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Abstract: Acoustic particle velocities can provide additional energy flow information of the sound
field; thus, the vector acoustic model is attracting increasing attention. In the current study, a vector
wavenumber integration (VWI) model was established to provide benchmark solutions of ocean
acoustic propagation. The depth-separated wave equation was solved using finite difference (FD)
methods with second- and fourth-order accuracy, and the sound source singularity in this equation
was treated using the matched interface and boundary method. Moreover, the particle velocity was
calculated using the wavenumber integration method, consistent with the calculation of the sound
pressure. Furthermore, the VWI model was verified using acoustic test cases of the free acoustic
field, the ideal fluid waveguide, the Bucker waveguide, and the Munk waveguide by comparing
the solutions of the VWI model, the analytical formula, and the image method. In the free acoustic
field case, the errors of the second- and fourth-order FD schemes for solving the depth-separated
equation were calculated, and the actual orders of accuracy of the FD schemes were tested. Moreover,
the time-averaged sound intensity (TASI) was calculated using the pressure and particle velocity,
and the TASI streamlines were traced to visualize the time-independent energy flow in the acoustic
field and better understand the distribution of the acoustic transmission loss.

Keywords: acoustic particle velocity; vector acoustic model; sound intensity streamline;
depth-separated equation; finite difference method

1. Introduction

Ocean acoustic waves propagate over long distances because their energy attenu-
ates less in water than does that of electromagnetic waves; consequently, acoustic waves
have been widely used in target detection, environmental monitoring, and underwater
communication [1]. Underwater acoustic wave propagation excited by a time harmonic
source can be described by the Helmholtz equation in the frequency domain, which can be
solved using the wavenumber integration technique [2,3], the fast field program (FFP) [4–6],
normal modes [7], ray theory [8], the parabolic equation [9], the finite difference method
(FDM) [10], and the spectral method [11]. As these models for predicting the scalar sound
level have reached a high level of development, our interest herein is in developing a vector
model to accurately predict the particle velocity.

As a result of the growing interest in observing and investigating the underwater
vector acoustic field [12], research is increasingly being conducted on the structure of
the local vortices of the energy flux vector in acoustic waveguides [13]. Compared with
experiments, vector acoustic simulations can more rapidly and economically provide
more acoustic fields; accordingly, computer simulation and visualization techniques are
highly important for studying the vector acoustic field [14–17]. Although the particle
velocity can be obtained by calculating the pressure gradient using the FDM [18], the grid
sizes in all coordinate directions must be sufficiently small to reduce numerical errors,
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resulting in a large number of grid points. Hence, other methods that can be used to
analytically calculate some of the particle velocity components need to be developed, such
as the analytical Lie-algebraic approach [19,20] and acoustic vector models that compute
the particle velocity directly. Smith [21] introduced general numerical algorithms of the
acoustic particle velocity field from the parabolic equation and normal mode models, and
test cases of a Pekeris waveguide and range-dependent benchmark wedge were presented
to verify the results of both models. Gulin [22] developed an analytical numerical acoustic
model in terms of a scalar-vector description; the Helmholtz equation was replaced by two
first-order partial differential equations that were used to govern the sound pressure and
the velocity vector of fluid particles, and the normal mode method was utilized to simulate
the acoustic scalar-vector field in layered stratified media. The FFP, which has become the
most common wavenumber integration method in underwater acoustics, uses the far-field
approximation and fast Fourier transform (FFT) to accelerate the computation. For instance,
Zhu [23] developed a vector acoustic FFP model for an ocean-like environment with a
sound speed profile of water and a multilayered elastic sediment bottom and analyzed the
correlation between the sound pressure and the particle velocity.

The objective of this study was to obtain the most accurate vector acoustic model
possible that can be used to provide benchmark solutions in range-independent environ-
ments for verifying other numerical acoustic models, such as FDM models [10] and spectral
method models [11]. However, although the normal mode method, parabolic equation,
and FFP mentioned above have the advantages of a small computational load and good
numerical stability, they have difficulty effectively satisfying the required accuracy due
to approximation errors. For instance, parabolic and far-field approximations should be
used in the parabolic equation [24]; the branch cut integral is commonly neglected in
normal modes [25]; and the far-field approximation needs to be applied to the FFP [26,27].
In contrast, the wavenumber integration method is attractive because it is basically an
implementation of the integral transform technique for general range-independent media
and directly evaluates the integrals of the solutions to the depth-separated wave equation
(depth equation for short) by numerical quadrature; consequently, the field solution can
be accurately calculated to any desired degree [2] (page 233). However, the wavenumber
integration method incurs a relatively large computational load; nevertheless, for the model
to generate benchmark solutions, guaranteeing the accuracy of the model is most often
the greatest challenge, with reducing the computation time usually being a secondary
priority [28].

To address the abovementioned challenges, a vector wavenumber integration (VWI)
model was established in this study and verified using benchmark cases of underwater
acoustic propagation. The primary contributions of this study are as follows:

(1) An FDM to solve the depth equation is proposed. Several methods exist for solving
the depth equation, such as the propagator matrix approach [4] and the direct global matrix
approach [29]; however, these approaches require that the density be approximated by
the piecewise constant in each element along the depth direction, meaning that the range-
independent environments are approximated as layered media. To further improve the
solving accuracy of the depth equation solution, FD schemes with second-order (2nd-order)
and fourth-order (4th-order) accuracy that can treat the density variation are proposed in
this paper, and the recently developed matched interface and boundary (MIB) method is
used to address the sound source singularity [30,31].

(2) A VWI model is established. In the present model, the particle velocity at any posi-
tion in the sound field can be directly calculated using wavenumber integration (consistent
with the calculation of the sound pressure sharing the zero-order Bessel function of the first
kind) instead of calculating the spatial gradient of the pressure (two-dimensional grids are
necessary, and the grid sizes in both directions need to be sufficiently small [18]).

(3) A sound field analysis method that displays both propagation loss contours and
streamlines of the time-averaged sound intensity (TASI) is proposed. The TASI can be
computed using the pressure and particle velocity and displayed using streamlines, thereby
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bettering our understanding of the transmission loss (TL) distribution and the net transport
of sound energy. For instance, TASI streamlines in the test cases show that the regions
through which the energy flow is concentrated form zones of sound convergence.

2. The FDM for Solving the Depth Equation

Within a range-independent marine environment, because a simple point source is
omnidirectional, the solutions of the steady-state acoustic field are symmetric about the
z-axis and independent of the circumferential direction in a cylindrical coordinate system;
thus, the Helmholtz equation in the frequency domain can be expressed as [2]:

1
r

∂

∂r

(
r

∂P
∂r

)
+ ρ

∂

∂z

(
1
ρ

∂P
∂z

)
+ k2P = −2

r
δ(r)δ(z− zs) (1)

where z is the vertical coordinate (in m), which is positive in the direction of increasing
depth and passes through the source point; zs is the source depth (z-coordinate of the
source); r is the coordinate (in m) in the range direction from the source; P(r,z) is the
relatively complex sound pressure field (referenced to the pressure at a distance of 1 m
from the sound source) and is assumed to have a time factor of e−iωt; ρ(z) is the medium
density (in g/cm3); δ is the Dirac delta function; and k(z) = 2πf /c(z) is the wavenumber (f
is the sound frequency in Hz and c(z) is the speed of sound in the medium in m/s). We can
apply a Hankel transform in the range direction to Equation (1) and define

φ(kr, z) =
∫ ∞

0
P(r, z)J0(krr)rdr (2)

where φ is the wavenumber kernel function (kernel for short), kr is the horizontal wavenum-
ber, and J0 is the zero-order Bessel function of the first kind. Then, the sound pressure can
be expressed in terms of the Sommerfeld integral:

P(r, z) =
∫ ∞

0
φ(kr, z)J0(krr)krdkr (3)

Multiplying Equation (1) by J0(krr)rdr and integrating over r from 0 to ∞ (
∫ ∞

0 (·)J0(krr)rdr),
we can obtain the depth equation:

ρ
∂

∂z

(
1
ρ

∂φ(kr, z)
∂z

)
+ k2

zφ(kr, z) = −2δ(z− zs) (4)

where k2
z = k2 − k2

r . The wavenumber integration model consists of two successive steps:
one is to obtain the kernel by solving Equation (4); the other is to attain the pressure by
numerically integrating Equation (3).

