r-value
for which U agrees with the velocity amplitude of the solution. We argue that, when
allowing for r = r(u), the ‘linear’ stress parametrisation in Equation (2) is in fact still
nonlinear in u.

Lorentz [6] applied the linearisation in his pioneering channel network model of the
Dutch Wadden Sea, and found good agreement with measurements, by the standards of
his time. Linearisation has also been applied in other tide-related, idealised models, e.g.,
of tidal inlet systems [8], large-scale tidal basins [9] and sandbank dynamics [10]. Experi-
mental support for Lorentz’s linearisation has been provided for tidal inlet systems [11].
The linearisation can also be applied to flows with multiple tidal constituents, e.g., with
a dominant constituent for which Equation (2) continues to hold and with a weaker con-
stituent, which turns out to feel proportionately more friction [12,13]. We conclude that
the linearisation of the bed shear stress in Equation (1) has been extensively applied to
tidal flows.

For the flow in storm surges, however, such a linearisation is less straightforward
and to the best of our knowledge, has to date not been considered. Unlike tides, the
forcing of storms is episodic and irregular (Figure 1), making it difficult to identify a single
velocity scale U representative for the entire event. The steady r-value that would result
from applying Lorentz’s energy criterion over the time lapse of a storm event is likely to
underestimate (or overestimate) friction during the stages of strong (or weak) flow. In fact,
Lorentz [6] avoided these inaccuracies with a separate approach for storm surges, retaining
the quadratic bed shear stress of Equation (1) and computing the steady-state equilibrium
surge caused by a chosen peak value of the wind stress. Clearly, this approach could not
capture the unsteady nature of both forcing and response in a storm event.
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Figure 1. Time series of the wind stress τw(t) during the Xavier or Sinterklaas storm in the Wadden
Sea (peak values on 5 December 2013; t = 0 corresponds to 1-12-2013 00:00 CET). Wind speed
data at the Vlieland station of the Royal Netherlands Meteorological Institute (KNMI). Stress law
τw = ρaircw|uw|uw with air density ρair = 1.225 kg m−3 and wind drag coefficient cw = 2× 10−3,
e.g., [1].

The goal of the present study was to devise and test a linearisation of the bed shear
stress with a linear friction coefficient adjusting to the temporal development of natural
wind-driven flows. To do so, we adopted Equation (1) and applied Lorentz’s energy
criterion in an instantaneous manner, effectively turning it into a power criterion. Our
approach naturally implies an unsteady friction coefficient

r = r(t) (for storm surges), (3)

allowing r(t) to be large at times when the flow is strong and small when it is weak. The
two caveats on equivalent linearisations, which continue to apply in the unsteady setting,
will be dealt with by spatial integration and an iterative solution method.

We then tested and analysed our model for the idealised case of a single channel with
an open and a closed end, forced by time-varying signals of the wind stress on the surface
and the water level at the open boundary. Specifically, we compared the results obtained
with: (i) our new approach using an unsteady r(t); (ii) the same approach but now with
steady r-values; (iii) a reference finite-difference solver with the conventional quadratic
parametrisation of the bed shear stress. We focused on both the qualitative and quantitative
properties of these solutions, including the reproduction of tide-surge interactions.

In this paper, Section 2 presents the hydrodynamic model together with the power
criterion. Then, Section 3 explains the solution procedure, carried out in the frequency
domain based on [14,15]. Model results are presented in Section 4, the discussion in
Section 5, and the conclusions in Section 6.

2. Model Formulation

Consider a one-dimensional rectangular channel of length l, uniform width b and
uniform undisturbed depth h (Figure 2). With x representing the along-channel coordinate,
the channel has an open boundary at x = 0, the ‘mouth’, and a closed boundary at x = l,
the ‘head’. Let ζ(x, t) and u(x, t) denote the width-averaged free-surface elevation and
the cross-sectionally averaged flow velocity, respectively, both defined as a function of
the along-channel coordinate x and time t. Positive velocities are directed towards the
channel head.
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Figure 2. Model geometry showing the rectangular channel with one open and one closed end,
subject to time-dependent signals of wind stress, τw(t), and surface elevation at the open boundary.
The arrows used to denote the flow velocity u, surface elevation ζ and wind stress point in the
direction where these quantities are positive. Apart from at the mouth and head, we also present
model results at two intermediate positions: the channel centre and ‘near’ the head.

