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Abstract: Floating caissons may oscillate primarily due to ocean waves during towing operations.
Reducing the oscillation based on the extension part (footing) of the bottom slab of the caissons can
efficiently increase the safety of towing maneuvers. However, the influence of the footing length on
the motion of floating caissons has not been adequately studied. This study investigates this topic
through hydraulic model experiments and numerical simulations. Experimental results for regular
waves show that the rotational motion (pitch) of the caisson around the wave crest direction increases
owing to resonance. This suggests that the pitch could be reduced by designing caissons, such that
resonance may be prevented along the footing length. In the numerical simulations of irregular
waves, the Fourier amplitudes of the heave and pitch show that the footings amplify their low-
frequency components and reduce their high-frequency components. Furthermore, the significant
total amplitudes of the heave and pitch show a different trend from that of the regular waves observed
in the hydraulic model experiments. This suggests that it is essential to examine the motion of a
caisson under irregular waves when assessing the effect of footings in an actual marine environment.

Keywords: caisson; pitch; heave; natural frequency; regular wave; irregular wave

1. Introduction

Caissons are essentially large hollow boxes made of reinforced concrete and are used as
coastal and harbor structures, such as breakwaters, quay walls, and bridge piers. Such cais-
sons are typically built on land yards, dry docks, and floating docks. The completed caisson
is floated in the sea and towed to a construction site using tugboats. At the final position of
the caisson, sea water is poured into the caisson, and the caisson is settled on the rubble
mound. Subsequently, crushed stone is placed inside the caisson, and finally, cap concrete
is constructed on the caisson. An example of the design, construction, and installation of
caissons used as bridge piers was reported by Chakrabarti et al. [1].

When towing a floating caisson, it may significantly oscillate depending on the wave
conditions. To increase the safety of towing maneuvers and the availability of construction
works, it is necessary to reduce the oscillation of a floating caisson. Huang et al. [2] exam-
ined the responses of a free-floating rectangular caisson from hydraulic model experiments
and numerical simulations using a frequency-domain solver, WAMIT, and a time-domain
solver, Star-CCM+. The numerical results have shown that the drift velocity of the caisson
is several times larger than the Stokes drift velocity. Huang et al. [3] experimentally investi-
gated a cable system and an anchor system for positioning and installing a large caisson.
This study showed the acceptable wave conditions when using the cable system and the
appropriate drafts of the caisson when using the anchor cable system. Kotake et al. [4]
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focused on the motion of a small caisson hung with crane wires. Based on numerical simu-
lations using a three-dimensional coupled fluid—structure-sediment-seabed interaction
model (FS3M) [5], this study showed that minimizing the quantity of water inside the
caisson and subsequently decreasing the draft of the caisson was effective in reducing
the oscillation of the caisson under predetermined wave conditions. Meneses et al. [6]
developed a new dynamic positioning control system for the sinking process of floating
caissons and implemented it in an experimental test campaign. This study demonstrated
the possibility of dynamically controlling the horizontal position of a floating caisson
during the sinking phase to increase the safety and success of the positioning and sinking
maneuvers. Gu et al. [7] evaluated the motion of a towed caisson under combined wind
and wave fields using Ansys AQWA. Regarding the heave (vertical translational motion)
of the caisson, this study has shown that the maximum value is affected by the towrope
length and draft, and the fluctuation is influenced by the towing speed and draft.

In general, the bottom slab of a caisson overhangs the offshore and onshore sides
to reduce the contact pressure acting on the foundation and enhance the stability of
the caisson. This extension part of the bottom slab is referred to as “footing” in this
study. Using such footings to reduce the oscillation of a floating caisson could prove
efficient. Nagasawa et al. [8] conducted hydraulic model experiments focusing on the
motion of floating caissons with different footing lengths and found that the significant
value of the heave under irregular waves decreases with an increase in the footing length.
From numerical simulations based on the source technique, Ishimi et al. [9] showed that
footings reduce the heave and pitch (rotational motion around the wave crest direction).
Michimae et al. [10] experimentally revealed that the pitch of a floating long caisson
with a non-rectangular shape is small in the presence of footings compared with caissons
without footings. However, there is no study that has varied the footing length except
for Nagasawa et al. [8], and their investigation was limited to the influence on the heave.
Hence, the mechanism of the influence of the footing length on the motion of a floating
caisson is not clearly understood.