2.1. The Boundary and Source Interface Conditions

As shown in Figure 1, the kernel (φ) is continuous at the upper boundary, and its
derivative with respect to the depth (φ′) satisfies

ρ−1
0+ φ′0+ = ρ−1

0− φ′0− (5)

where the subscripts “0−” and “0+” represent the upper and lower surfaces, respectively, of
the upper boundary (grid point 0). The derivative inside the water (φ′0+ ) can be calculated
using kernels on the interior grid points by the FDM. To calculate the derivative outside the
water (φ′0− ), considering the homogeneous properties of the half-space above the water
column, Equation (4) can be changed to the plane wave equation away from the source:

∂2φ/∂z2 + k2
zφ = 0 (6)
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Figure 1. Schematic diagram of the boundary and source interface conditions.

Because only upgoing waves are present in the upper half-space, the solution of
Equation (6) is:

φ = Ce−ikz,0− z (7)

where C is a constant. Then, φ′0− can be expressed by the kernel on the upper boundary:

φ′0− = −ikz,0−φ0 (8)

The lower boundary conditions at grid point N can be treated as symmetric (only
downgoing waves are present) to the upper boundary conditions.

The source interface conditions state that the kernel must be continuous (φz−s
= φz+s

),
and the derivative of the kernel follows the jump condition. Let z−s = zs− ε and z+s = zs + ε,
where ε→ 0 . Then, Equation (4) is integrated over depth z from z−s to z+s along the z-axis
through the source. We can obtain the jump condition of the derivative of the kernel:

φ′z−s − φ′z+s = 2 (9)

2.2. The FDM for the Depth Equaiton

As shown in Figure 1, equally-spaced grids in the depth direction are used in this paper,
and h is the grid step size in meters. At the interior grid points far from the boundaries
and source, the second derivatives in Equation (4) can be discretized using the standard
2nd-order accuracy FD scheme:[

ρ
∂

∂z

(
1
ρ

∂φ

∂z

)]
i
=

ρi
h

[(
1
ρ

∂φ

∂z

)
i+1/2

−
(

1
ρ

∂φ

∂z

)
i−1/2

]
=

ρi
h

(
φi+1 − φi
ρi+1/2h

− φi − φi−1

ρi−1/2h

)
(10)

where ρi+1/2 = ρ(zi+1/2) and ρi−1/2 = ρ(zi−1/2). Then, the discretized depth equation at
interior points can be expressed as:

1
h2

ρi
ρi−1/2

φi−1 +

[(
k2 − k2

r

)
− 1

h2

(
ρi

ρi−1/2
+

ρi
ρi+1/2

)]
φi +

1
h2

ρi
ρi+1/2

φi+1 = 0 (11)

At the lower surface of the upper boundary, the derivative of the kernel (φ′) can be
approximated using the 2nd-order FD scheme:

φ′0+ = (−3φ0 + 4φ1 − φ2)/(2h) (12)
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After inserting Equations (5) and (8), we can establish the equation:

ρ−1
0+ (−3φ0 + 4φ1 − φ2)/(2h) = −iρ−1

0− kz,0−φ0 (13)

and we can attain the following relationship between the kernel on the upper boundary φ0
and the kernels at the interior points (φ1 and φ2):

φ0 = ρ0−(4φ1 − φ2)/
(
3ρ0− − 2ikz,0−hρ0+

)
(14)

Specifically, for the pressure-release upper boundary, we can set the density in the
upper half-space to zero (ρ0− = 0, and thus, φ0 = 0). The lower boundary can be treated as
symmetrical with respect to the upper boundary, and thus, we can derive the following
relationship between the kernel on the lower boundary (φN) and the kernels at the interior
points (φN−1 and φN−2):

φN = ρN+(4φN−1 − φN−2)/
(
3ρN+ − 2ikz,N+hρN−

)
(15)

At grid points near the source interface, the MIB method is used to form the FD
schemes. The MIB is a numerical method that can treat discontinuous interfaces: the
solution on each side of the source interface is smoothly extended beyond the interface by
means of fictitious domains, and the fictitious values in the fictitious domains are deter-
mined simultaneously by enforcing the source interface conditions at the exact position of
the interface [31,32]. Assuming that the source interface lies between the grid nodes s and
s + 1, the interface splits this grid step into two pieces with sizes of θh at the upper part
and (1 − θ)h at the lower part, where 0 ≤ θ < 1. Because the derivative is discontinuous
at the source interface, the MIB method smoothly extends the solution on the upper side
of the source interface beyond the interface by means of fictitious domains and sets the
fictitious kernel Fs+1 at the location of grid point s + 1; symmetrically, the fictitious kernel
Fs is supplied at the location of grid point s to smoothly extend the solution from the lower
side of the source interface to the upper side. Using Lagrange interpolation polynomials,
the kernel at the source interface can be interpolated from the upper and lower sides:

φz−s
= θ(θ − 1)φs−1/2+

(
1− θ2

)
φs + θ(θ + 1)Fs+1/2 (16)

φz+s
= [1 + θ(θ − 3)/2]Fs − θ(θ − 2)φs+1 + θ(θ − 1)φs+2/2 (17)

Moreover, the derivatives of the kernel at the source interface can be approximated
using the 2nd-order FD scheme from the upper and lower sides:

φ′z−s = (2h)−1[(2θ − 1)φs−1 − 4θφs + (1 + 2θ)Fs+1] (18)

φz+s
= (2h)−1[(2θ − 3)Fs+4(1− θ)φs+1 + (2θ − 1)φs+2] (19)

Applying source interface conditions of φz−s
= φz+s

and Equation (9), the fictitious
kernels in the fictitious domains can be determined simultaneously: Fs =

−θ2φs−1+(θ+1)2φs−3θ2φs+1+θ2φs+2+2θ(θ+1)h
1+2θ−2θ2

Fs+1 = (θ−1)2φs−1−3(θ−1)2φs+(θ−2)2φs+1−(θ−1)2φs+2+2(θ−2)(θ−1)h
1+2θ−2θ2

(20)

Thus, by using the above FDM with 2nd-order accuracy, a linear system of the dis-
cretized depth equation at all grid points (excluding the boundary points 0 and N) can be
obtained and solved using direct methods for solving linear systems:

Aφ = b, A ∈ C(N−1)×(N−1), φ, b ∈ CN−1 (21)
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where

bi =


−1
h

ρs
ρs+1/2

2(θ−2)(θ−1)
1+2θ−2θ2 , i = s

−1
h

ρs+1
ρs+1/2

2θ(θ+1)
1+2θ−2θ2 , i = s + 1

0, else

(22)

and

A =



a1,1 a1,2
a2,1 a2,2 a2,3 0

. . . . . . . . .
as,s−1 as,s as,s+1 as,s+2

as+1,s−1 as+1,s as+1,s+1 as+1,s+2
. . . . . . . . .