Assuming that |ζ| � h � b and adopting the linearisation posed by Equations (1)
and (3), the cross-sectionally averaged mass and momentum balances in linearised form
become

∂ζ

∂t
+ h

∂u
∂x

= 0, (4)

∂u
∂t

+
r(t)u

h
= −g

∂ζ

∂x
+

τw(t)
ρh

. (5)

Here, g is the gravitational acceleration, ρ is the water density, and τw(t) is the along-
channel component of the wind stress vector, which is time-dependent yet spatially uniform.
The wind stress signal either comes from observed wind speeds (Figure 1) or represents
a synthetic storm (Figure 3). It is treated as an external forcing term, implying that we
do not account for the potential feedback of the water surface on the wind drag. The
spatial uniformity of τw is justified if the size of the channel is much smaller than the
spatial scales of the atmospheric forcing such as, e.g., in the Wadden Sea; see [6]. In the
notation of Equation (5), we emphasised the time-dependencies of the friction coefficient
and the wind stress. Our time-varying wind stress suffices to represent an episodic and
irregular external forcing, so we neglect atmospheric pressure gradients (but they could be
readily added). Since this study concentrates on the bed shear stress, all other sources of
nonlinearity (advective terms, contribution of the free-surface elevation to the water depth
in the continuity and friction terms) were ignored from the outset.
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Figure 3. Synthetic wind forcing τw(t), describing a storm event of duration Tevent, with peak
amplitude τ̂w and a sinusoidal ramp-up stage of duration Tramp (same duration as ramp-down
stage). As implied by our solution method (Section 3), the forcing is periodic over a time span Tsimul.
Parameter values in Table 1. N.B.: Tevent is defined such that the time-integrated wind stress equals
τ̂wTevent, i.e., independently of Tramp.

The boundary conditions

ζ(0, t) = f (t), u(l, t) = 0, (6)

prescribe a surface elevation signal f (t) at the channel mouth and zero velocity at the
channel head. As the initial conditions (t = 0), we require either still water conditions or
conditions in dynamic equilibrium with a tidal elevation signal at the channel mouth.

Finally, a novel friction coefficient r(t) is specified by equating the instantaneous power
dissipated by both parametrisations in Equation (1), integrated over the entire channel:

r(t) = cd

∫ l
0 |u(x, t)|u(x, t)2 dx∫ l

0 u(x, t)2 dx
(for storm surges). (7)

Here, having performed spatial integration, we address the first caveat on equivalent
linearisations in Section 1.

Importantly, the closure relationship in Equation (7) is the instantaneous (hence un-
steady) counterpart of Lorentz’s classical linearisation with steady r if the latter is applied
non-locally, so including spatial integration. The corresponding linearisation à la Lorentz
is thus given by

r = cd

∫ T
0

∫ l
0 |u(x, t)|u(x, t)2 dx dt∫ T
0

∫ l
0 u(x, t)2 dx dt

(for tidal flows). (8)

Equation (8) reduces to Lorentz’s expression r = 8
3π cdU of Equation (2) for the simple case

of a spatially uniform and monochromatic flow velocity signal u(x, t) = U cos ωt with
angular frequency ω = 2π/T and velocity amplitude U.

3. Solution Procedure
3.1. Model Development

Eliminating the flow velocity from Equations (4)–(6) gives a damped wave equation
for the surface elevation, supplemented with nonhomogeneous boundary conditions:

∂2ζ

∂t2 +
r(t)

h
∂ζ

∂t
− gh

∂2ζ

∂x2 = 0, ζ(0, t) = f (t),
∂ζ

∂x
(l, t) = w(t), (9)

where we introduced the dimensionless wind forcing w(t) = τw(t)/(ρgh). To arrive at
Equation (9), we first subtracted the space derivative of the momentum equation (multi-



J. Mar. Sci. Eng. 2021, 9, 1160 6 of 17

plied by h) from the time derivative of the mass balance, and then used the mass balance
again to express the friction term in ζ. Here, it is essential that both r(t) and τw(t) do
not depend on x. The boundary condition at x = l follows from inserting u(l, t) = 0 in
the momentum equation. The problem in Equation (9) is linear in the unknown ζ and
subject to two time-dependent forcing terms: the dimensionless wind forcing w(t) and the
free-surface elevation at the channel mouth, f (t).