In this study, the characteristics and mechanism of the motion of a floating caisson
were investigated by changing the footing length through hydraulic model experiments
and numerical analyses. Free and forced oscillation experiments were conducted in the
hydraulic model experiments. In the free oscillation experiments, the natural frequency
of the caisson was obtained by oscillating the caisson under still-water conditions. In the
forced oscillation experiments, regular waves were generated toward the caisson with
different footing lengths to determine the motion of the caisson. In the numerical analyses,
simulations modeled based on the hydraulic model experiments were conducted for free
and forced oscillation simulations using the three-dimensional coupled fluid-structure—
sediment-seabed interaction model (FS3M) [5]. In the free oscillation simulations, the nat-
ural frequency of the caisson was computed by oscillating the caisson under still-water
conditions and comparing the results with experimental data. In the forced oscillation
simulations, the caisson was subjected to regular and irregular waves. For the regular
waves, the predictive capability of FS3M was demonstrated through comparison with
experimental results. For the irregular waves, the motion of the caisson was investigated
to assess the effect of footings in an actual marine environment.

The rest of the present paper is organized as follows: Chapter 2 describes the setup
and conditions in the hydraulic model experiments. Subsequently, experimental data
are presented and discussed in Chapter 3. Chapter 4 gives a brief explanation of FS3M
for completeness and describes the computational setup and conditions in the numerical
analyses. In Chapter 5, numerical results are presented and discussed through a comparison
with the experimental data. Finally, conclusions are summarized in Chapter 5.

2. Experimental Setup and Conditions

A series of hydraulic model experiments were conducted at a length scale of 1/50
based on the Froude similarity law, using a 30.0-m-long, 0.7-m-wide, and 0.90-m-high
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wave flume equipped with a piston-type wave generator (Fudo Tetra Co., Tokyo, Japan) in
Nagoya University, Japan. Since an active wave absorption system in the wave generator
was not used in this study, the wave paddle was displaced sinusoidally following the linear
wave theory. A wave absorber, which was composed of a gravel beach covered with a
polypropylene filter material, was set at the other end of the flume.

The schematic of the experimental setup is shown in Figure 1. The schematic and
specifications of a modeled 20-ton rectangular caisson are presented in Figure 2 and Table 1.
As shown in Figure 2 and Table 1, the caisson was made of polyvinyl chloride (PVC) with a
x-directional length B of 0.34 m, a y—directional width of 0.30 m, and a z-directional height
of 0.26 m. The steel weights shown in gray in Figure 2 were used to adjust the mass to 16.8
kg, the draft to 0.16 m, and the height of the gravity center from the bottom to 0.108 m.
The position and weight of the weights were determined to match the mass and moment
of inertia with the prototype. The specifications of the footings are presented in Table 2.
The footings were made of PVC, the z—directional height of the footings was set to 0.02
m based on the prototype caisson, and the x—directional length of the footings by was
changed to 0.00 (no footing), 0.02, 0.03, 0.04, and 0.06 m. The caisson with and without
the footings was floated in the wave flume with a still water depth of 0.30 m, as shown in
Figure 1.
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Figure 1. Wave flume (unit: mm; W3, W4: locations of the wave gauges).
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Figure 2. Caisson (unit: mm): (a) top view; (b) cross-sectional view.

Table 1. Specifications of the caisson without the footings.

Model Scale (1/50) Prototype Scale

Length B 0.34m 17.0m

Height 0.26 m 13.0m

Width 0.30 m 15.0m

Mass 16.8 kg 2100 t

Draft 0.16 m 8.0m

Height of Gravity Center 0.108 m 54m

Table 2. Specifications of the footings.

Model Scale (1/50) Prototype Scale

Height 0.02m 1.0m

0.00 m 0.0 m

Length by 0.02m 1.0m

0.03m 1.5m

0.04 m 20m

0.06 m 3.0m

Two light markers were attached to the top of the caisson, and the videos of the
caisson with the markers were recorded using a high-speed camera (DITECT Co. Ltd.,,
Tokyo, Japan, HAS-L1). From the videos, the surge, heave, and pitch at the gravity center
of the caisson defined in Figure 3 were calculated using DIPP-Motion V /3D (DITECT
Co. Ltd.). To prevent the caisson from moving largely in the surge direction and hitting
the wave gauges, the caisson was loosely moored using light, thin threads such that its
motions were not affected. Figure 4 shows the initial state of the caisson and mooring lines.
Capacitance-type wave gauges (KENEK Co. Ltd., Tokyo, Japan, CHT6-40) were installed
at W3 and W4 (see Figure 1) to measure the water surface fluctuations.
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Caisson Roll

Figure 3. Definition of the six degree-of-freedom (DOF) motion.
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Figure 4. Initial state of the caisson with the markers and mooring lines.