0 aN−2,N−3 aN−2,N−2 aN−2,N−1
aN−1,N−2 aN−1,N−1


(23)

where  a1,1 = k2
z +

1
h2

(
ρ1

ρ1/2

ρ0−+2ikz,0− hρ0+

3ρ0−−2ikz,0− hρ0+
− ρ1

ρ3/2

)
a1,2 = 1

h2

(
ρ1

ρ3/2
− ρ1

ρ1/2

ρ0−
3ρ0−−2ikz,0− hρ0+

) (24)

 aN−1,N−1 = k2
z +

1
h2

(
ρN−1

ρN−1/2

ρN++2ikz,N+ hρN−
3ρN+−2ikz,N+ hρN−

− ρN−1
ρN−3/2

)
aN−1,N−2 = 1

h2

(
ρN−1

ρN−3/2
− ρN−1

ρN−1/2

ρN+

3ρN+−2ikz,N+ hρN−

) (25)



as,s−1 = 1
h2

(
ρs

ρs−1/2
+ ρs

ρs+1/2

(θ−1)2

1+2θ−2θ2

)
as,s = k2

z − 1
h2

(
ρs

ρs−1/2
+ ρs

ρs+1/2

(θ−2)2

1+2θ−2θ2

)
as,s+1 = 1

h2
ρs

ρs+1/2

(θ−2)2

1+2θ−2θ2

as,s+2 = − 1
h2

ρs
ρs+1/2

(θ−1)2

1+2θ−2θ2

(26)



as+1,s−1 = −1
h2

ρs+1
ρs+1/2

θ2

1+2θ−2θ2

as+1,s =
1
h2

ρs+1
ρs+1/2

(θ+1)2

1+2θ−2θ2

as+1,s+1 = k2
z − 1

h2

[
ρs+1

ρs+3/2
+ ρs+1

ρs+1/2

(θ+1)2

1+2θ−2θ2

]
as+1,s+2 = 1

h2

(
ρs+1

ρs+3/2
+ ρs+1

ρs+1/2
θ2

1+2θ−2θ2

) (27)


ai,i−1 = 1

h2
ρi

ρi−1/2

ai,i = k2
z − 1

h2

(
ρi

ρi−1/2
+ ρi

ρi+1/2

)
ai,i+1 = 1

h2
ρi

ρi+1/2

, where 1 < i < s or s + 1 < i < N − 1 (28)

To improve the numerical accuracy of the kernels, a 4th-order FD scheme is also
developed, which is described in Appendix A.

3. VWI Approaches

In addition to the sound pressure P, the VWI model also needs to calculate the
acoustic particle velocity. According to Euler’s equation, the acoustic particle velocity can
be calculated from the spatial gradient of pressure [33]:

V(r, z) = [U(r, z), W(r, z)] =
1

iρω
∇P(r, z) (29)
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In the present VWI model, the particle velocity at any position in the acoustic field is
directly calculated using the wavenumber integration method without a two-dimensional
grid. Using Equations (3) and (29), the horizontal and vertical components of the particle
velocity can be expressed as follows:

U =
1

iρω
Pr
′ =
−1
iρω

∫ ∞

0
φ(kr, z)J1(krr)k2

r dkr (30)

W =
1

iρω
P′z =

∫ ∞

0
w(kr, z)J0(krr)krdkr (31)

where Pr
′ = ∂P/∂r, Pz

′ = ∂P/∂z, J1 is the first-order Bessel function of the first kind
(∂J0(krr)/∂r = −kr J1(krr)), and w = φ′/(iρω) is the kernel of the vertical component
of the particle velocity and can also be calculated using the FDM. For the 2nd-order FD
scheme:

φ′ i =
1

2h


Fs+1 − φs−1, i = s
φs+2 − Fs, i = s + 1
φi+1 − φi−1, else

(32)

For the 4th-order FD scheme:

φ′ i =
1

12h


−3φ0 − 10φ1 + 18φ2 − 6φ3 + φ4, i = 1
3Fs+1 + 10φs − 18φs−1 + 6φs−2 − φs−3, i = s
−3Fs − 10φs+1 + 18φs+2 − 6φs+3 + φs+4, i = s + 1
3φN + 10φN−1 − 18φN−2 + 6φN−3 − φN−4, i = N − 1
8(φi+1 − φi−1)− (φi+2 − φi−2), else

(33)

In the cycles of wavenumber integration, the zero-order Bessel function of the first
kind J0(krr) can be shared by the integrals of the pressure P in Equation (3) and the vertical
component of the particle velocity W in Equation (31).

3.1. Algorithm Parameters

To numerically evaluate the wavenumber integrals in Equations (3), (30) and (31), the
kernel needs to be evaluated at discrete horizontal wavenumbers. In this paper, kr ∈ [0,
kmax] is discretized equidistantly to Nk cells, and the kernel at the midpoint of each cell
is used as the average value of that cell for wavenumber integration. Thus, discretized
horizontal wavenumbers used to solve the depth equation can be expressed as:

kr,n = (n− 1/2)∆kr, n = 1, 2, . . . , Nk (34)

where ∆kr is the horizontal wavenumber step size. To achieve more accurate integrals, ∆kr
should be small enough to avoid aliasing and wrap-around effects [2], which means that a
sufficient number of sampling points is needed at the maximum range Rmax. In this paper,
the horizontal wavenumber step size is estimated using:

∆kr = 2π/(nRRmax) (35)

where nR is the number of samples of the horizontal wavenumber in each 2π period (the
Bessel functions exhibit periodic oscillations similar to the cosine function) at r = Rmax.
Then, the total number of samples of the horizontal wavenumber can be calculated by
Nk = kmax/∆kr, where kmax is the finite maximum value of the horizontal wavenumber
used to truncate the range of the infinite Sommerfeld integrals.

In addition, to avoid the vertical wavenumber kz = 0, the integration path is commonly
moved into the complex plane [34], which means that:

kn = kr,n − iεk (36)
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where εk = 3∆kr/
(
2π log10 e

)
and e is the natural constant. Then, the discrete wavenumber

integrals of Equations (3) and (29) can be expressed as:

P(r, z) = ∆kr

Nk

∑
n=1

φ(kn, z)J0(knr)kn (37)

V(r, z) = ∆kr

(
i

ρω

Nk

∑
n=1

φ(kn, z)J1(knr)k2
n,

Nk

∑
n=1

w(kn, z)J0(knr)kn

)
(38)

3.2. Vector Sound Intensity

After the particle velocity field is calculated using the VWI method, the TASI stream-
lines can be traced to visualize the time-independent energy flow in the acoustic field.
Although sound intensity streamlines have been applied in several studies [35–37], these
streamlines are rarely shown together with the TL contours to better understand the TL
distribution.

For a steady-state (time-harmonic) sound field, the TASI I can be obtained by tempo-
rally averaging the instantaneous intensity over one time period (T = 2π/ω), which can be
expressed as [35]:

I =
1
2

Re{PV∗} = 1
2

Re{P∗V} (39)

Additionally, the two components of I can be expressed as:

Ir =
1
2

Re{PV∗r } and Iz =
1
2

Re{PV∗z } (40)

The TASI governs the net transport of energy, whose direction is proportional to
the spatial gradient of the pressure phase and perpendicular to the resultant wave fronts
(surfaces of the constant-pressure phase). The TASI streamline curves are tangent to the
direction of the local TASI vector at every point [35,38], and these streamlines can describe
the way in which sound energy is transferred, physically coming only from the sound
source and propagating along the streamlines to infinity [39].

4. Benchmarking for Vector Acoustic Fields

Four benchmark cases were used to test the present VWI model: the free acoustic field,
the ideal fluid waveguide, the Bucker waveguide, and the Munk waveguide. Moreover,
the TASI vectors and streamlines are calculated and traced to visualize the time-averaged
energy flow path, and the TL distribution is interpreted from the perspective of streamlines.