Alternatively, by eliminating ζ instead of u, one could also solve the problem in terms
of the flow velocity u. In either case, the other quantity (ζ or u) will follow from applying
one of the model equations.

3.2. Fourier Expansion

The governing equations in Equation (9) are solved in the frequency domain, leaning
on the work by Chen et al. [14,15]. To this end, we expand all time-dependent variables in
a discrete Fourier series according to

w(t)
f (t)
r(t)

ζ(x, t)
u(x, t)

 =
M

∑
m=−M


Wm
Fm
Rm

Zm(x)
Um(x)

 exp(iωmt), ωm = mω1, (10)

with truncation number M and angular frequency ωm. For each mode m, we introduce
complex Fourier components (Wm, Fm, Rm, Zm(x), Um(x)) of the wind forcing, boundary
elevation, friction coefficient, surface elevation and flow velocity, respectively. Importantly,
the last two are functions of the along-channel coordinate x; they will be expressed as
sums of analytical expressions. Since all physical quantities are real-valued, it follows that
W−m = Wm, F−m = Fm, etc., with an overbar denoting complex conjugation.

The discrete Fourier series in Equation (10) implies that both forcing and response are
actually periodic over a time span Tsimul = 2π/ω1 associated with the lowest frequency
ω1. By construction, the solution obtained here is directly in dynamic equilibrium with the
periodic forcing; the transient propagation across the domain is not simulated. Choosing
Tsimul sufficiently large, here in the order of 10 days (Figure 3), prevents interference among
subsequent storm events and ensures that the initial conditions of Section 2 are indeed
satisfied.

3.3. Iterative Procedure

The problem is now solved following an iterative procedure consisting of six steps:

1. Define an initial function of the friction coefficient r(t) = rinit, e.g., zero or some other
constant function, and determine the associated Fourier coefficients Rm.

2. Find the surface elevation ζ(x, t) by solving Equation (9) in Fourier space. Since
r(t) and Rm are known, this problem is linear in the unknown complex amplitude
functions Zm(x). We solve it using matrix algebra (details in Appendix A.1).

3. Obtain the flow velocity u(x, t) by applying Equation (5). This provides the Fourier
coefficients Um(x) (see Appendix A.2).

4. Substitute u(x, t) in Equation (7) to obtain an updated friction coefficient r̂(t). The
integrals therein are evaluated on an equidistant grid with N points in the x-direction,
using the trapezoidal rule. This step also produces new Fourier coefficients R̂m.

5. Verify whether R̂m and Rm satisfy the convergence criterion

1
Tsimul

∫ Tsimul

0

[
r̂(t)− r(t)

]2dt =
M

∑
m=−M

|R̂m − Rm|2 < ε2, (11)

with user-defined convergence tolerance ε. If so, the instantaneous power criterion is
satisfied with sufficient precision over the entire simulation time, the current solution is



J. Mar. Sci. Eng. 2021, 9, 1160 7 of 17

converged in the sense of the second caveat on equivalent linearisations in Section 1,
and the procedure is completed.

6. If Equation (11) is not satisfied, apply relaxation to find the next guess for the friction
coefficient: rnew(t) = αr̂(t) + (1− α)r(t), with a relaxation parameter α that can be
tuned to accelerate convergence. Then, repeat the procedure from step 2 onward using
the new function r(t) = rnew(t) and the associated Fourier coefficients Rm = Rnew,m.

The truncation number M, simulation period Tsimul, number N of spatial points used
in the numerical integration of Equation (7), relaxation parameter α and convergence
tolerance ε are the user-defined parameters of our solution method: see Table 1 and
Discussion in Section 5.

3.4. Procedure for the Steady Friction Coefficient

As mentioned in Section 1, we conducted simulations with a steady friction coefficient
r for the purpose of comparison. Such a steady r-value is implemented by applying
steps 1–3 of the procedure in Section 3.3 once. Unlike Lorentz’s original procedure, this
formulation is not solely tidal and the steady r-value can be arbitrary, not necessarily tied
to an energy criterion.

3.5. Reference Finite-Difference Solution with Quadratic Bed Shear Stress

A finite-difference solution with the conventional quadratic parametrisation of the
bed shear stress was used to evaluate the goodness of the linear parametrisations with r
and r(t). To this end, we solved Equations (4) and (5) after replacing the bottom friction
term r(t)u/h with cd|u|u/h, recalling Equation (1).

