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Abstract: Data assimilation has been widely applied in atmospheric and oceanic forecasting systems
and particle filters (PFs) have unique advantages in dealing with nonlinear data assimilation. They
have been applied to many scientific fields, but their application in geoscientific systems is limited
because of their inefficiency in standard settings systems. To address these issues, this paper fur-
ther refines the statistical observation and localization scheme which used in the classic localized
equivalent-weights particle filter with statistical observation (LEWPF-Sobs). The improved method
retains the advantages of equivalent-weights particle filter (EWPF) and the localized particle filter
(LPF), while further refinements incorporate the effect of time series on the reanalyzed data into the
statistical observation calculations, in addition to incorporating the statistical observation proposal
density into the localization scheme to further improve the assimilation accuracy under sparse obser-
vation conditions. In order to better simulate the geoscientific system, we choose an intermediate
atmosphere-ocean-land coupled model (COAL-IC) as the experimental model and divide the experi-
ment into two parts: standard observation and sparse observation, which are analyzed by the spatial
distribution results and root mean square error (RMSE) histogram. In order to better analyze the
characteristics of the improved method, this method was chosen to be analyzed in comparison with
the localized weighted ensemble Kalman filter (LWEnKF), the LPF and classical LEWPF-Sobs. From
the experimental results, it can be seen that the improved method is better than the LWEnKF and
LPF methods for various observation conditions. The improved method reduces the RMSE by about
7% under standard observation conditions compared to the traditional method, while the advantage
of the improved method is even more obvious under sparse observation conditions, where the RMSE
is reduced by about 85% compared to the traditional method. In particular, this improved filter not
only combine the advantage of the two algorithms, but also overcome the computing resources.

Keywords: data assimilation; particle filter; equivalent weights particle filter; coupled model

1. Introduction

The success of data assimilation strategies in oceanography and the domains of geo-
science has stimulated current efforts to exploit the Monte Carlo filter for data assimilation.
These algorithms attempt to use the Monte Carlo filter calculate the probability density
based on the observations, and it is usually excepted the errors for model states and ob-
servations are Gaussian [1]. Meanwhile for non-linear models [2] are generally treated
using linear assumptions. The most well-known algorithm using the above theory is the
ensemble Kalman filter (EnKF) [3] and this method was applied to the estimation of soil
moisture from satellite data in a recent study [4], but this algorithm assumes the model
is linear and the forecast error and the observation error are Gaussian-distribution which
will not be the satisfied in most real systems [5]. The Gaussian hypothesis is proposed
to estimate the sampling error [6] using the affordable ensemble size. Furthermore, the
ensemble statistics also show a large deviation from Gaussianity when projected into the
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observation space by the nonlinear operator as demonstrated by Pires [7]. This problem
limits the development of Gaussian filter assimilation. Both linear and Gaussian assump-
tions fail in the problem of nonlinear data assimilation for low-dimensional systems, and
both approaches have serious difficulties in numerical weather prediction at convective
scales where the model resolution is only a few kilometers [8]. For the Gaussian hypoth-
esis problems, the particle filter (PF) [9] based on Bayesian theory which uses statistical
and mathematical to effectively avoid these problems and can better deal with nonlinear
non-Gaussian assimilation requirements [10]. The improve PF are gradually applied to real
forecast systems, such as Potthast [11] test the localized particle filter in global operational
numerical weather prediction systems and Chen [5] proposed LWEnKF in the ocean data
assimilation. With the development of intelligent methods, the method has been gradually
brought into the application of data assimilation. Brajard [12] applies machine learning
in conjunction with data assimilation to the estimate of parameters and Khan applies
intelligent methods to the estimation of rainfall [13]. Although intelligent methods are
increasingly applied, the most traditional data assimilation methods are still chosen for
practical applications of atmospheric and oceanic forecast systems. Therefore, how to apply
improved PF [5] to solve nonlinear problems in practical forecast systems is still a major
part of current research.

In order to better apply the PF, Van Leewen [14] proposed the equivalent weights
particle filter (EWPF). The EWPF relies on modifying the proposal density which make the
particles towards to the observation, then based on the proposal density adjust the particles
have nearly equal weights [14]. However, this method counts on future observations to
calculate the proposal density, which is difficult to implement in practical applications.
The recent paper by Zhao [15] introduce a localized equivalent weights particle filter with
statistical observations (LEWPF-Sobs). The idea of statistical observation is proposed in
this algorithm to effectively improve the dependence of the method on future observations.
The classical LEWFP-Sobs refer to the localization function which referenced the localized
particle filter (LPF). The LPF is similar to traditional particle filter (PF) which use the
probability density function of the observations to estimate the weights of the particles. The
LPF satisfies the sequential importance resampling (SIR) PF which used to determine the
variables state whose positions are close to the observations in the sequence and maintains
the other particles have the prior states [16]. But the LPF still retains the characteristics of PF,
and the final results are also influenced by the number of particles. However, the LEWPF-
Sobs uses the statistical observation proposal density to effectively avoid the dependence
on the number of particles.

In difference from previous studies, this study uses an intermediate coupled model
to examine the advantages of the improved LEWPF-Sobs over the classic algorithm. It
has been given explicitly in the previous paper [15] that in the 40-variable model of
Lorenz 96, the experimental results provide that the classic LEWPF-Sobs when using
fewer particles can obtain better assimilation results than the traditional LPF, and also
has a significant advantage when dealing with non-Gaussian observations. However, the
statistical observation which used in the traditional algorithm is determined by calculating
the mean value based on reanalysis data, which ignores the effect of time series on the
observation. Because of the simplicity of the Lorenz 96, the adjustment of the localization
scheme only focuses on the points near the observation. This localization scheme is difficult
to apply to complex models as the complexity of the model increases. In order to deal
with the problems in the traditional method, this paper proposed an improved statistical
observation and localization scheme to make the improved LEWPF-Sobs more compatible
with the complex coupled model.