4.1. The Free Acoustic Field

If the acoustic environment is a homogeneous and unbounded medium (free space),
the solution of the acoustic Helmholtz equation is analytical and can be expressed using
the Sommerfeld–Weyl integral [2] (page 88):

P(r, z) =
eikR

R
=
∫ ∞

0

i
kz

eikz |z−zs | J0(krr)krdkr (41)

where R =
√

r2 + (z− zs)
2 is the distance from the source point (0, zs) to the position (r, z).

Moreover, the exact kernel is:
φExact = ieikz |z−zs |/kz (42)

which can be used to verify the numerical solution of the kernel solved by using the FDM.
Herein, the thickness of the uniform medium (water) is 5000 m, the sound speed and

density of the medium are 1500 m/s and 1 g/cm3, respectively, no attenuation occurs
within the medium, and the properties of the medium in the upper and lower half-space
are the same as those of the water. The depths of the sound source and the receiver are
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2500 m and 20 m, respectively, the largest receiver range is 24 km, and the source frequency
is 5 Hz. The interval step size in the range direction is 25 m, and nR = 10 and kmax = 10
kref, where kref = 2πf /cref is the reference wavenumber and cref = 1500 m/s is the reference
sound speed.

First, the FDM is verified using Equation (42). Setting the grid step size in the depth
direction to h = 20 m, comparisons of the kernel (kr = kr,1) obtained using the exact formula
and the 2nd- and 4th-order FD schemes are shown in Figure 2a,b, demonstrating that the
three results agree well and that the solutions of the 4th-order FD scheme are more accurate
than those of the 2nd-order FD scheme.

Figure 2. Comparisons of the kernel (kr = kr,1, h = 20 m) obtained using the exact formula, and the 2nd- and 4th-order
FD schemes.

Furthermore, the actual orders of the formal 2nd- and 4th-order FD schemes were
tested. The relative error of the kernel at the ith grid point can be expressed as:

Ei(h) =
∣∣∣φFDM

i − φExact
i

∣∣∣/∣∣∣φExact
i

∣∣∣ (43)

where φFDM
i is the numerical solution of the kernel on grid point i and φExact

i is the exact
solution. In this paper, two grid size steps (in the depth direction) of h1 = 20 m and
h2 = 10 m are used to solve the depth equation. Then, at the depth of z = ih1 = 2ih2, the
actual orders of the FD schemes can be calculated using:

n(z) =
loge[Ei(h1)/E2i(h2)]

loge(h1/h2)
(44)

Figure 3a,b show the relative errors of the kernel and actual orders with respect to
the formal 2nd- and 4th-order FD schemes (kr = kr,1), respectively, demonstrating that the
relative errors can be decreased by reducing the grid step size; the relative errors near the
source depth (2500 m) are smaller than those near the boundaries; the 4th-order FD scheme
has smaller relative errors than the 2nd-order FD scheme; and the actual orders of the 2nd-
and 4th-order FD schemes are close to their formal orders. It is worth pointing out that the
MIB method exhibits good performance at the discontinuous source interface, meaning
that the actual orders of the FD schemes do not decrease near the source interface.



J. Mar. Sci. Eng. 2021, 9, 1134 10 of 24

Figure 3. Relative errors of the kernel and actual orders of the FD schemes (kr = kr,1).

Figure 4 shows the TL curves along the receiver line z = 20 m, where TL = −20
log10|P| (in dB) and |P| denotes the magnitude of the complex pressure P. The solutions
of the 2nd- and 4th-order FD schemes (h = 20 m) match the exact analytical formula well
in general, and the curve of the 4th-order FD scheme is closer to that of the exact formula
than that of the 2nd-order FD scheme.

Figure 4. TL curves along z = 20 m for the free acoustic field (h = 20 m).

Figure 5 plots the TL contours and TASI streamlines obtained from the VWI model
using the 2nd-order FD scheme (a) and the 4th-order FD scheme (b). In both figures, the TL
contour lines are approximately concentric circles (the 4th-order scheme is more accurate
than the 2nd-order scheme), whereas the TASI streamlines are straight lines from the source
point to infinity, which is consistent with the characteristics of spherical waves in free space.
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Figure 5. TL contours and TASI streamlines obtained from the VWI model (h = 20 m) for the free acoustic field using the
2nd-order FD scheme and the 4th-order FD scheme.

4.2. The Ideal Fluid Waveguide

The ideal fluid waveguide is represented by a range-independent homogeneous water
column with pressure-release upper and lower boundaries [2] (page 102). The density
and sound speed of the water are ρw = 1 g/cm3 and cw = 1500 m/s, respectively, and
the densities of the medium in the upper and lower half-spaces are both 0 g/cm3. The
parameters of the sound field are as follows: the depth of the seabed is 100 m, the depths
of the sound source and receiver line are 35 m and 25 m, respectively, the largest receiver
range is 3 km, and the source frequency is 20 Hz. In the VWI model, nR = 10 and kmax = 10
kref. The interval step sizes in the range and depth directions are both 5 m.

The image method can be used to calculate the theoretical solutions of the ideal fluid
waveguide, and the acoustic pressure can be expressed using the summation of the physical
source and an infinite number of image sources as follows (in this paper, the summations
of the image method are truncated at m = 500):

P(r, z) =
∞

∑
m=1

(
eikRm1

Rm1
− eikRm2

Rm2
− eikRm3

Rm3
+

eikRm4

Rm4

)
(45)

with
Rmn =

√
r2 + (z− zmn)

2, n = 1, 2, 3, 4

where

zm1 = 2(m− 1)H + zs, zm2 = 2mH − zs, zm3 = −zm1, andzm4 = −zm2

and H is the depth of the seabed in meters.
Figure 6 shows the TL curves along the receiver line calculated by the image method

and the present VWI model using the 2nd- and 4th-order FD schemes. The three curves
generally match well. Moreover, at the peaks and troughs of the curves, the solutions of the
4th-order FDM are closer to those of the image method than those of the 2nd-order FDM.
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Figure 6. TL curves along the receiver line (z = 25 m) for the ideal fluid waveguide.

The TL contours and TASI streamlines obtained from the present VWI model using
the 2nd- and 4th-order FD schemes are shown in Figure 7a,b, respectively, and they match
well throughout the whole field. The main characteristic of the sound field is that the TASI
streamlines are periodic in the range direction.

Figure 7. TL contours and TASI streamlines obtained from the VWI model for the ideal fluid waveguide using the 2nd-order
FDM and the 4th-order FDM.

4.3. The Bucker Waveguide

The Bucker waveguide consists of a shallow water waveguide containing a bilinear
sound speed (in m/s) profile in the water column [40]:

c(z) = 1498 + |120− z|/60 (46)

The depth of the water is 240 m, and the density of the water is ρw = 1.0 g/cm3. The
density of the medium in the upper half-space is 0 g/cm3, whereas the homogeneous lower
half-space of the penetrable sediment layer has a sound speed of 1505 m/s and a density of
2.1 g/cm3, and no attenuation occurs in this problem. The depths of the sound source and
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the receiver line are 30 m and 90 m, respectively, the largest receiver range is 2 km, and the
source frequency is 100 Hz. In the VWI model, nR = 10 and kmax = 10 kref. The interval step
sizes in the range and depth directions are both 1 m. Because the density contrast in this
waveguide yields a significant number of virtual modes close to the real wavenumber axis,
normal mode models ignoring the continuous spectrum cannot provide accurate solutions.
Alternatively, wavenumber integration models have no restrictions on the density contrast
and are therefore capable of providing exact solutions for this environment [2] (page 300).

Figure 8 shows the TL curves along the receiver line calculated by the present VWI
model using the 2nd- and 4th-order FD schemes, demonstrating that the two curves
match well in all ranges. Figure 9 shows the TL contours obtained from the present VWI
model using the 4th-order FDM, revealing that the acoustic regions with denser TASI
streamlines have a smaller TL, which means that the energy distribution in the sound field
is not uniform.