We used a staggered uniform grid with spacing ∆x and time step ∆t, consisting of
elevation and velocity points that, relative to one another, were shifted over half a step
in both space and time. In view of the boundary conditions in Equation (6), the grid
was chosen such that x = 0 coincided with an elevation point, and x = l with a velocity
point. We then applied a leap-frog scheme—i.e., central discretisations of the derivatives
in Equations (4) and (5) evaluated at staggered points in space and time—and iteratively
computed the velocity in the quadratic bottom friction term. The discretisation adopted is
second-order accurate in space and time.

The initial conditions prescribe still water. Importantly, these conditions actually serve
as a ‘cold start’ for the simulations with tidal fluctuations at the channel head. The model
spins up for a first Tsimul-long span (see Figure 3) to simulate the transient and produces the
desired solution in dynamic equilibrium with the periodic forcing in the second Tsimul-long
span. This treatment enables a proper comparison with the Fourier solution, since in
Section 3.2 we chose Tsimul sufficiently long to fulfil this purpose.

The grid spacing and time step (Table 1) are such that the numerical solution is stable
and sufficiently converged. Furthermore, the shortest oscillations resolved by the finite-
difference solution (TFD

min = 2∆t = 120 s) are much shorter than those associated with the
highest frequency of the Fourier expansion (10) in our new model (TFour

min = Tsimul/M =
1687.5 s). Therefore, the finite-difference solution is indeed a trustworthy benchmark for
the comparisons presented in Section 4.
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Table 1. Overview of parameter values (physical, forcing-related, numerical).

Parameter Symbol Value Unit

Water depth h 8 m
Channel length l 100 km
Drag coefficient (bottom friction) cd 2.5× 10−3 -
Drag coefficient (wind stress) cw 2× 10−3 -
Gravitational acceleration g 9.81 m s−2

Water density ρ 1000 kg m−3

Air density ρair 1.225 kg m−3

Duration of storm event Tevent 24 h
Ramp-up time (equal to ramp-down time) Tramp 12 h
Peak value of wind stress τ̂w 1 N m−2

Tidal period Ttide 12 h
Tidal elevation amplitude F̂ 1 m

Truncation number of Fourier series in Equation (10) M 512 -
Simulation period ∗ Tsimul 240 h
Relaxation parameter α 2

3 -
Number of points in space to evaluate power criterion N 240 -
Convergence tolerance ε 10−5 m s−1

Space step † ∆x 1.68 km
Time step † ∆t 60 s

∗ Period of the forcing and solution in our Fourier model (Figure 3); † Used in reference finite-difference solution
with quadratic bed shear stress; see Section 3.5.

4. Results
4.1. Wind Forcing Only: Synthetic Storm Event

First off, we tested the new model for the case of wind forcing only (Figure 4). Our
reference channel (100 km long, 8 m deep, see Table 1) is subject to the synthetic wind stress
signal as defined in Figure 3, with a peak value of τ̂w = 1 N m−2, a duration Tevent = 24 h
and a ramp-up time Tramp = 12 h. The total simulation time is 10 days (Figure 4a). An a
priori scale analysis (Appendix B) shows that, for these parameter values, bottom friction
is of first order importance.

The iterative procedure converges to an unsteady friction coefficient r(t) (Figure 4b),
displaying pronounced peaks during ramp-up and ramp-down, as well as decaying oscil-
lations at the tail of the stormThese oscillations are associated with the sloshing motion
evident from both the elevation at the channel head (Figure 4c) and the velocity at the
channel mouth (Figure 4d).

The results with the unsteady friction coefficient show excellent agreement with the
reference solution retaining the quadratic bed shear stress (shown by the grey lines in
Figure 4c,d). In contrast, such agreement breaks down for the two examples with steady
friction also shown: one with the maximum value rmax and one with the mean value
rmean (averaged over the time span of Tevent + Tramp = 36 h with nonzero wind stress,
shaded in pink in Figure 4a). The case with strong steady friction (r = rmax) suppresses the
sloshing of the surface elevation at the channel head and produces a deformed elevation
curve underestimating and delaying the peak surge. Alternatively, the milder friction case
(r = rmean) produces an early overestimated peak, a single undershoot after the event and
no trailing oscillations. The same shortcomings occur in the velocity signal at the channel
head (Figure 4f).
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Figure 4. Model results for wind forcing only: (a) synthetic wind stress signal (nonzero in the pink
shaded window, zero outside it); (b) unsteady friction coefficient r(t) (brown) and its maximum
(blue) and mean (green) values; (c,d) elevation at head and velocity at mouth for unsteady friction
coefficient r(t); (e,f) same quantities, but now using maximum and mean values as steady friction
coefficients r. In (c–f), the thick grey lines represent the reference finite-difference solution. Parameter
values are in Table 1.