This paper explores two aspects of improved LEWPF-Sobs that could not be investi-
gated by the Lorenz system: the assimilation quality of this method in the coupled model
and the scalability of the improved method to high-dimensional systems. Because in
previous studies only the Lorenz 96 model was chosen and the effect of the coupled model
was ignored, so the coupled model was chosen for the experiments in this paper. For the
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previous calculation of statistical observations, only the mean value of the reanalysis data
is calculated, so we propose to improve the calculation of statistical observations based
on time series. For the sparse observation problem that occurs in the complex coupled
model, the statistical observation proposal density is inserted on the traditional localization
scheme. This scheme fine-tunes the sparse observation region by reanalysis data, and then
uses the localization scheme to adjust the particles to ensure the assimilation quality. In
this paper, we proposed an improved LEWPF-Sobs and applied the method to the coupled
model. In order to further analyze the advantages of this method it is compared with the
LPF, the localized weighted ensemble Kalman filter (LWEnKF) and previous LEWPF-Sobs
version (LEWPF-Sobs-old) under the same conditions. The manuscript is constituted as
follows. The descriptions of the LPF, traditional LEWPF-Sobs and the improved statistical
observation calculations and localization schemes are given in Sections 2 and 3, which
describe the set-up of cycling data assimilation experiments which allow different algo-
rithms in the intermediate coupled model with different observation operators. The final
assimilation results with different types of the observations are given in Section 4. Section 5
proves the summary and discussion.

2. Materials and Methods
2.1. The Local Particle Filter

The local particle filter (LPF) is proposed by the Poterjoy [17] and it references to the
covariance localization to make the ensemble variance from collapsing for small ensem-
bles [18]. This algorithm limits the update of the particle states which are in the vicinity
of observations. Similar to the PF, this method requires update the particles which are
based on the observation, while extend the weights form the scalars to vectors use the
function l[yi,xj,r] [19] to determine the weight for the j-th state variable of the n-th ensemble
member according to the i-th observation yi, so the ensemble local weight ω

yi
n,j and their

normalization vector Ω are shown as:

ω
(yi)
n,j = ω

(yi−1)
n,j

{[
p
(

yi

∣∣∣x(y0)
n,j

)
− 1
]
l
[
yi, xj; r

]
α + 1

}
(1)

Ω(yi)
j =

Ne

∑
n=1

ω
(yi)
n,j (2)

where the function l[yi,xj,r] is used to command the impact of the relationship between
the particles and observations. The column of the weight matrix restrains the normalized
weights ω̂n = ω

(yi)
n ./Ω(yi), where the symbol ./ indicates the element-wise division [17].

These weights represent the posterior probability distribution for the model state variable.
The first step of the LPF is using the scalar weights which determined by the p

(
yi

∣∣∣xyi−1
n

)
to sample particles and according with the localization region determined the sample

particles which will be denoted as x(yi−1)
kn

for kn = k1, k2, · · · , kNe where kn denotes the
integer position of each sampled particle in the previous ensemble, so the update equation
is shown as:

x(yi)
n = x(yi) + r1 ◦

(
xyi−1

kn
− xyi

)
+ r2 ◦

(
x(yi−1)

n − x(yi)
)

(3)

where the x(yi) is the posterior mean. The vectors r1 and r2 are used to contribute the
sampled and prior particles which used to update the states. Therefore, according to the

posterior mean and covariance σ
(yi)

2

j the j-th elements of r1 and r2 is given as:

ri,j =

√√√√√√√ σ
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Ne−1

Ne
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[
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kn ,j − x(yi)
j + cj

(
x(yi−1)

n,j − x(yi)
j

)]2
(4)
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r2,j = cjr1,j (5)

cj =
Ne
(
1− l

[
xj, yi, r

])
l
[
xj, yi, r

]
Ŵ

(6)

where Ŵ =
Ne
∑

n=1
p
(

yi

∣∣∣xyi−1
n

)
, the Poterjoy [18] has already derivation and interpretation in

that paper.

2.2. Classical Localized Equivalent-Weights Particle Filter with Statistical Observation

Van Leeuwen [19] proposed the EWPF which use the future observations determined
by the proposal density to make particles towards the observations. Based on the observa-
tion, the conditional PDF p(x|y) is [20]:

p(x|y) = 1
p(y)

p(y|x)p(x) (7)

where p(x) is the prior PDF, p(y|x) is the likelihood and the p(x|y) is posterior PDF. This
posterior PDF gives the probability of the state variable xtk

i at time tk and observation ytk ,

so the proposal density q
(

xtk
i

∣∣∣xtk−1
i , ytk

)
can be shown as:

q
(

xtk
i

∣∣∣xtk−1
i , ytk

)
=

p
(

ytk

∣∣∣xtk
i

)
p
(

ytk

∣∣∣xtk−1
i

) p
(

xtk
i

∣∣∣xtk−1
i

)
(8)

We assume the particle filter selects the particles that have similar weights at the
previous time step tk − 1 and the particle weights and a normalization factor A give
the formula:

ωi =
1
A

p
(

ytk
∣∣∣xtk

i

) p
(

xtk
i

∣∣∣xtk−1
i

)
q
(

xtk
i

∣∣∣xtk−1
i , ytk

) (9)

The EWPF use two steps update the states, first use the proposal density to make the
particles towards the future observations and then use the equivalent-weights to update the
particle states. It is reasonable to calculate the proposal density based on future observation
information at future time tn. So particles need to calculate the equal weights and move
towards the future observation at time tn − tk, the Equation (9) can be written as:

ωi =
1
A

p
(

ytn
∣∣∣xtn

i

) tn

∏
j=tn−tk+1

p
(

xj
i

∣∣∣xj−1
i

)
q
(

xj
i

∣∣∣xj−1
i , ytn

) (10)

The particles are updated by the relaxation proposal density using the model equa-
tion [21]:

xj
i = f

(
xj−1

i

)
+ B(τ)

(
ytk − h

(
xj−1

i

))
+ d

ˆ
β

j
i (11)

where h
(

xj
i

)
is the observation operator and the random error dβ

j
i is distributed as a

Gaussian with mean zero and covariance Q, so the relaxation B(τ)
(

ytk − h
(

xj−1
i

))
to

make the particles toward the future observation at time tk, the B(τ) is shown as:

B(τ) = bτQHT R−1 (12)

With τ =
(
ta − t0)/(tn − t0) to determine the time which star to calculate the statisti-

cal observations. tn is the time of the future observation, ta not in formula is the start time
and tn−t0 is the assimilation interval. The observation error covariance R, the b represents
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a scaling factor that degree of controls the relaxation towards the observation [22]. The
schematic diagram is shown in the Figure 1.