Figure 8. TL curves along z = 90 m for the Bucker waveguide.

Figure 9. TL contours and TASI streamlines for the Bucker waveguide (4th-order FDM).
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4.4. The Munk Waveguide

The Munk waveguide has the following analytical sound speed (in m/s) profile in
water [2] (page 356):

c(z) = 1500
[
1 + 0.00737

(
z̃− 1 + e−z̃

)]
(47)

where the scaled depth z̃ = 2(z− 1300)/1300. The depth of the water is 5000 m, and the
density of the water is ρw = 1.0 g/cm3. The density of the medium in the upper half-space is
0 g/cm3, whereas the homogeneous lower half-space of the penetrable sediment layer has
a sound speed of 1600 m/s, a density of 1.8 g/cm3, and an attenuation rate of 0.8 dB/λ. The
depths of the sound source and the receiver line are both 100 m, and the source frequency
is 50 Hz. In the VWI model, nR = 8 and kmax = kref. The interval step sizes in the range and
depth directions are 300 m and 3.75 m, respectively.

Figure 10 shows the TL contours obtained from the present VWI model using the
2nd-order FDM and the acoustic rays calculated using the BELLHOP model in the acoustic
toolbox [41]. Figure 11 shows the TL contours and TASI streamlines obtained from the
VWI model using the 4th-order FDM, indicating that the acoustic regions with denser
TASI streamlines have a smaller TL, and the regions through which the energy flow is
concentrated form zones of sound convergence.

Figure 10. TL contours and rays obtained from the VWI model using the 2nd-order FDM and the
BELLHOP model, respectively.

Moreover, the TL contours in Figures 10 and 11 match well, but the acoustic rays
are significantly different from the TASI streamlines due to the following reasons. First,
the TASI streamlines are calculated using the sound field solutions of the vector acoustic
model, but the geometric rays are traced to calculate the solutions of the acoustic field.
Second, because only one TASI vector direction may exist at any point in the field, the
TASI streamlines cannot intersect; in contrast, the geometric rays can intersect among the
multipath arrivals of propagating wavefronts in an ocean-like waveguide. Third, the TASI
streamlines can accurately visualize the time-averaged energy flux, whereas the geometric
rays intuitively visualize the approximate propagation of an acoustic field from the source
to a receiver and do not include the diffracted components of the field.
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Figure 11. TL contours and TASI streamlines obtained from the VWI model using the 4th-order FDM.

Figure 12 shows the TL curves along the receiver line calculated by the present VWI
model using the 2nd- and 4th-order FD schemes, and the two curves match well in all
ranges. To test the effect of the density variation with depth on the acoustic field, a density
profile in water is used for the Munk waveguide (other properties remain unchanged):

ρw(z) = 1.0 + 1.2z/H
(

in g/cm3
)

(48)

where H = 5000 m is the seabed depth. Figure 13 shows the TL curves along the receiver
line for the Munk waveguide with different density profiles in water calculated by the
present VWI model using the 4th-order FDM, demonstrating that the density variation of
water has an important influence on the peaks and troughs of the TL curves.

Figure 12. TL curves along z = 100 m for the Munk waveguide (ρw = 1.0 g/cm3).
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Figure 13. TL curves along z = 100 m for the Munk waveguide (4th-order FDM).

5. Conclusions and Discussion

The present range-independent VWI model can serve as a benchmark vector model
for other acoustic models, such as FDM models and spectral method models. Moreover,
by applying the particle velocity, the TASI streamlines can be computed and displayed,
thereby bettering our understanding of the TL distribution, and these TASI streamlines
can also be applied to other vector acoustic models. Furthermore, the particle velocity can
be used to investigate the vortex-like structure and Stokes parameters [42] of the vector
acoustic field.

It should be mentioned that the present VWI model is computationally intensive
because it includes three Sommerfeld integrals (the pressure and two velocity components),
and the linear system of the discretized depth equation using the FDM is solved directly
because it is difficult to use the efficient forward elimination and backward substitution
algorithm since matrix A is not a diagonal banded form as a result of the MIB method.
Thus, parallel computing techniques [43] should be applied to the VWI model in future
research to accelerate the computation.

In addition to the FDM combined with the MIB method in this paper, finite element
methods and spectral methods [7] with high orders of accuracy can also be used to solve
the depth equation, and a performance comparison among these methods may be studied
in the future. Furthermore, the MIB method shows good performance in addressing the
discontinuous source interface of the one-dimensional depth equation, and thus, it is very
attractive to apply the MIB method to treat seabed discontinuities in FDM models [44].
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Appendix A. The FD Scheme with 4th-Order Accuracy

The derivation of the FD scheme with 4th-order accuracy is similar to that of the FD
scheme with 2nd-order accuracy, but the computing stencils are wider. The computational
stencil coefficients of the derivatives can be calculated using Taylor series and the method
of undetermined coefficients [45] (or Lagrange interpolation polynomials).

Appendix A.1. Interior Grid Points

At the interior grid points away from the boundaries and source interface, the second
derivatives in Equation (4) can be discretized using the cell-centered FD scheme with
4th-order accuracy [44,46]:[

ρ
∂

∂z

(
1
ρ

∂φ

∂z

)]
i
=

ρi
24h

[
27

(
φ′ i+1/2

ρi+1/2
−

φ′ i−1/2

ρi−1/2

)
−

φ′ i+3/2

ρi+3/2
+

φ′ i−3/2

ρi−3/2

]
(A1)

and the first derivatives at the half-integer points can be discretized using the same FD
scheme:

φ′ i+1/2 =
27(φi+1 − φi)− (φi+2 − φi−1)

24h
(A2)

Then, the discretized depth equation at the interior points can be expressed as:

ρi
576h2

[
1

ρi+3/2
φi+3 −

(
27

ρi+3/2
+ 27

ρi+1/2

)
φi+2 +

(
272

ρi+1/2
+ 27

ρi−1/2
+ 27

ρi+3/2

)
φi+1

+
(

272

ρi−1/2
+ 27

ρi+1/2
+ 27

ρi−3/2

)
φi−1 −

(
27

ρi−1/2
+ 27

ρi−3/2

)
φi−2 +

1
ρi−3/2

φi−3

]
+
[
k2

z −
ρi

576h2

(
272

ρi+1/2
+ 272

ρi−1/2
+ 1

ρi+3/2
+ 1

ρi−3/2

)
φi

]
= 0

(A3)

Appendix A.2. Grid Points near the Boundaries

At the lower surface of the upper boundary, the derivative of φ can be approximated
using the 4th-order FD scheme:

φ′0+ = (−25φ0 + 48φ1 − 36φ2 + 16φ3 − 3φ4)/(12h) (A4)

After inserting Equations (5) and (8), we can obtain the following relationship:

φ0 = ρ0−(48φ1 − 36φ2 + 16φ3 − 3φ4)/
(
25ρ0− − 12ikz,0−hρ0+

)
(A5)

The 4th-order FD scheme of the second derivative at grid point 1 is:[
ρ

∂

∂z

(
φ′

ρ

)]
i=1

=
ρ1

840h

(
128

φ′0+
ρ0+
− 1085

φ′1/2

ρ1/2
+ 1015

φ′3/2

ρ3/2
− 63

φ′5/2

ρ5/2
+ 5

φ′7/2

ρ7/2

)
(A6)

where [47]
φ′1/2 = (−22φ0 + 17φ1 + 9φ2 − 5φ3 + φ4)/(24h) (A7)

The stencil coefficients of the FD scheme at the lower boundary point are anti-
symmetric to those at the upper boundary point.
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Appendix A.3. Grid Points near the Source Interface