The scatter plots of Figure 5 contrast the results from all variants of the linear friction
coefficient with the finite-difference quadratic reference. The bed shear stress at the chan-
nel mouth is also shown alongside the surface elevation at the head and the velocity at
the mouth. The steady friction coefficients produce significantly poorer signals of those
quantities than the unsteady formulation, regarding magnitude and/or phasing, which
is confirmed by the RMSE-values in the insets. The same degree of goodness was also
found at other locations in the channel (such as the centre, Figure 5d–f). Therefore, the
new approach reproduces the flow solution caused by synthetic unsteady signals of the
wind stress with great accuracy. Furthermore, the comparison with the reference solution
confirms the merits of the unsteady linearisation of the friction coefficient over steady
linearisations.
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Figure 5. Scatter plots showing results with unsteady friction coefficient (vertical axis) versus the
reference finite-difference solution (horizontal axis): (a) elevation at channel head; (b) velocity at
mouth; (c) bed shear stress at mouth; (d) elevation at centre; (e) velocity at centre; and (f) bed
shear stress at centre. Shown here are the cases with unsteady r(t) (brown) and those with steady
coefficients r = rmax (blue) and r = rmean (green). The coloured numbers indicate the corresponding
RMSE-values.

4.2. Wind and Tide Forcing

After the purely wind-driven flows, we addressed the tide-surge interactions induced
by bottom stress. To this end, we considered the same channel geometry and the same
synthetic wind stress signal τw(t) as in Section 4.1 and Table 1, plus a tidal signal f (t) for
the surface elevation at the channel mouth (Figure 6a). The latter is an S2-signal with an
amplitude F̂, given by

f (t) = F̂ cos(ωtidet), ωtide =
2π

Ttide
. (12)

Importantly, the total simulation period is an integer multiple of the tidal period, namely
Tsimul = 20Ttide with Ttide = 12 h.

As anticipated in the objectives of Section 1, the unsteady friction coefficient is subject
to tidal fluctuations distorted by interference with the storm event (Figure 6). Unlike the
wind-only case, the friction coefficient does not decay to zero because of the background
tidal flow (Figure 6b).

The surface elevation at the channel head contains friction-induced tide-surge interac-
tions (Figure 6c), because the combined wind-tide solution (orange line) differs from the
sum of the wind-only and tide-only solutions (thin pink line). We note the good agreement
between our new model (orange line) and the reference finite-difference solution (grey
line) over the entire simulation period. The tide-surge interaction subsequently produces
negative differences, i.e., a set-down overhead, during the onset of the storm; then produces
positive differences, i.e., a set-up overhead, during the fall of the storm (black line); and
vanishes after the storm event as expected.
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Figure 6. Model results for combined wind and tide forcing: (a) synthetic wind stress signal (red,
left axis) and tidal surface elevation signal f (t) (blue, right axis); (b) unsteady friction coefficient
r(t); (c) elevation at the channel head from different solutions: combined wind-tide solution (brown),
superposition of the separate wind-only and tide-only solutions (pink), and the tide-surge interaction
(black, equals brown minus pink). The thick grey line represents the reference finite-difference solution
obtained for the combined problem; (d) same as c, but now for the velocity at the channel mouth.

4.3. Realistic Wind Forcing

Finally, we address the modelling of realistic, unsteady and irregular signals of the
wind stress. To this end, we considered the same channel as in Section 4.1 and Table 1
and applied the wind stress signal of the Xavier or Sinterklaas storm in the Wadden Sea
(Figure 1). Excluding tides for simplicity, we set the surface elevation at the channel mouth
to zero, i.e., f (t) = 0 in Equations (6) and (9).