Figure 1. Schematic showing the assimilation interval in terms of the model integration step. The
term tn is the time of the future observation, ta is the start time.

Based on the results of the proposed density, the equivalent-weights proposal density
is described as follows [21]:

(1) Calculate the accumulated weight of each particle ωi until the last time step tn, the
equivalent-weight may be written as:

ωtn

i = ωrest
i

p
(

ytn
∣∣∣xtn

i

)
p
(

xtn

i |x
tn−1
i

)
q
(

xtn
∣∣∣xtn−1

i , ytn
) (13)

where ωrest
i represents the proposal density weights ωi accumulated over the assimi-

lation interval.
(2) The final target weights ω

target
j which is chosen based on the maximum weight each

particle can achieve. so the target weight is given by:

− log ω
target
j = − log ωrest

j +
1
2

(
ytn − H f

(
xtn−1

j

))T(
HQHT + R

)−1(
ytn − H f

(
xtn−1

j

))
(14)

This choice would make all weights equal to the minimum weights. However, the al-
gorithm can compromise between retaining the particles and the weight, and particles
are still returned by resampling [22].

(3) Determined the new particles xtn

i that have equal weighs, the model state at time tn

can be written as [23]:

xtn

j = f
(

xtn−1
j

)
+ αiK

(
ytn − H f

(
xtn−1

j

))
(15)

where K = QHT(HQHT + R)−1, αj =! +
√

1− bj/aj, aj = 0.5xT
j HKx and the bj =

0.5xT
j R−1xi − log

(
ω

target
j

)
− log

(
ωrest

j

)
.

The LEWPF-Sobs was first presented by Zhao [15]. It uses statistical observations
instead of future observations to calculate the proposed density. The advantage of reanal-
ysis data is that it can cover as much information as possible for the whole area and the
whole period. Therefore, we calculate statistical observations by averaging the historical
reanalysis data over time steps in order to reduce errors while adjusting particles, so we use
historical reanalysis data to determine the proposed density which was used in Equation (9)
to determine the weights.

We refer to the idea of the proposed density parameter τ and find a suitable time ta in
the assimilation interval (Figure 2) to start calculating the statistical observation proposed
density t1 . . . t4 are the times steps in the assimilation interval.
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Figure 2. Schematic diagram showing the assimilation interval and the starting moment ta of
statistical observations.

To avoid confusion, we use yt0
r , . . . yta

r , . . . ytn
r to define the historical reanalysis data of

the assimilation interval. The ta is the time to start accumulating the reanalysis observations
and the statistical observation at moment tb in the statistical interval is expressed as:

ytb

s =

tb

∑
d=ta

yd
r(

tb − ta
)
+ 1

(
ta ≤ tb < tn

)
(16)

There are two steps to make the particles toward the statistical reanalysis observation
that used in the proposal density before the assimilation:

(1) Calculate the proposal density weights based on the statistical observation ytb
s and

Equation (10):

(ωi)
tb
=

1
A

p
(

ytb

s

∣∣∣xtb

i

) p
(

xtb

i

∣∣∣xtb−1
i

)
q
(

xtb
i

∣∣∣xtb−1
i , ytb

s

) (
ta ≤ tb < tn

)
(17)

(2) The particles are moved towards the statistical historical reanalysis observation ytb
s

and updated the model equation Equation (11) at time tb:

(xi)
tb
= f

(
xtb−1

i

)
+ B(τ)

(
ytb

s − h
(

xtb−1
i

))
+ dβ̂tb

i (18)

However, the EWPF uses the proposed density adjust particles to have reliable assimi-
lation results with complete observations, but when there are few available observational
observations, it is difficult to improve the overall assimilation results by model tuning
alone [24]. Therefore, the LEWPF-Sobs adopt the LPF’s localization scheme with some
corrections to fit the EWPF assimilation framework. The EWPF use the Equation (13) obtain
the scalar weights and update the model state corresponding to the given observation.

The localization scheme combines the prior and sampled particles to structure local
samples based on the local distribution when the observation is used to confirm the local
weights [21,22]. So we use the determined particles which are updated by the EWPF to
extend the weights form the scalars to vectors use the function l[yi,xj,r] [17] to determine
the weight according to the i-th observation yi, so the ensemble local weight ω

yi
n,j and their

normalization vector Ω are determined by Equations (1) and (2).
Similar to the LPF parameter 0 < α < 1 used to make the weights more consistent

in districts when the observations have a notable impact to update [17]. These weights
represent the posterior probability distribution for the model state variable.

2.3. Refining Statistical Observation and Localization Scheme

The calculation of statistical observations for LEWPF-Sobs-old has been described
in Section 2.2. For dealing with historical reanalysis data, the previous treatment was
to calculate the mean value directly on the reanalysis data. Statistical observations can
effectively avoid bias in the reanalysis data by calculating the mean, but the method



J. Mar. Sci. Eng. 2021, 9, 1153 7 of 20

disregards the correlation of the reanalysis data in the time series. In order to address
this problem, we refined the previous statistical observation method by adding the time
distribution of reanalysis observations to the calculation of statistical observations. The
reanalysis data used in statistical observations are generally selected to correspond to the
data at the observation location and these reanalysis data may be one month ago or one
year ago.

Therefore, we set weights for statistical observations based on the time series distribu-
tion of the reanalysis data to calculate the mean value. It is guaranteed that data closer to
the observation time will get better weights, while the more distant the time is, the smaller
the weights will be. The time series distribution of the historical reanalysis data of the
target observation location is shown in Figure 3. We assume the same time interval (t1 . . .
t4) for reanalysis data and the ytk

denotes the target observation at assimilation moment
tk. The term ytr

r is the reanalysis data for different historical moments tr. The term tr1(t3)
denotes the closest reanalysis data moment to the assimilation moment tk, while tr4 denotes
the farthest moment.