The kernels at the source interface can be interpolated from the upper and lower sides:

φz−s
=

s

∑
i=s−3

w−0,iφi + w−0,s+1Fs+1 (A8)

φz+s
= w+

0,sFs +
s+4

∑
i=s+1

w+
0,iφi (A9)

where 

w−0,s−3 = θ
(
−2− θ + 2θ2 + θ3)/24

w−0,s−2 = θ
(
3 + θ − 3θ2 − θ3)/6

w−0,s−1 = θ
(
−6 + θ + 4θ2 + θ3)/4

w−0,s = 1 + θ
(
5− 5θ − 5θ2 − θ3)/6

w−0,s+1 = θ
(
6 + 11θ + 6θ2 + θ3)/24

(A10)



w+
0,s = 1 + θ

(
−50+35θ − 10θ2 + θ3)/24

w+
0,s+1 = θ

(
24− 26θ + 9θ2 − θ3)/6

w+
0,s+2 = θ

(
−12+19θ − 8θ2 + θ3)/4

w+
0,s+3 = θ

(
8− 14θ + 7θ2 − θ3)/6

w+
0,s+4 = θ

(
−6 + 11θ − 6θ2 + θ3)/24

(A11)

The derivatives of the kernel at the source interface can be approximated using the
4th-order FD scheme from the upper and lower sides:

φ′z−s =
s

∑
i=s−3

w−1,iφi + w−1,s+1Fs+1 (A12)

φ′z+s = w+
1,sFs +

s+4

∑
i=s+1

w+
1,iφi (A13)

where 

w−1,s−3 = 1
12h
(
−1− θ + 3θ2 + 2θ3)

w−1,s−2 = 1
6h
(
3+2θ − 9θ2 − 4θ3)

w−1,s−1 = 1
2h
(
−3 + θ + 6θ2 + 2θ3)

w−1,s =
1

6h
(
5− 10θ − 15θ2 − 4θ3)

w−1,s+1 = 1
12h
(
3 + 11θ + 9θ2 + 2θ3)

(A14)



w+
1,s =

1
12h
(
−25+35θ − 15θ2 + 2θ3)

w+
1,s+1 = 1

6h
(
24− 52θ + 27θ2 − 4θ3)

w+
1,s+2 = 1

2h
(
−6+19θ − 12θ2 + 2θ3)

w+
1,s+3 = 1

6h
(
8− 28θ + 21θ2 − 4θ3)

w+
1,s+4 = 1

12h
(
−3 + 11θ − 9θ2 + 2θ3)

(A15)

Applying the source interface conditions of Equation (9) and φz−s
= φz+s

, we can
obtain:

Fs =
1
γ

[
s
∑

i=s−3

(
w−0,s+1w−1,i − w−1,s+1w−0,i

)
φi −

s+4
∑

i=s+1

(
w−0,s+1w+

1,i − w−1,s+1w+
0,i

)
φi − 2w−0,s+1

]
Fs+1 = 1

γ

[
s
∑

i=s−3

(
w+

0,sw−1,i − w+
1,sw−0,i

)
φi −

s+4
∑

i=s+1

(
w+

0,sw+
1,i − w+

1,sw+
0,i

)
φi − 2w+

0,s

] (A16)

where γ = w+
1,sw−0,s+1 − w−1,s+1w+

0,s.
The 4th-order FD schemes of the second derivative at grid points s and s + 1 are:[

ρ
∂

∂z

(
1
ρ

∂φ

∂z

)]
s
=

ρs

24h

(
−

φ′s−7/2

ρs−7/2
+ 5

φ′s−5/2

ρs−5/2
− 9

φ′s−3/2

ρs−3/2
− 17

φ′s−1/2

ρs−1/2
+ 22

φ′(s+1/2)−

ρs+1/2

)
(A17)
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[
ρ

∂

∂z

(
1
ρ

∂φ

∂z

)]
s+1

=
ρs+1

24h

(
φ′s+9/2

ρs+9/2
− 5

φ′s+7/2

ρs+7/2
+ 9

φ′s+5/2

ρs+5/2
+ 17

φ′s+3/2

ρs+3/2
− 22

φ′(s+1/2)+

ρs+1/2

)
(A18)

where
φ′(s+1/2)− = (22Fs+1 − 17φs − 9φs−1 + 5φs−2 − φs−3)/(24h) (A19)

φ′(s+1/2)+ = (−22Fs + 17φs+1 + 9φs+2 − 5φs+3 + φs+4)/(24h) (A20)

The other first derivatives can be approximated using Equation (A2).

Appendix A.4. Linear System of the 4th-Order FD Scheme

Thus, a linear system of the discretized depth equation at all grid points can be
obtained using the 4th-order FDM:

A4thφ = b4th, A4th ∈ C(N−1)×(N−1), φ, b4th ∈ CN−1 (A21)

where

b4th,i =



1
576h2

ρs−2
ρs−1/2

2w+
0,s

γ , i = s− 2

−1
576h2

(
27ρs−1
ρs−1/2

+ 22ρs−1
ρs+1/2

) 2w+
0,s

γ , i = s− 1

1
576h2

(
17ρs

ρs−1/2
+ 484ρs

ρs+1/2

) 2w+
0,s

γ , i = s

1
576h2

(
17ρs

ρs−1/2
+ 484ρs

ρs+1/2

) 2w+
0,s

γ , i = s

1
576h2

(
17ρs+1
ρs−1/2

+ 484ρs+1
ρs+1/2

) 2w−0,s+1
γ , i = s + 1

−1
576h2

(
27ρs+2
ρs+3/2

+ 22ρs+2
ρs+1/2

) 2w−0,s+1
γ , i = s + 2

1
576h2

ρs+3
ρs+3/2

2w−0,s+1
γ , i = s + 3

0, else

, 1 ≤ i ≤ N − 1 (A22)

and
A4th =

(
mi,j
)
, 1 ≤ i, j ≤ N − 1 (A23)

The nonzero elements in the first row of A4th include

m1,1 = k2
z +

1
20160h2

[
48α1 −

(
18445 ρ1

ρ1/2
+ 27405 ρ1

ρ3/2
+ 63 ρ1

ρ5/2

)]
m1,2 = 1

20160h2

(
−36α1 − 9765 ρ1

ρ1/2
+ 27405 ρ1

ρ3/2
+ 1701 ρ1

ρ5/2
+ 5 ρ1

ρ7/2

)
m1,3 = 1

20160h2

(
16α1 + 5425 ρ1

ρ1/2
− 1015 ρ1

ρ3/2
− 1701 ρ1

ρ5/2
− 135 ρ1

ρ7/2

)
m1,4 = 1

20160h2

(
−3α1 − 1085 ρ1

ρ1/2
+ 63 ρ1

ρ5/2
+ 135 ρ1

ρ7/2

)
m1,5 = 1

20160h2

(
−5 ρ1

ρ7/2

)
(A24)

where α1 =
(23870ρ1/ρ1/2+1015ρ1/ρ3/2)ρ0−−3072ikz,0− hρ1

25ρ0−−12ikz,0− hρ0+
.

The nonzero elements in the second row of A4th include

m2,1 = 1
576h2

(
48α2 + 17 ρ2

ρ1/2
+ 729 ρ2

ρ3/2
+ 27 ρ2

ρ5/2

)
m2,2 = k2

z +
1

576h2

(
−36α2 + 9 ρ2

ρ1/2
− 729 ρ2

ρ3/2
− 729 ρ2

ρ5/2
− ρ2

ρ7/2

)
m2,3 = 1

576h2

(
16α2 − 5 ρ2

ρ1/2
+ 27 ρ2

ρ3/2
+ 729 ρ2

ρ5/2
+ 27 ρ2

ρ7/2

)
m2,4 = 1

576h2

(
−3α2 +

ρ2
ρ1/2
− 27 ρ2

ρ5/2
− 27 ρ2

ρ7/2

)
m2,5 = 1

576h2
ρ2

ρ7/2

(A25)
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where α2 = −
(

22 ρ2
ρ1/2

+ 27 ρ2
ρ3/2

)
ρ0−

25ρ0−−12ikz,0− hρ0+
.