Free and forced oscillation experiments were performed. In the free oscillation exper-
iments, the caisson floating under the still-water condition was lifted a few centimeters
upward from both sides or one side and released to facilitate free motion in the heave or
pitch direction. To confirm the reproducibility, three experimental runs were conducted
for each case. In the forced oscillation experiments, as shown in Table 3, regular waves
with an incident wave height of H; = 0.03 m and an incident wave period of T; = 1.13, 1.70,
2.26,2.83, 3.39, and 3.96 s were generated toward the floating caisson. In the table, f; is the
incident wave frequency, and I is Goda’s nonlinear parameter (IT=H;/L; coth® 27th/L;;
L;: wavelength) [11]. The wave period T; was determined assuming a port on the Pacific
coast of Japan. The stroke of the wave paddle was determined for each wave period from
incident wave heights measured without the caisson to obtain the specific wave height.
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Table 3. Incident regular waves used in the forced oscillation experiments.
Still Water Depth h Wave Height Wave Frequency f; Goda’s Nonlinear
[m] H; [m] [Hz] Parameter IT
0.30 0.03 0.88 0.033
0.30 0.03 0.59 0.051
0.30 0.03 0.44 0.079
0.30 0.03 0.35 0.117
0.30 0.03 0.29 0.163
0.30 0.03 0.25 0.218

3. Experimental Results and Discussion
3.1. Natural Frequency

Figure 5 shows the natural frequencies of the heave fjo; and pitch ;s obtained from
the free oscillation experiments. Here, fyes0e and fyic, are the average values of the three
experimental runs. The maximum variabilities of the three experimental runs with respect
to the average values were 9.4% for fjepe and 1.4% for iy From Figure 5, the natural
frequency of the heave fy,,,, (black solid line) tends to decrease with an increase in the
footing length by. Similarly, the natural frequency of the pitch fy; (red broken line) tends
to decrease linearly as the footing length by increases. The longer the footings, the larger
the water mass above and under the footings that must be moved. This slows the motion
of the caisson; hence, fjeqpe and fpircy decrease with an increase in by.

1.0m— ]
— =
0.8 | .
N
T,
% 0.6¢ - - _ _ _ - _o. 1
= e __ .
S 04 -
<
0.2F ﬁzeave 1
- - fpitch
0.0 -

0 20 40 60
b, [mm]
Figure 5. Natural frequency of the heave fj,.;,, and pitch f; of the caisson.

3.2. Total Amplitude of Heave

Figure 6 shows the relationship between the normalized values of the total amplitude
of the heave (mp and those of the footing length by, where (smp is the three-period average
of the difference between the maximum and minimum values of the heave. From the figure,
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the change in {amp/H; with the relative footing length b/ B depends on the incident wave
frequency f;. For f; = 0.29, 0.35, and 0.59 Hz (red, blue, and green lines), the value of {amp/H;
slightly increases with by/B. In contrast, the cases of f; = 0.88 Hz (orange line) show that the
value of {amp/H; decreases with an increase in b/ B. For f; = 0.44 Hz (pink line), an overall
trend of increasing the value of {mpy/H; with bf/ B can be observed. For f; =0.25Hz
(black line), no clear influence appears and (amp/H; seems rather independent from by/B.
Furthermore, in the cases of f; = 0.88 Hz (orange line), {,mp/H; is approximately 1.5 to 2.3
times larger than that in the other cases.

2.0

m’“ 1.5 - '

~

S ——=3— 0 |
@1.05 4 4 A ————a -

—8—/=025Hz,—®—f=029 Hz
—A— f=0.35 Hz, —¥—f,= 0.44 Hz
——/=0.59 Hz, —<¢—f,=0.88 Hz

0.5

0.10 0.15 0.20
b,/ B

0.0 Lot
0.00 0.05

Figure 6. Relationship between {amp/H; and by/ B for the heave motion.

Figure 7 shows the relationship between the normalized values of the total amplitude
of the heave (anp and those of the natural frequency of the heave fj,.,,., where the values
of freave have already been presented in Figure 5. As shown in Figure 7, an increase in f;
yields higher values of f; /fje.e approaching 1.0, and this leads to an increase in {gmp/H;.
For f; = 0.88 Hz (orange line), the value of f;/fjesve is approximately 1.0; hence, the value of
Camp/ Hj is large owing to resonance. Furthermore, the change in f;/fj,cs0 With the relative
footing length b¢/B is small. This suggests that the value of f;/fjeq. is little affected by
bg/B. For this reason, it is essential to design caissons, such that the natural frequency of
the heave fj,qp. does not coincide with the frequency of waves expected during towing
operations.