Figure 3. Schematic diagram showing the historical reanalysis of data time series and the reanalysis
moment trb and assimilation moment tk.

If only the reanalysis data are available at moment tr1, the statistical observation
ys = ytr1

r . The statistical observation for any reanalysis moment trb can be expressed as:

ytrb
s =

(
trb

∑b
m=1 trm

)
∗ ytr1

r +

(
tr(b−1)

∑b
m=1 trm

)
∗ ytr2

r + · · ·+
(

tr1

∑b
m=1 trm

)
∗ ytrb

r (19)

The term ytrb
s represents the same meaning as ytb

s given in Equation (16), indicating a
statistical observation calculated based on reanalysis data. Taking ytrb

s into Equations (17)
and (18), the statistical observations calculated according to the Equation (19) can be used
to determine the weights and update the particles by the proposal density.

Due to the increased complexity of the model, the calculation for the localization
parameters of this algorithm also needs further refinement. Due to the simplicity of
the Lorenz96 model, the particles that require localization adjustment are selected only
according to the position of the state. Since the state distribution is more complex in
the intermediate coupled model, the localization scheme needs to consider the spurious
correlation between far points due to the lack of ensemble members. The covariance
localization is used in this study, which uses a continuous function whose value is inversely
proportional to the distance from the observation point to generate a multiplicative factor
for the state increment:

li,j = Ψ
(
di,j, c

)
=


− 1

4

( di,j
c

)5
+ 1

2

( di,j
c

)4
+ 5

8

( di,j
c

)3
− 5

3

( di,j
c

)2
+ 1 0 ≤ di,j ≤ c

1
12

( di,j
c

)5
− 1

2

( di,j
c

)4
+ 5

8

( di,j
c

)3
+ 5

3

( di,j
c

)2
− 5
( di,j

c

)
+ 1 c ≤ di,j < 2c

0 di,j ≥ 2c

(20)
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where di,j represents the distance between the observation ytn
i and the positions of the model

grid xj. The parameter c is related to the decorrelation length. The Ψ in Equation (20) is
referred to as the Gaspri–Cohn (GC) function [25,26].

The localization scheme which used in the LEWPF-Sobs is designed to better handle
sparsely distributed observations. The previous algorithm was studied in the Lorenz96 and
from the results it can be seen that LEWPF-Sobs has some effect for sparse observation [15].
However, the case of sparse observations can be more complicated for complex gridding
models, so we further improve the application of the LEWPF-Sobs localization scheme
based on the previous method. Since the PF results are closely related to the observation, it
is still difficult to obtain accurate particle adjustment using the localization scheme when
the observations are significantly reduced. In the improved LEWPF-Sobs we use historical
reanalysis data to calculate the proposed density with the aim of guiding the particles
closer to the observation. Therefore, we refer to the significance of the proposal density
and for sparse observation distributions we add the statistical observation proposal density
to the localization scheme at the moment of assimilation. In the case of particles with no
available observations in the adjustment radius at assimilation time, the proposal density
is first calculated using reanalysis of historical data to fine-tune the particles to make the
particles close to historical observations, and then the particles are further adjusted based
on actual observations using a localization scheme.

In conclusion, the steps for assimilation using LEWPF-Sobs are as follows (assuming
that the assimilation moment is tn and the corresponding actual observation is ytn

i ).

(1) Before the moment of assimilation tn. Use the statistical historical reanalysis obser-
vation ytrb

s and Equation (19) to determine the statistical observation which used in
the proposal density. Using the Equations (17) and (18) to determine the proposal
density’s weights ωi and update particles.

(2) In the moment of assimilation tn. Based on the proposal density weighs and use

Equations (13)–(15) to calculate the final models states
(

xtn

i

)
eq

which correspond to

the observation position ytn

i .

(3) In the moment of assimilation tn. The particles
(

xtn

i

)
c

without observations in the

radius of influence c. The historical reanalysis data of
(

ytra
r

)
c

is the observation
of the corresponding position of these particles at history moment tra and using
them to adjust the particles

(
xtn

i

)
c

close to the historical observations according to

Equation (11) to obtain the adjusted particles
(

xtn

i

)yr

c
.

(4) Assimilate moment tn application localization schemes. Using the
(

xtn

i

)
eq

and Equa-

tion (1) calculate the weight of particles around the observation based on a given
observation and get the resampling indices k1,k2, . . . ,kNe and the particles are shown
as xkm ;

(5) In the moment of assimilation tn according to the observation ytn
i . We refer to the

localization scheme state update equations (3)–(6) and (20) of LPF. Combine the

particles
(

xtn

i

)yr

c
and resampled particles xkm using the formula to update the particles

within the localization radius c.

3. Cycling Data Assimilation Experiments Set Up
3.1. An Intermediate Atmosphere-Ocean-Land Coupled Model

To investigate the potential of the LEWPF-Sobs as a data assimilation algorithm for the
geophysical dependence of observing systems and eliminate the computational intricacy
of CGCM, an intermediate atmosphere-ocean-land coupled model [27] is used. In this
study, an equation is used to represent the nonlinearity of atmosphere. The atmosphere is
coupled with a 1.5-layer “baroclinic” ocean and based on the stream-function. The simple
land model which the temperature is driven by the atmosphere-land fluxes. These model
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components adopt 96× 48 grid points and forward points using the leapfrog time stepping
method [28]. The atmosphere which is include a global pressure model and atmospheric
temperature based on the equation:

∂q
∂t

+ J(ψ, q) =
{

λ(Ts − µψ) ocean
λ(Tl − µψ) land

(21)

where = βy +∇2ψ, β = d f /dy, f is the Coriolis parameter, y represents the northward
meridional distance from the equator, ψ represents the geostrophic atmosphere stream-
function, TS and TL denote the sea surface temperature (SST) and land surface temperature
(LST), respectively.