The nonzero elements in the third row of A4th include

m3,1 = 1
576h2

(
48α3 − 27 ρ3

ρ5/2
− 27 ρ3

ρ3/2

)
m3,2 = 1

576h2

(
−36α3 + 272 ρ3

ρ5/2
+ 27 ρ3

ρ7/2
+ 27 ρ3

ρ3/2

)
m3,3 = k2

z +
1

576h2

(
16α3 − 272 ρ3

ρ7/2
− 272 ρ3

ρ5/2
− ρ3

ρ9/2
− ρ3

ρ3/2

)
m3,4 = 1

576h2

(
−3α3 + 272 ρ3

ρ7/2
+ 27 ρ3

ρ5/2
+ 27 ρ3

ρ9/2

)
m3,5 = 1

576h2

(
−27 ρ3

ρ9/2
− 27 ρ3

ρ7/2

)
m3,6 = 1

576h2
ρ3

ρ9/2

(A26)

where α3 = ρ3
ρ3/2

ρ0−
25ρ0−−12ikz,0− hρ0+

.

The nonzero elements in the (s − 2)th row of A4th include

ms−2,s−5 = 1
576h2

ρs−2
ρs−7/2

ms−2,s−4 = 1
576h2

(
−27 ρs−2

ρs−5/2
− 27 ρs−2

ρs−7/2

)
ms−2,s−3 = 1

576h2

[
272 ρs−2

ρs−5/2
+ 27 ρs−2

ρs−3/2
+ 27 ρs−2

ρs−7/2
+ αs−2

(
w+

0,sw−1,s−3 − w+
1,sw−0,s−3

)]
ms−2,s−2 = k2

z +
1

576h2

[
αs−2

(
w+

0,sw−1,s−2 − w+
1,sw−0,s−2 − γ

)
− 272ρs−2

ρs−3/2
− 272ρs−2

ρs−5/2
− ρs−2

ρs−7/2
− ρs−2

ρs−1/2

]
ms−2,s−1 = 1

576h2

[
272 ρs−2

ρs−3/2
+ 27 ρs−2

ρs−5/2
+ 27 ρs−2

ρs−1/2
+ αs−2

(
w+

0,sw−1,s−1 − w+
1,sw−0,s−1

)]
ms−2,s =

1
576h2

[
−27 ρs−2

ρs−1/2
− 27 ρs−2

ρs−3/2
+ αs−2

(
w+

0,sw−1,s − w+
1,sw−0,s

)]
ms−2,j =

1
576h2 αs−2

(
w+

1,sw+
0,j − w+

0,sw+
1,j

)
, s + 1 ≤ j ≤ s + 4

(A27)

where αs−2 = ρs−2
ρs−1/2

1
γ .

The nonzero elements in the (s − 1)th row of A4th include

ms−1,s−4 = 1
576h2

ρs−1
ρs−5/2

ms−1,s−3 = 1
576h2

[
− 27ρs−1

ρs−5/2
− 27ρs−1

ρs−3/2
+ ρs−1

ρs+1/2
+ αs−1

(
w+

0,sw−1,s−3 − w+
1,sw−0,s−3

)]
ms−1,s−2 = 1

576h2

[
27ρs−1
ρs−5/2

+ 272ρs−1
ρs−3/2

+ 27ρs−1
ρs−1/2

− 5ρs−1
ρs+1/2

+ αs−1

(
w+

0,sw−1,s−2 − w+
1,sw−0,s−2

)]
ms−1,s−1 = k2

z +
1

576h2

[
αs−1

(
w+

0,sw−1,s−1 − w+
1,sw−0,s−1

)
− ρs−1

ρs−5/2
− 272ρs−1

ρs−3/2
− 272ρs−1

ρs−1/2
+ 9ρs−1

ρs+1/2

]
ms−1,s =

1
576h2

[
27ρs−1
ρs−3/2

+ 272ρs−1
ρs−1/2

+ 17ρs−1
ρs+1/2

+ αs−1

(
w+

0,sw−1,s − w+
1,sw−0,s

)]
ms−1,j =

1
576h2 αs−1

(
w+

1,sw+
0,j − w+

0,sw+
1,j

)
, s + 1 ≤ j ≤ s + 4

(A28)

where αs−1 = −
(

27ρs−1
ρs−1/2

+ 22ρs−1
ρs+1/2

)
1
γ .

The nonzero elements in the sth row of A4th include

ms,s−5 = 1
576h2

−ρs
ρs−7/2

ms,s−4 = 1
576h2

(
27ρs

ρs−7/2
+ 5ρs

ρs−5/2

)
ms,s−3 = 1

576h2

[
αs

(
w+

0,sw−1,s−3 − w+
1,sw−0,s−3

)
− 27ρs

ρs−7/2
− 135ρs

ρs−5/2
− 9ρs

ρs−3/2
− 22ρs

ρs+1/2

]
ms,s−2 = 1

576h2

[
αs

(
w+

0,sw−1,s−2 − w+
1,sw−0,s−2

)
+ ρs

ρs−7/2
+ 135ρs

ρs−5/2
+ 243ρs

ρs−3/2
− 17ρs

ρs−1/2
+ 110ρs

ρs+1/2

]
ms,s−1 = 1

576h2

[
αs

(
w+

0,sw−1,s−1 − w+
1,sw−0,s−1

)
− 5ρs

ρs−5/2
− 243ρs

ρs−3/2
+ 459ρs

ρs−1/2
− 198ρs

ρs+1/2

]
ms,s = k2

z +
1

576h2

[
αs

(
w+

0,sw−1,s − w+
1,sw−0,s

)
+ 9ρs

ρs−3/2
− 459ρs

ρs−1/2
− 374ρs

ρs+1/2

]
ms,j =

1
576h2 αs

(
w+

1,sw+
0,j − w+

0,sw+
1,j

)
, s + 1 ≤ j ≤ s + 4

(A29)

where αs =
(

17ρs
ρs−1/2

+ 484ρs
ρs+1/2

)
1
γ .

The nonzero elements in the (s + 1)th row of A4th include
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ms+1,s+6 = ρs+1
576h2

−1
ρs+9/2

ms+1,s+5 = ρs+1
576h2

(
27

ρs+9/2
+ 5

ρs+7/2

)
ms+1,s+4 = ρs+1

576h2

[
− 27

ρs+9/2
− 135

ρs+7/2
− 9

ρs+5/2
− 22

ρs+1/2
− αs+1

(
w−0,s+1w+

1,s+4 − w−1,s+1w+
0,s+4

)]
ms+1,s+3 = ρs+1

576h2

[
1

ρs+9/2
+ 135

ρs+7/2
+ 243

ρs+5/2
− 17

ρs+3/2
+ 110

ρs+1/2
− αs+1

(
w−0,s+1w+

1,s+3 − w−1,s+1w+
0,s+3

)]
ms+1,s+2 = ρs+1

576h2

[
− 5

ρs+7/2
− 243

ρs+5/2
+ 459

ρs+3/2
− 198

ρs+1/2
− αs+1

(
w−0,s+1w+

1,s+2 − w−1,s+1w+
0,s+2

)]
ms+1,s+1 = k2

z +
ρs+1

576h2

[
9

ρs+5/2
− 459

ρs+3/2
− 374

ρs+1/2
− αs+1

(
w−0,s+1w+

1,s+1 − w−1,s+1w+
0,s+1

)]
ms+1,j =

ρs+1
576h2 αs+1

(
w−0,s+1w−1,i − w−1,s+1w−0,i

)
, s− 3 ≤ j ≤ s

(A30)

where αs+1 =
(

17
ρs+3/2

+ 484
ρs+1/2

)
1
γ .