3.3. Total Amplitude of Pitch

Figure 8 shows the relationship between the normalized values of the total amplitude
of the pitch Bamp and those of the footing length by, where By is the three-period average
of the difference between the maximum and minimum values of the pitch. Similar to the
heave, the change in BpB/(2H;) with the relative footing length b¢/B is dependent on the
incident wave frequency f;. Specifically, the cases of f; = 0.29, 0.59, and 0.88 Hz (red, green,
and orange lines) show that the value of BanyB/(2H;) decreases with an increase in by/B.
By contrast, for f; = 0.44 Hz (pink line), BampB/(2H;) increases with by / B. This indicates
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that the value of B;pB/(2H;) for f; = 0.44 Hz has a different trend from f; = 0.29, 0.59,
and 0.88 Hz. For f; = 0.25 Hz (black line), although BamyB/(2H;) increases with b¢/B from
bg/B = 0.000 to 0.118, BampB/(2H;) decreases above by/B = 0.118. For f; = 0.35 Hz (blue line),
the change in f,mpB/(2H;) by by/B is not significant.

25
| O 5,/B=0.000
(| O b,/B=0059
2000 A b/B=0088 ]
v b/B=0.118
< 15FL O #/B=0176 ]

amp

= & ]

j Kégy ég @Q/% ——£=0.25 Hz| ]
L0 | gg@@ ——£=0.29 Hz ]
—0—f,=0.35 Hz ]
——/,=0.44 Hz| "

0.5k )
i ——f,=0.59 Hz| 1
£=088Hz |
oob— . . —
0.0 0.5 1.0

‘fi /ﬁfzeave

Figure 7. Relationship between Canp/H; and f;/fyeq0e for the heave motion.

Figure 9 shows the relationship between the normalized values of the total amplitude
of the pitch Bsmp and those of the natural frequency of the pitch fy;;;, where the values
of fyiten are shown in Figure 5. For f; = 0.59 Hz (green line), an increase in the normalized
footing length b¢/B decreases the natural frequency fyit,, giving higher values of f; /fyitcn
departing from 1.0, and this results in a decrease of B,pB/(2H;). Conversely, for f; = 0.44 Hz
(pink line), the increase in the normalized footing length b/ B also results in higher values
of fi/fpiten, which comes closer to 1.0, and thus the values of BB/ (2H;) are amplified.
A similar tendency can be observed for f; = 0.29 Hz (red line) and 0.25 Hz (black line)
around f;/fyiren = 0.5. Table 3 indicates that the values of the Goda’s nonlinear parameter
IT for f; = 0.25 and 0.29 Hz exceed 0.1, which is outside the applicable range of the small-
amplitude wave theory [12]. This suggests that the incident waves for f; = 0.25 and 0.29 Hz
can contain high frequency components, such as 2f;; hence, BsmpB/(2H;) is considered to
have increased even when f; /iy is approximately 0.5, as described above. For this reason,
the total amplitude of the pitch Bgy, would be reduced by designing caissons, such that
the condition of f; /fyiten, = 0.5 and 1.0 is avoided adjusting the footing length by.
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Figure 9. Relationship between BmpB/(2H;) and f;/fyisch for the pitch motion.
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3.4. Fourier Amplitude of Heave and Pitch

Figures 10 and 11 show the Fourier amplitudes of the heave and pitch, where the
Fourier amplitudes are calculated using the Python SciPy library. In the figure, the orange
solid line represents the incident wave frequency f;, and the orange dotted lines represent

2f;, 3f;, and 4f;.
107 . 107 — s
_ / b,/ B
£l B X ——0.000 ]
oo A T =
107 = 10° ( - ]
§ S\ é‘)’ ]
3 3
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= &
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< <
5107 E 510%
= 3
2 L A i1
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Figure 10. Fourier amplitude of the heave: (a) f; = 0.88 Hz; (b) f; = 0.35 Hz.
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Figure 11. Fourier amplitude of the pitch: (a) f; = 0.59 Hz; (b) f; = 0.29 Hz.