The ocean consists of a 1.5-layer with a slab mixed layer [29] and the stream functions
are given by: 

∂
∂t

(
− ϕ2

L2
0

)
+ β ∂

∂x ϕ = γ∇2ψ− Kq∇2 ϕ

∂
∂t Ts + µ ∂Ts

∂x + v ∂Ts
∂y − Khψ = −KTTs

+AT∇2Ts + s(τ, t) + Co(Ts − µψ)

(22)

The ϕ is the ocean steam-function; L2
0 = gh0/ f 2, is the oceanic deformation radius;

Kh = KT × k × f /g’ [30] represents the strength of upwelling, and the term s(τ,t) = KT ×
s0(τ) × [1 − (τ/4500 + 1/200) × cos(2π(t − 15)/360] is the solar forcing which used to
represent the seasonal cycle, where s0 represents the annual-mean solar forcing, τ denotes
latitude, t is the day of the current moment. The evolution of LST is described by the linear
equation which have the heat exchange with the atmosphere:

m
∂

∂t
Tl = −KLTL + AL∇2Tl + s(τ, t) + Cl(Tl − µψ) (23)

where m represents the ratio of heat capacity between the land and the ocean mixed layer.
Default parameters values and meanings are detail described in the Wu [27] and the
coupled mechanism is shown in the Figure 4.

Figure 4. Coupled mechanism.

The atmospheric component provides wind stress and heat flux to the ocean stream
function as well as the sea surface temperature (land surface temperature), respectively,
while the forcing of the sea surface temperature consists of three items: the upwelling
effect of the subsurface layer, the heat flux from the atmosphere into the ocean, and solar
radiation, and the forcing of the land surface temperature is forced by atmospheric heat
fluxes to the land surface and solar radiation [27].

The coupling of the model is mainly reflected in physical phenomena related to flux
exchange, which include the solar radiation, sensible heat flux and latent heat flux. The Ta
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use the sensible heat flux and the long wave radiation which are vented by the atmosphere
to affect TS and TL l are these the same as TS and TL from before? Be consistent in symbols.

3.2. Simulation Experiments Setup

To examine the possibility of the improved LEWPF-Sobs used in the geophysical
models, we use this method for the intermediate coupled model. This section cycling data
assimilation experiments are designed to compare the characters of the LEWPF-Sobs with
the LPF, the classical LEWPF-Sobs (LEWPF-Sobs-old) and the localized weighted ensemble
Kalman filter (LWEnKF). The LWEnKF is presented by the Chen [24] and this algorithm
is a nonlinear filter than combines the advantage of the particle filter and the ensemble
Kalman filter. The main reason for selecting this method as a comparison method is that it
is a hybrid method of particle filter and it also refers to the localization scheme of LPF, so it
can better compare and analyze the assimilation characteristics of LEWPF-Sobs.

The experiments are divided into two parts; the first part uses standard observations
to verify the effect of statistical observations based on time series on the assimilation results.
The results of the experiment are presented by spatial distribution and RMSE histogram.
The spatial distribution describes the adjustment of the method for all grid point position
states. The annual average RMSE histogram is used to describe the deviation of the model
state from the truth under different experimental conditions. As previously described
LWEnKF uses the localization scheme of LPF [24] and the results are significantly better
than LPF, Therefore, LWEnKF was chosen instead of LPF in the experiments of spatial
distribution to compare with LEWPF-Sobs and LEWPF-Sobs-old. The second part of the
experiments investigate the effect of the localization scheme of the improved LEWPF-Sobs
on the assimilation results under sparse observations. Because this experiments choose
the coupled model as the background therefore this experiment is divided into three
parts, firstly assuming the lack of observations for Ta and Ts, respectively, and finally
assuming the lack of observations for both Ta and Ts. In this part of the experiment we still
choose spatial distribution and RMSE histogram to illustrate the experimental results. The
different methods used under different experimental conditions and the description of the
experimental results are given in Table 1.

Table 1. The experimental schedule.

Standard Observation Spare Observation

Spatial
Distribution

RMSE
Histogram

Spatial
Distribution

RMSE
Histogram

LEWPF-Sobs
√ √ √ √

LEWPF-Sobs-old
√ √ √ √

LWEnKF
√ √ √ √

LPF
√ √

We initialize the model with the annual mean of grid model states of corresponding
climatological domains [31]. The model of the Dommenget and Flöter [32] scheme was
used as the true value to generate observations, and the assimilation scheme used the
Thompson and Warren [33] scheme. The truth model is run from the initial conditions,
climatological fields of six prognostic variables [31]. This model is run for 4 years as the
spin-up circle and the assimilation adjustment is start form the 5th year and the statistical
analysis of assimilation results of the 6th year.

The truth xt is obtained from the integration of the time series after the spin-up. The
observations are determined by the equation:

y = H
[
xt]+ ε (24)

where H is a function that maps the model truth xt, which are based on the distribution
of the observation and ε is the observation error with a white noise. The atmosphere Ta
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standard observational error is 0.5 and the TS and TL use the observational error 1. In
the experiments, it is necessary to use historical reanalysis data to determine statistical
observations which used in the proposed density to adjusted ensemble particles. The
reanalysis data is determined by adding white noise to the truth of the 4th year according
to the Equation (24) and it is corresponding to the full time series distribution of the model
grid positions. The model integral time is for 12 h as one integral step, while corresponding
sampling frequencies are one integral step (12 h for Ta), four integral steps (48 h for Ts)
in this experiments. In this paper, the observations are distributed uniformly distributed
of the model grids. To roughly simulate real-world scenario so this model and initial
condition which have the biased information similar to the observations.

The root-mean-square-error (RMSE) as an important criterion for evaluating assimila-
tion quality, the RMSE is defined as:

RMSE =

√√√√ 1
Nx

Nx

∑
i=1

(
xi − xt

i
)2 (25)

where the xi is the model state with the variable i and xt
i is the truth. The RMSE method is

used to evaluate the assimilation results and both experiments are performed using the
same initial particles. The RMSE of the Ta variable is expressed as Ta-RMSE and the RMSE
of Ts is expressed as Ts-RMSE according to Equation (25).