In Figure 7, we compare the solution using the unsteady friction coefficient with the
reference finite-difference solution. For the latter, as explained in Section 3.5, we imposed
the periodic continuation of the wind stress signal in Figure 1 and simulated a period of
2Tsimul = 480 h, using the first 240 h for the spin-up and the second 240 h for the model
results. These show that the unsteady friction coefficient follows the natural evolution of
the storm (Figure 7a); and that the agreement with the reference finite-difference solution
is excellent for elevation, velocity and bed shear stress (Figure 7b–d). Therefore, the new
approach is also capable of accurately handling the irregular and unsteady signals of
real-world storms.
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Figure 7. Model results for a single channel subject to the wind stress signal of the Xavier or Sinterk-
laas storm (plotted in Figure 1): (a) time-dependent bottom friction coefficient r(t); (b) elevation at
the channel head; (c) velocity at mouth; and (d) bed stress at mouth. In (b–d), the thick grey line
represents the reference finite-difference solution.

5. Discussion

Denominator of bottom friction term. The bed shear stress parametrisation obviously
pertains to the numerator of the bottom friction term in Equation (5). For the denominator,
we assumed that h + ζ ≈ h and thus relied on small values of |ζ|/h. The peak water levels
in the storm surge simulations presented in Section 4 are characterised by |ζ|/h ≈ 0.25 and
this ratio is expected to increase for surges in shallower channels. Further research will
address the significance and validity of the above approximation in the friction term for
channels of arbitrary depth.

Power criterion. The unsteady linearisation of the bed shear stress circumvents the
problem of finding an appropriate velocity scale for situations with episodic and irregular
forcings, cf. U in Equation (2). In fact, this aspect is covered by the power criterion in
Equation (7) and thus anchored in that physical statement. Not only do steady friction
coefficients produce inaccurate wind-driven simulations (Section 4.1), but they are also
arbitrary due to the lack of a physically sound basis. For example, why choose precisely
r = rmax [16]? Or, when opting for a time-averaged value r = rmean, over what time span
should one average? The choice of this time span should be independent of the artificial
numerical parameter Tsimul.
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Channel-wide bottom friction. An essential property of our approach is that the unsteady
friction coefficient r(t) is spatially uniform, i.e., it is representative of the entire channel.
This is guaranteed for solutions in which the flow velocities u(x, t) do not vary considerably
over the domain. Otherwise, the spatial averaging in Equation (7) may imply a poor r(t)-
estimate. One can test for and resolve this limitation by splitting the channel in several
subchannels, each having an individual friction coefficient rj(t). This segmentation is
actually a special case of the channel network discussed below. Furthermore, a constant
drag coefficient cd, which effectively turns the general nonlinear stress law into a purely
quadratic one, is by no means restrictive. Equation (7) can be readily adjusted to incorporate
any law for the dependency of cd on u and h.

Interpretation of the unsteady friction coefficient. Given the r(t)-signals shown in Figures 4b,
6b and 7a, we also inspect how the channel-wide unsteady friction coefficient relates to
local and instantaneous flow velocities. To this end, Figure 8 shows the scatter plots of r(t)
versus u(x̂, t) at the channel mouth, the channel centre and near the channel head, with
each data point representing a time instant in a simulation. By construction, the magnitude
of the instantaneous bed stress is proportional to the area of the rectangle having that
point and the origin as opposite corners (see pink-shaded example). The grey V-shaped
lines draw the values r = cd|u| for which, recalling the bed stress parametrisation in
Equation (1), the channel-wide linear formulation coincides with the local quadratic one.
Please take note that this comparison is not a model verification, which was performed
in Section 4 on the basis of time series of elevation, flow velocity, and bed stress. We
carried out this analysis for the wind-only, tide-only, and combined wind-tide simulations
presented in Sections 4.1 and 4.2:

• For the wind-only simulations, r(t) closely follows the quadratic parametrisation, as
shown by the V-shaped arrangement of the data points in the top of Figure 8;

• For the tide-only simulations, r(t) follows an oscillatory path and the continuous
presence of nonzero currents inside the channel prevents it from approaching zero;

• Finally, for wind-tide simulations, the path of r(t)-values is similar to the combined path
for wind and tide forcing but is additionally deformed by the tide-surge interactions.