From Figures 10a and 11a, the peak of the Fourier amplitude can be observed around
fi. Furthermore, the values of this peak decrease with an increase in the relative footing
length by/B. This trend corresponds to {amp/H; and BampB/(2H;), which decrease with an
increase in bg/B, as shown in Figures 6 and 8.

From Figures 10b and 11b, the peak of the Fourier amplitude can be observed not only
around f;, but also around 2f; and 3f;. In the cases shown in Figure 10b, the peak values
around f; and 2f; are comparable. Furthermore, although the peak values around f; are
not significantly affected by by/B, the peak values around 2f; increase with b¢/B. In the
cases shown in Figure 11b, the peak values around 2f; are larger than those around f;.
Furthermore, the peak values around 2f; decrease with an increase in by/B, which is the
same trend as (amp/H; shown in Figure 6 and BmpB/(2H;) shown in Figure 8.
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From these results, it is revealed that the change in {up/H; and BampB/(2H;) with bf/ B
can be explained on the basis of the components of the Fourier amplitude around f; and 2f;.
For high-frequency incident waves (i.e., short-period incident waves), the high-frequency
components above 2f; are not significant, and {smp/H; and BampB/(2H;) are dominated by
the components around f;. For low-frequency incident waves (i.e., long-period incident
waves), the peak around 2f; is the main component, and Camp/H; and BanpB/(2H;) are
dominated by the components around 2f;.

4. Numerical Conditions

The three-dimensional coupled fluid—structure—sediment-seabed interaction model
(FS3M) [5] was used in the hydraulic model experiments.

FS3M consists of a main solver and four modules. The main solver is a large-eddy
simulation (LES) model for an incompressible viscous air-water two-phase flow that
considers the motion of movable objects. The first module is a volume-of-fluid (VOF)
module that tracks the air-water interface motion. The second module is an immersed-
boundary (IB) module based on the body-force type of the IB method for fluid-structure
interaction (FSI) analysis of movable objects. The third module is a sediment-transport (ST)
module that computes the profile evolution of a sediment bed induced by bedload and
suspended sediment transport, and suspended sediment concentration that considers all
transport processes. The fourth module is a finite element model (FEM) module for coupled
soil-water analysis of the sediment bed. The VOF, IB, and ST modules are connected to
the main solver through a two-way coupling procedure implemented at every time step to
ensure fluid—structure-sediment interaction. In this study, the main solver and the VOF
and IB modules were employed to compute the wave—caisson interaction.

A region of limited extent around the caisson was modeled to reduce the computa-
tional cost. Specifically, the length of the region in the wave direction was limited to 3.0
m for regular waves and 6.0 m for irregular waves. Figure 12 shows the schematic of the
computational domain. As shown in the figure, artificial damping zones with a length
of 14.0 m, more than twice the longest incident wavelength analytically calculated using
the dispersion relationship, were set at the offshore and onshore edges of the domain.
To reduce the influence of air-phase turbulence, the domain was extended to 1.0 m above
the still water surface. The caisson with the same specifications as that in the hydraulic
model experiments was floated in the domain. The length of the footings by was changed
to 0.00 (no footing), 0.03, and 0.06 m. The density of the PVC of the caisson and footings
was set at 1.41 x 103 kg/m3, and the density of the weights in the caisson was set at
7.84 x 103 kg/m?3.

The region where the caisson could move around the still water level was divided
into 2.5 x 5.0 x 5.0-mm uniform cells. The remainder of the domain was divided into non-
uniform cells with an increasing size in all directions to further reduce the computational
cost. Figure 13 shows the numerical cells around the initial position of the caisson. In the
figure, the water surface is shown in light blue, the caisson in yellow green, and the weights
in gray inside the caisson. The offshore and onshore boundaries were set according to
the Sommerfeld radiation condition to reduce the reflected waves. The slip condition
was applied to the bottom, forward, and backward boundaries, and a constant-pressure
condition was applied to the top boundary. The gravitational acceleration was set at
9.81 m/s?, the density of water at 9.97 x 102 kg/m3, the density of air at 1.18 kg/m?’,
the kinematic viscosity of water at 8.93 X 107 m2/s, the kinematic viscosity of air at
1.54 x 1075 m?2/s, and the surface tension coefficient at 7.20 x 10~2 N/m.
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Figure 12. Computational domain (unit: mm; W3, W4: output locations of water surface fluctuations).

Figure 13. Numerical cells around the initial position of the caisson.