Before the experiment, first confirm the start moment of statistical observation, the
longest assimilation interval is 4 integration steps, so according to the time series of statisti-
cal observation distribution shown in Figures 2 and 3, the RMSE results corresponding to
the two statistical observation calculation methods are shown in the Figure 5. In the figure
we uniformly choose trb as the horizontal coordinate, and the relationship between the two
method times is tr1 = (ta = 3) = t3.

Figure 5. The annual average RMSE with different start moment of statistical observation trb for the
LEWPF-Sobs. (a) The average RMSE of Ta. (b) As (a) but for the Ts.

As it can be seen from the Figure 5, the improved method for calculating statistical
observations which is given in Section 2.3 is slightly reduced from the previous method
about the RMSE of Ta and Ts. It can be seen that the incorporation of reanalysis data in the
time dimension into the computation of statistical observations can significantly improve
the forecast accuracy. Ta and Ts can obtain smaller RMSE when trb = 3, which means that
the maximum number of reanalysis data is applied to calculate the statistical observation
proposal density in the assimilation interval. These data ensure that the particles are
guided close to the observation at each moment before assimilation finally guarantee the
optimal final assimilation result. The RMSE of both Ta and Ts converge to the observation
error covariance when (trb = 0) = (ta = 4) = t4. The reason is that if trb = 0, it means that
no statistical observation introduces the proposal density and only the observation at the
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moment of assimilation is considered. In order to ensure the accuracy of assimilation
results in subsequent experiments, trb = 3 was chosen for all subsequent experiments.

4. The Numerical Experimental Results
4.1. Standard Observation Distribution Experiment

This part tests the LEWPF-Sobs is a situation which uses Equation (24) to determine the
global standard observation distribution and the observations have uncorrelated Gaussian
errors with standard errors of different variables (Ta and Ts). The experiment is designed
to verify whether the LEWPF-Sobs can get reliable filtering results for realistic geophysical
systems. The final statistics are calculated based on the Ta and Ts with three methods in the
assimilation cycle. We use the domain average of RMSE and average ensemble Spread for
all variables to evaluate the assimilation effect of these methods. Thus the annual RMSE
for the different methods in this coupled model is shown in Figure 6.

Figure 6. The spatial distribution of annual average RMSE of panel (a,c,e) the atmospheric tempera-
ture (Ta) RMSE with respect to LEWPF-Sobs-old, LWEnKF and LEWPF-Sobs. The panel (b,d,f) are
similar to panel (a–c) but for the ocean temperature (Ts).

In order to comprehensively analyze the assimilation results of the grid points,
Figure 6 shows the geographic-dependent distribution of annual RMSE of Ta and Ts about
the LEWPF-Sobs-old (panel a and b), LWEnKF (panel c and d) and LEWPF-Sobs (panel e
and f). The three algorithms of atmospheric temperature use the similar color calibration
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scale, it can be seen that the atmospheric of the LEWPF-Sobs has the better RMSE which
is maintained at about 0.8, while the RMSE of the LEWPF-Sobs which use the improve
statistical observation is little better than the LEWPF-Sobs-old. The LEWPF-Sobs also has
the lowest RMSE about the Ts which is stable around 0.35. The LWEnKF and LEWPF-Sobs
have similar results about the Ta and Ts. The RMSE of LWEnKF is slightly higher than
LEWPF-Sobs and the results of the Ta are better than the LEWPF-Sobs in some regions. It
has more stabled results about the Ts. However, based on the above results, the accuracy
and stability of LEWPF-Sobs is superior to the other methods.

According to the geographic-dependent distribution results, we further analyze the
use of these algorithms to calculate the posterior particles. Since the LEWPF-Sobs which
use the improved statistical observations, this method was incorporated into the subse-
quent experiments in order to further investigate the effect of statistical observations on
the assimilation results. In practice, it is difficult to guarantee that all observation are Gaus-
sian. For non-Gaussian observations, the advantage of the PF is flexibility to choose the
likelihood for calculating weights to accommodate non-Gaussian errors. The observations
are generated by the Equation (24) use Gaussian errors in the previous experiments. For
this experiment, we use H(x) = |x| and H(x) = ln(|x|) to replace the Gaussian observation
error to further refine the subsequent experiments. Figure 7 shows the average RMSE for
annual average of all variables with different algorithms, respectively.

Figure 7. The annual average RMSEs of the data assimilation with LEWPF-Sobs, LPF, LEWPF-Sobs-
old and LWEnKF with different observation operators. (a) The average RMSE of Ta with different
algorithms. (b) As (a) but for the Ts.

Since the localization schemes of the LEWPF and LWEnKF both refer to the LPF, the
LPF is presented as a comparison method in this part of the experiment. Figure 7a illus-
trates the annual average RMSE of atmospheric temperature with different non-Gaussian
operators. The LEWPF-Sobs-old and LEWPF-Sobs give similar results and the LEWPF-Sobs
is a little smaller than the previous algorithm when useing different observational operators.
The LPF maintained better assimilation results, but the RMSE was slightly higher than that
of LEWPF-Sobs. It can also be seen from the experimental results that the RMSE of LPF
is closer to the observation error, the reason is the LPF update the particles only based on
the observation so the forecast error approximate to the observation. The LWEnKF and
LEWPF-Sobs have the similar results which are better than the other algorithms. Moreover,
when using non-Gaussian operators, its results are slightly worse than LEWPF-Sobs. The
RMSE of ocean temperature are given in the Figure 7b. It can be seen that Ts gives similar
results to Ta. The improved LEWPF-Sobs obtained better results for different non-Gaussian
observation operators and the final results are more accurate than those of the other algo-
rithms. The experimental results demonstrate that calculating statistical observations based
on time series can significantly improve the calculation results of the proposed density and
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increase the accuracy of assimilation results. These experiments, therefore, indicates the
LEWPF-Sobs can provide accurate results in a wide range of applications.