Solution procedure and numerical settings. Our solution method in the frequency domain
enables us to combine analytical solutions (Appendix A) in a way that is analogous to the
classical approach with steady friction. The numerical parameters should be chosen with
care. For example, as a consequence of imposing periodic solutions, the simulation period
Tsimul should be large enough to prevent the interference of subsequent events (as depicted
in Figure 3). Furthermore, the truncation number M should be so large that the shortest
fluctuations in the forcing and the solution, Tsimul/M are resolved with sufficient accuracy.
Finally, the iterative procedure appeared to be equally robust for the unsteady and steady
friction coefficients. In all simulations carried out, it converged to a unique function r(t),
independent of the relaxation parameter α and the initial value rinit (see Section 3.3 and
Table 1). The iterative procedure accounts for the dependency of r(t) on u(x, t) according
to Equation (7) and emphasises the nonlinearity still present in the model (recall the second
caveat on equivalent linearisations in Section 1).

Extension to channel network. The application of an unsteady friction coefficient to
a single channel can be readily extended to a network of channels, as performed earlier
for tides and storm surges—both separately [6] and jointly [16]. To this end, one should
account for the orientation of subchannels with respect to wind direction. Furthermore,
one must specify appropriate matching conditions at the internal nodes where subchannels
meet (continuity of elevation and discharge) and boundary conditions at the terminal nodes
(open or closed). The iterative procedure presented in Section 3 then concerns the friction
coefficients rj(t) of the entire network. The extension to a channel network, implemented
and tested by Pitzalis [17], is beyond the scope of the present study.



J. Mar. Sci. Eng. 2021, 9, 1160 14 of 17

a channel mouth

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

r(
t)

 [
1
0

-3
 m

/s
]

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
b channel centre

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
c near channel head

-1.5 -1 -0.5 0 0.5 1 1.5

u(0,t) [m/s]

0

0.5

1

1.5

2

2.5

r(
t)

 [
1
0

-3
 m

/s
]

-1.5 -1 -0.5 0 0.5 1 1.5

u(½l,t) [m/s]

0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5

u(¾l,t) [m/s]

0

0.5

1

1.5

2

2.5

Figure 8. Scatter plots of the friction coefficient r(t) versus the flow velocity u(x̂, t) for the model
simulations in Sections 4.1 and 4.2 at three locations: (a) channel mouth (x̂ = 0); (b) channel centre
(x̂ = 1

2 l); (c) near channel head (x̂ = 3
4 l). The top row shows the surge-only (dots) and tide-only (open

circles) simulations, the bottom row the combined tide-surge simulations (dots). The magnitude
of τb(x̂, t)/ρ equals the area of the rectangle with (0, 0) and (u(x̂, t), r(t)) as opposite vertices: see
the pink-shaded example in the top left plot. Grey lines indicate r(t)-values locally identical to a
quadratic parametrisation of the bed shear stress. Parameter values are in Table 1.

6. Conclusions

We devised and tested a novel time-dependent linearisation of bed shear stress ex-
tending Lorentz’s classical linearisation to the idealised modelling of storm surges in (tidal)
channels. This approach consists of two elements: (i) the formulation of an instantaneous
power equivalence criterion to specify an unsteady channel-averaged friction coefficient
r(t); and (ii) a straightforward iterative procedure, carried out in the frequency domain, to
obtain both r(t) and the corresponding solution of the linearised shallow-water equations.
By construction, the unsteady friction coefficient r(t) adjusts to the intensity of the flow
inside the domain. Qualitatively, r(t) is large whenever the flow is strong and small when
it is weak. As a result, we circumvent the issue of specifying a single velocity scale for the
bottom friction term during episodic and irregular wind forcing.

The verification with a reference solution in the time domain retaining the quadratic
bed shear stress shows excellent agreement throughout the channel in the time series of
elevation, flow velocity, and bed shear. Distinctive aspects of the surge dynamics influenced
by bed shear stress, such as the timing and magnitude of peaks, sloshing motions and
tide-surge interactions, are well captured qualitatively and quantitatively. This conclusion
holds for both synthetic and realistic wind forcings. In contrast, steady friction coefficients
fail to produce such an agreement.