The nonzero elements in the (s + 2)th row of A4th include

ms+2,s+5 = ρs+2
576h2

1
ρs+7/2

ms+2,s+4 = ρs+2
576h2

[
− 27

ρs+7/2
− 27

ρs+5/2
+ 1

ρs+1/2
− αs+2

(
w−0,s+1w+

1,s+4 − w−1,s+1w+
0,s+4

)]
ms+2,s+3 = ρs+2

576h2

[
27

ρs+7/2
+ 272

ρs+5/2
+ 27

ρs+3/2
− 5

ρs+1/2
− αs+2

(
w−0,s+1w+

1,s+3 − w−1,s+1w+
0,s+3

)]
ms+2,s+2 = k2

z +
ρs+2

576h2

[
9

ρs+1/2
− 1

ρs+7/2
− 272

ρs+5/2
− 272

ρs+3/2
− αs+2

(
w−0,s+1w+

1,s+2 − w−1,s+1w+
0,s+2

)]
ms+2,s+1 = ρs+2

576h2

[(
27

ρs+5/2
+ 272

ρs+3/2
+ 17

ρs+1/2

)
− αs+2

(
w−0,s+1w+

1,s+1 − w−1,s+1w+
0,s+1

)]
ms+2,j =

ρs+2
576h2 αs+2

(
w−0,s+1w−1,i − w−1,s+1w−0,i

)
, s− 3 ≤ j ≤ s

(A31)

where αs+2 = −
(

27
ρs+3/2

+ 22
ρs+1/2

)
1
γ .

The nonzero elements in the (s + 3)th row of A4th include

ms+3,s+6 = ρs+3
576h2

1
ρs+9/2

ms+3,s+5 = ρs+3
576h2

(
− 27

ρs+9/2
− 27

ρs+7/2

)
ms+3,s+4 = ρs+3

576h2

[
272

ρs+7/2
+ 27

ρs+5/2
+ 27

ρs+9/2
− αs+3

(
w−0,s+1w+

1,s+4 − w−1,s+1w+
0,s+4

)]
ms+3,s+3 = k2

z +
ρs+3

576h2

[
− 272

ρs+7/2
− 272

ρs+5/2
− 1

ρs+9/2
− 1

ρs+3/2
− αs+3

(
w−0,s+1w+

1,s+3 − w−1,s+1w+
0,s+3

)]
ms+3,s+2 = ρs+3

576h2

[
272

ρs+5/2
+ 27

ρs+7/2
+ 27

ρs+3/2
− αs+3

(
w−0,s+1w+

1,s+2 − w−1,s+1w+
0,s+2

)]
ms+3,s+1 = ρs+3

576h2

[
− 27

ρs+5/2
− 27

ρs+3/2
− αs+3

(
w−0,s+1w+

1,s+1 − w−1,s+1w+
0,s+1

)]
ms+3,j =

ρs+3
576h2 αs+3

(
w−0,s+1w−1,j − w−1,s+1w−0,j

)
, s− 3 ≤ j ≤ s

(A32)

where αs+3 = 1
ρs+3/2

1
γ .

The nonzero elements in the (N − 3)th row of A4th include

mN−3,N−1 = 1
576h2

(
48αN−3 − 27 ρN−3

ρN−5/2
− 27 ρN−3

ρN−3/2

)
mN−3,N−2 = 1

576h2

(
−36αN−3 + 272 ρN−3

ρN−5/2
+ 27 ρN−3

ρN−7/2
+ 27 ρN−3

ρN−3/2

)
mN−3,N−3 = k2

z +
1

576h2

(
16αN−3 − 272 ρN−3

ρN−7/2
− 272 ρN−3

ρN−5/2
− ρN−3

ρN−9/2
− ρN−3

ρN−3/2

)
mN−3,N−4 = 1

576h2

(
−3αN−3 + 272 ρN−3

ρN−7/2
+ 27 ρN−3

ρN−5/2
+ 27 ρN−3

ρN−9/2

)
mN−3,N−5 = 1

576h2

(
−27 ρN−3

ρN−9/2
− 27 ρN−3

ρN−7/2

)
mN−3,N−6 = 1

576h2
ρN−3

ρN−9/2

(A33)

where αN−3 = ρN−3
ρN−3/2

ρN+

25ρN+−12ikz,N+ hρN−
.

The nonzero elements in the (N − 2)th row of A4th include
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mN−2,N−1 = 1
576h2

(
48αN−2 + 17 ρN−2

ρN−1/2
+ 729 ρN−2

ρN−3/2
+ 27 ρN−2

ρN−5/2

)
mN−2,N−2 = k2

z +
1

576h2

(
−36αN−2 + 9 ρN−2

ρN−1/2
− 729 ρN−2

ρN−3/2
− 729 ρN−2

ρN−5/2
− ρN−2

ρN−7/2

)
mN−2,N−3 = 1

576h2

(
16αN−2 − 5 ρN−2

ρN−1/2
+ 27 ρN−2

ρN−3/2
+ 729 ρN−2

ρN−5/2
+ 27 ρN−2

ρN−7/2

)
mN−2,N−4 = 1

576h2

(
−3αN−2 +

ρN−2
ρN−1/2

− 27 ρN−2
ρN−5/2

− 27 ρN−2
ρN−7/2

)
mN−2,N−5 = 1

576h2
ρN−2

ρN−7/2

(A34)

where αN−2 = −
(

22
ρN−1/2

+ 27
ρN−3/2

)
ρN+

25ρN+−12ikz,N+ hρN−
.

The nonzero elements in the (N − 1)th row of A4th include

mN−1,N−1 = k2
z +

1
20160h2

[
48αN−1 −

(
18445 ρN−1

ρN−1/2
+ 27405 ρN−1

ρN−3/2
+ 63 ρN−1

ρN−5/2

)]
mN−1,N−2 = 1

20160h2

(
−36αN−1 − 9765 ρN−1

ρN−1/2
+ 27405 ρN−1

ρN−3/2
+ 1701 ρN−1

ρN−5/2
+ 5 ρN−1

ρN−7/2

)
mN−1,N−3 = 1

20160h2

(
16αN−1 + 5425 ρN−1

ρN−1/2
− 1015 ρN−1

ρN−3/2
− 1701 ρN−1

ρN−5/2
− 135 ρN−1

ρN−7/2

)
mN−1,N−4 = 1

20160h2

(
−3αN−1 − 1085 ρN−1

ρN−1/2
+ 63 ρN−1

ρN−5/2
+ 135 ρN−1

ρN−7/2

)
mN−1,N−5 = 1

20160h2

(
−5 ρN−1

ρN−7/2

)
(A35)

where αN−1 =
(23870ρN−1/ρN−1/2+1015ρN−1/ρN−3/2)ρN+−3072ikz,N+ hρN−1

25ρN+−12ikz,N+ hρN−
.

The nonzero elements in the other rows (3 < i < s − 2 or s + 3 < i < N − 3) of A4th
include 

mi,i±3 = ρi
576h2

1
ρi±3/2

mi,i±2 = ρi
576h2

(
− 27

ρi±3/2
− 27

ρi±1/2

)
mi,i±1 = ρi

576h2

(
272

ρi±1/2
+ 27

ρi∓1/2
+ 27

ρi±3/2

)
mi,i = k2

z +
ρi

576h2

(
− 272

ρi+1/2
− 272

ρi−1/2
− 1

ρi+3/2
− 1

ρi−3/2

) (A36)
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