The annual mean of the RMSE and Spread of the different algorithms used in experi-
ments with different observation distribution are shown in the Table 2. The four algorithms
have the similar RMSE under different Gaussian distribution observations. It also gives
the LPF has better adjustment of the relationship between the RMSE and Spread and the
spread of LEWPF-Sobs has smaller results which is reasonable because of the proposal
density was used to adjust the particle spacing and make the particles have similar results.
For the variable Ta the RMSE of the improved LEWPF-Sobs reduces 2% compared to the
traditional LEWPF-Sobs while the Ts variable reduces by 7.3%.

Table 2. The LEWPF-Sobs, LPF, LWEnKF and LEWPF-Sobs-old annual averaged RMSE and Spread of particles for experiment.

H(x) = x H(x) = |x| H(x) = ln(|x|)

RMSE Spread RMSE Spread RMSE Spread

Atmospheric temperature (Ta)
LPF 1.024866 0.89107 1.1214 0.9105 1.24840 0.8889

LEWPF-Sobs-old 0.960692 0.30691 1.1184 0.314 1.23545 0.4399
LEWPF-Sobs 0.951810 0.32541 1.0215 0.421 1.2124 0.456

LWEnKF 1.0048 0.296 1.114 0.301 1.2254 0.412
Ocean temperature (Ts)

LPF 0.47064 0.421315 0.503 0.5031 0.58093 0.45319
LEWPF-Sobs-old 0.356783 0.357434 0.497 0.478 0.56165 0.47837

LEWPF-Sobs 0.3310 0.34756 0.4786 0.487 0.5487 0.4863
LWEnKF 0.3229 0.3341 0.4885 0.469 0.551 0.464

4.2. Sparse Observational Distribution Experiments

In the actual situation, it is difficult to obtain the global observations which used in the
data assimilation and lack of accurate observation at many locations. Therefore, the second
part of the experiments design sparse observation distributions to study the potential of
the LEWPF-Sobs for subsequent practical applications. The model components adopt
96 × 48 grid points and removes half of the observations from these points to simulate the
actual lack of observations in some areas. Because this model is a coupled model, in order
to fully analyze the experimental results, for the experiments with sparse observations,
it is first assumed that the atmospheric temperature (Ta) lacks observations. In these
experiments the final statistics are also use the average of RMSE for Ta and Ts as the
evaluation criterion. Therefore the annual RMSE about the Ta and Ts for the different
algorithms are shown in Figure 8.

Figure 8 illustrates the geographic-dependent distribution of annual average RMSE
with different algorithms when Ta use the sparse observations. It can be clearly seen that
the RMSE is significantly higher at the location where the observation is missing and the
LEWPF-Sobs (panel c) and LWEnKF (panel e) with observed locations can obtain better
RMSE, while for the part lacking observations both methods have similar results but the
LWEnKF is better than LEWPF-Sobs in some regions. The LEWPF-Sobs is significantly
improved by adding the statistical observation proposal density to the localization scheme.
As seen in panel c, most of the regions can maintain small RMSE, while only sporadic
regions have some deviation. It can be seen that the results of LEWPF-Sobs are more
stable due to the application of the proposal density to the adjustment of sparsely observed
particles. Because the experiment uses the coupled model, the atmospheric bias will have
an effect on the ocean. From panels b, d and f, we can see that the LEWPF-Sobs-old have
large biases in the most of regions. The reason is that the lack of observation of Ta increases
the bias of assimilation results in some regions and thus affects the assimilation results of
Ts. However, it can be seen from the results that the LEWPF-Sobs is better than LWEnKF.
Although the overall results of LWEnKF are more stable and the LEWPF-Sobs has the better
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overall results due to the more accurate assimilation results of Ta and therefore less impact
on Ts.

Figure 8. The spatial distribution of annual average RMSE of panel (a,c,e) the atmospheric tempera-
ture (Ta) use the spare observations and the RMSE with respect to LEWPF-Sobs-old, LEWPF-Sobs
and LWEnKF. The panel (b,d,f) are similar to panel (a,c,e) but for the ocean temperature (Ts) with
standard observations.

Similarly Figures 8 and 9 illustrate the geographic-dependent distribution of annual
average RMSE of different algorithms when Ts use the sparse observations. The panel
(a,c,e) shows the assimilation results of the LEWPF-Sobs for Ta are significantly better
than the other algorithms. However, the absence of Ts observations in the coupled model
makes the RMSE of LEWPF-Sobs-old is significantly changed, the error is smaller in the
part with observation, while the deviation is larger in the part without observation. The
results of LEWPF-Sobs and LWEnKF are more similar, but the LEWPF-Sobs are more
stable and its RMSE is smaller. And because LEWPF-Sobs (panel d) has better results
for Ts, thus improving the assimilation results of Ta in this coupled model. Based on the
above two parts of experimental results, it can be seen that the refined LEWPF-Sobs has a
significant improvement for the assimilation of sparse observations and this algorithm is
more suitable for the coupled model and reduces the influence of sparse observations on
the assimilation results.
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Figure 9. The spatial distribution of annual average RMSE of panel (a,c,e) the atmospheric temper-
ature (Ta) and the RMSE with respect to LEWPF-Sobs-old, LWEnKF and LEWPF-Sobs. The panel
(b,d,f) are similar to panel (a,c,e) but for the ocean temperature (Ts) use the spare observations.

In order to analyze the effect of sparse observations more comprehensively, we assume
that both Ta and Ts are lacking half of the observations, then the assimilation results of the
three methods are shown Figure 10. The RMSE of Ta and Ts are larger than in the previous
experiments (Figures 8 and 9) due to the lack of partial observations. Because the previous
experiments assumed that only one variable lacked observations, this variable could be
adjusted to reduce the bias by assimilating other variables based on the coupled model.
However, in this part of the experiments, because both variables are missing observations
and therefore the adjustment of the variables relies only on the assimilation method, it is
possible to better compare which method is more suitable for the assimilation requirements
of sparse observations.
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Figure 10. The spatial distribution of annual average RMSE of panel (a,c,e) the atmospheric tempera-
ture (Ta) use the spare observations and the RMSE with respect to LEWPF-Sobs-old, LEWPF-Sobs
and LWEnKF. The panel (b,d,f) are similar to panel (a,c,e) but for the ocean temperature (Ts) use the
sparse observations.