The unsteady linearisation of bed stress has led to a process-based idealised model that
is amenable for extensive sensitivity analyses of storm surges. The model produces time
series of bed shear stress throughout the channel, which indicates a potential application in
morphodynamics, e.g., in terms of event-averaged bed evolution.
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Appendix A. Details of the Solution Procedure

Appendix A.1. Step 1: Surface Elevation

In the frequency domain, i.e., for the m-th Fourier mode, the problem posed by Equa-
tion (9) transforms into a set of coupled Helmholtz problems for the complex amplitude
functions Zm(x) (for m = −M, . . . , M):

Z′′m −
1

gh

[
(iωm)

2Zm +
1
h

n2

∑
n=n1

Rm−niωnZn

]
= 0, Zm(0) = Fm, Z′m(l) = Wm, (A1)

with summation bounds n1 = −M + max{0, m} and n2 = M + min{0, m} and primes
indicating differentiation with respect to x. The last term on the left-hand side of the
differential equation is a convolution sum, expressing the mode interaction due to the
unsteady friction coefficient. In matrix notation, Equation (A1) reads

z′′ + Az = 0, z(0) = f, z′(l) = w, (A2)

with the (2M+1)× (2M+1)-matrix A = − 1
gh

[
T+ 1

hR
]
T which generally contains nonzero

off-diagonal elements. The problem in Equation (A2) is solved by matrix diagonali-
sation. To this end, let P be such that D = P−1AP is diagonal, with the eigenvalues
(µ2
−M, . . . , µ2

0, . . . , µ2
M) as diagonal elements. Introducing a new unknown

z̃ = P−1z, (A3)

the coupled problem in Equation (A2) then transforms into an uncoupled problem for z̃. This
problem, uncoupled due to D’s diagonality, is given by

z̃′′ +Dz̃ = 0, z̃(0) = f̃, z̃′(l) = w̃, (A4)

where f̃ = P−1f and w̃ = P−1w are transformed forcing terms with elements F̃m and W̃m,
respectively. The analytical solution to Equation (A4) is given by

Z̃m(x) =

{
F̃m cos µmx +

[
F̃m tan µml + W̃m

µm cos µm l

]
sin µmx if µm 6= 0,

F̃m + W̃mx if µm = 0,
(A5)

for m = −M, . . . , M. Using the inverse of Equation (A3), we then transform back to find
the components Zm(x) of z. This also gives the Fourier components Z′m(x) of the surface
slope z′.

Appendix A.2. Step 2: Flow Velocity

In the frequency domain, the momentum equation, as given by Equation (5), is
written as
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(
T+

1
h
R

)
u = −g

[
z′ −w

]
. (A6)

In any case, it follows from the continuity equation and the closed boundary condition at
x = l that U0(x) = 0 for all x. The other components, i.e., Um(x) for nonzero m depends
on friction. For nonzero friction (r(t) 6= 0 and in particular R0 6= 0), the above matrix
equation is readily solved to find all Um(x). Without friction (r(t) ≡ 0), one directly finds
Um = g[Z′m(x)−Wm]/(iωm) for m 6= 0.

Appendix B. Scaling Analysis

Before performing the model simulations for the chosen parameter values, it is neces-
sary to ascertain whether in the momentum equation, the magnitude of the bottom friction
term is at least comparable to that of the inertia term. Using square brackets to denote
magnitudes, it follows from Equation (5) that[

∂u
∂t

]
∼ Û

Tramp
,

[
cd|u|u

h

]
∼ cdÛ2

h
, (A7)

whereby the ratio of the bottom friction and the inertia scales is given by

β =

[
cd|u|u

h

]/[
∂u
∂t

]
∼

cdTrampÛ
h

. (A8)

The parameter values in this expression are known from Table 1, except for the velocity
scale Û. To estimate Û, we assume a balance between either (i) inertia and wind stress or
(ii) bottom friction and wind stress (requiring the other terms to be smaller in both cases).
With the magnitude of the wind stress term given by [τw/(ρh)] ∼ τ̂w/(ρh), we thus obtain

Û(i) =
τ̂wTramp

ρh
= 5.4 m s−1, Û(ii) =

√
τ̂w

cdρ
= 0.63 m s−1, (A9)

respectively. The first velocity scale, Û(i), is unphysical, because it would render the friction
term so large that it cannot be balanced by any of the other terms. We thus adopt the
second, Û(ii), for which the ratio in Equation (A8) becomes

β =
Tramp

h

√
cdτ̂w

ρ
= 8.5 = O(10). (A10)

We conclude that, for the simulations carried out in this study, bottom friction is
indeed of first order importance in the governing equations.
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