Similar to that in the hydraulic model experiments, free and forced oscillation simula-
tions were conducted. In the free oscillation simulations, the natural frequency of the heave
freave Was computed by providing the caisson with an initial vertical velocity. The natural
frequency of the pitch f,;1;, was computed by providing the caisson with an initial angular
velocity around the pitch axis. In the forced oscillation simulations, regular and irregular
waves were generated toward the floating caisson. For the regular waves, the same wave
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conditions were used in the hydraulic model experiments. Specifically, the incident wave
height H; was set at 0.03 m, and the incident wave period T; was changed to 1.13, 1.70,
2.26, 2.83, 3.39, and 3.96 s. The computations were performed up to 32.0 s that corre-
sponded to approximately eight waves for T; = 3.96 s. For the irregular waves, the modified
Bretschneider-Mitsuyasu spectrum with a significant wave height of H; = 0.03 m and a
significant wave period of Ts = 1.70 and 2.26 s (i.e., significant wave frequency f; = 0.59
and 0.44 Hz) was used. The irregular waves were structured as a superposition of 500
sinusoidal waves with a frequency of 0.5f; to 5.0f;. The computations were performed up
to 187.0 s for Ts; = 1.70 s and 248.6 s for Ts = 2.26 s, to compute more than 100 waves. This is
because more than 100 waves must be computed to avoid bias in the occurrence frequency
of the wave height for irregular waves [13]. For Ts = 2.26 s, the computations took 99.7 days
using a workstation with Intel Xeon E5-2687W (Intel Corp., CA, USA, 3.10 GHz) and 32 GB
memory.

5. Numerical Results and Discussion
5.1. Comparison under Regular Waves Based on Hydraulic Model Experiments

Figure 14 shows a comparison of the natural frequencies of the heave fj,,,, and pitch
fpiten, where the experimental data are the same as those in Figure 5.

0.0

20 40 60
b, [mm]

Figure 14. Comparison of the natural frequency of the heave fj,; and pitch fpicp-

As shown in Figure 14, the value of f,; for by = 0 mm is slightly overestimated,
and the value of fjeq0, for by = 60 mm is slightly underestimated. However, the numerical
results and the experimental data are in very good agreement.

Cross-sectional two-dimensional (2-D) computations with a low computational cost
were performed as preliminary computations. Although no figure is presented here,
from the numerical results, we found that the values of fje;0 and fpisc;, were underestimated.
In the 2-D computations, the water mass under the caisson can only move to and out from
the offshore and onshore sides of the caisson; hence, it took more time for the caisson to
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move. This suggests that it is essential to conduct three-dimensional computations despite
the high computational cost, when dealing with the motion of floating bodies.

Figure 15 shows a comparison of wave deformation around the caisson. The left panel
shows snapshots of a movie captured using the high-speed camera in the hydraulic model
experiments, and the right panel shows snapshots of the numerical results obtained through
the numerical simulations. In the right panel, the water surface is shown in light blue,
the caisson in yellow green, and the weights in gray inside the caisson. The flow velocity at
the central cross section (v = 0) in the water phase is represented by vectors, and |V | is the
magnitude of the vectors. The variable t is the time. The animation corresponding to the
right panel of Figure 15 is shown in Video S1.
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Figure 15. Comparison of the wave deformation for T; = 1.70 s (f; = 0.59 Hz) and by = 60 mm (left:
experimental data; right: numerical results): (a) t =19.7 s, (b) t =20.1 s, (¢) t =20.6 s, (d) t =21.0 s,
and (e) t =21.4s.
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As shown in Figure 15a, the caisson is almost horizontal when the wave crest with
landward (leftward) flow velocity passes through the caisson. After the wave crest passes,
the caisson leans toward the onshore area (Figure 15b). At the passage of the wave trough
with seaward (rightward) flow velocity, the caisson is almost horizontal again (Figure 15c).
Thereafter, the caisson leans toward the offshore area (Figure 15d). In Figure 15e, one wave
period after Figure 15a, the caisson returns to an almost horizontal position. The same
process can be observed from the experimental data (left panel) and numerical results
(right panel).

Figures 16-18 show a comparison of the water surface fluctuations # at W3 and W4
(see Figures 1 and 12) and the surge ¢, heave {, and pitch § of the caisson. In the figures,
the black lines represent the experimental data, and the red lines represent the numerical
results. The variable t in the horizontal axis represents the time.

Overall, the drift in the surge direction is overestimated. One of the reasons for this is
that large motion of the caisson in the surge direction was constrained by the mooring lines
in the hydraulic 