From Figure 10, it can be seen that LEWPF-Sobs (panels c and d) consistently has the
best assimilation results and the RMSE is significantly smaller than with the other two
methods. The results of LWEnKF (panels e and f) are slightly better than the LEWPF-Sobs-
old (panel a and b). It can be seen from the figures, LEWPF-Sobs and LWEnKF have similar
results, but the RMSE of LWEnKF is smaller in some regions of the Ta and the assimilation
results of LEWPF-Sobs are better than LWEnKF for the variables Ts. The results of LEWFP-
Sobs-old are worse than the other algorithms when the area lack of the observations and
the main reason for this result is that the PF relies on observations for assimilation, and
the bias of the assimilation results will be increased when there are fewer observations
available. The LEWPF-Sobs (panels b and d), which improved by adding the statistical
observation proposal density to the localization scheme, gives the best assimilation results
for the Ts variables, and although bias still exists in some regions of the ta variables, the
RMSE of Ta is maintained at a small value overall.

For further research the effect of the localization scheme on the lack of observed
location particles, we select all grid points of Ta and Ts where observations are missing
to investigate the ensemble states based on LEWPF-Sobs-old (gray), LEWPF-Sobs (pastel
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blue), LPF (ice blue) and LWEnKF (desert blue)which are shown in the Figure 11. Panel (a)
and (b) gives the results of the RMSE of the variable Ta and Ts based on different algorithms
with different observation situations. The results of the four methods are closer when
observations are available, while the most significant increase in RMSE can be seen for
LPF and LEWPF-Sobs-old when observations are missing. The LEWPF-Sobs and LWEnKF,
consistently provide better assimilation results for different observation distributions and
the results of LWEnKF are slightly better than LEWPF-Sobs for Ta, while the assimilation
results of LEWPF-Sobs are better for Ts variables. It can be seen from Figure 11 that the
improved LEWPF-Sobs incorporates statistical observations into the localization scheme,
which can effectively improve the assimilation results of sparse observations and reduce
the bias between ensemble particles. From the experimental results, it can be seen that
the RMSE of the variable Ta which have observation is reduced by 2% for the improved
LEWPF-Sobs compared to the LEWPF-Sobs-old while the Ts variable is reduced by 8%,
which is similar to the standard observation. However, under the sparse observation
condition, the RMSE of the improved LEWPF-Sobs for the variable Ta is reduced by 73.2%
compared to the traditional method, while for the variable Ts it is reduced by 86.8%.

Figure 11. The RMSE histogram of the grid points with different observation situations. The RMSE
of the variable Ta based on the LEWPF-Sobs-old (gray), LEWPF-Sobs (pastel blue), LPF (ice blue) and
LWEnKF (desert blue). The panel (b) is similar to the (a) but for the variable Ts.

5. Discussion and Conclusions

This paper describes the application of the improved LEWPF-Sobs for data assim-
ilation in the intermediate coupled model while avoiding the limitations of traditional
particle filters. In order to better apply the coupled model based on the previous method,
we propose to calculate statistical observations based on time series distribution weights
that take into account the distribution of the historical reanalysis data on the time scale.
In order to improve the application of the localization scheme with sparse observations,
it is proposed to introduce statistical observations into the localization scheme, which is
adjusted for sparse observations.

In this paper, we analyzed the statistical observations based on time series distri-
bution of the historical reanalysis data and improved localization scheme as used in the
LEWPF-Sobs to improve the ability to perform the grid coupled model. According to the
experimental results, the LEWPF-Sobs always maintains the minimum Ta and Ts RMSE
compared to LEWPF-Sobs-old and LWEnKF. The spatial distribution of annual average
RMSE also shows the LEWPF-Sobs when use the improved statistical observations give
more accurate assimilation results than the previous algorithm. When non-Gaussian obser-
vations are used in these experiments, the LWEnKF and LEWPF-Sobs have similar results,
the main reason being that the PF have an obvious advantage when dealing with nonlinear
and non-Gaussian problems and the LEWPF-Sobs results are more stable. To further inves-
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tigate the effect of the improved localization scheme which used in the LEWPF-Sobs, the
algorithm is tested in the experiments which remove half of observations. The LEWPF-Sobs
can adjust the ensemble particles towards the truth corresponding to the lack of observation
position through the localization scheme. The comparison of the RMSE under different
observation conditions shows that the improved LEWPF -Sobs has a better adjustment of
particles not only in the observed position, but also in the absence of observation positions.
The improved localization scheme uses the proposal density which are calculated by the
reanalysis data making the results better than the previously method, therefore the final
results of the LEWPF-Sobs is more accurate.

Based on the above experimental results, it can be seen that the statistical observation
calculation method based on time series distribution can effectively improve the assim-
ilation results to increase the accuracy compared with the previous method which only
calculate the mean of the historical reanalysis data. The RMSEs of variables Ta and Ts are
reduced by 2% and 8%, respectively. For the improved localization scheme, the assimilation
results of the localization scheme are improved due to the use of statistical observation
proposal density adjusted for unobserved positional particles which are based on historical
reanalysis data. Therefore this method has a good adjustment for sparse observations and
improves the assimilation accuracy. The location of the missing observation, the improved
method reduces the RMSE of the variables Ta and Ts by 73.2% and 86.8%, respectively. It
can be seen that the LEWPF-Sobs can be better applied to the coupled model, while the
variables for which no observations are available can be better adjusted through the local-
ization scheme. It can be seen that the assimilation results of the improved LEWPF-Sobs is
better than tradition algorithms.

From the experimental results of sparse observations, it can be seen that the improved
localization scheme still has an atmospheric temperature bias, and further improvement of
the localization method will be necessary in the subsequent research. For the research of
statistical observations, the subsequent research will introduce intelligent methods such as
machine learning to determine the observations instead of the reanalysis data, which can
further improve the reliability of the observation while avoiding the error of the statistical
observation. Further study of LEWPF-Sobs assimilation systems is suitable for mesoscale
models which has practical implications.
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