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Abstract: Ship motion planning constitutes the most critical part in the autonomous navigation sys-

tems of marine autonomous surface ships (MASS). Weather and ocean conditions can significantly 

affect their navigation, but there are relatively few studies on the influence of wind and current on 

motion planning. This study investigates the motion planning problem for USV, wherein the goal 

is to obtain an optimal path under the interference of the navigation environment (wind and cur-

rent), and control the USV in order to avoid obstacles and arrive at its destination without collision. 

In this process, the influences of search efficiency, navigation safety and energy consumption on 

motion planning are taken into consideration. Firstly, the navigation environment is constructed by 

integrating information, including the electronic navigational chart, wind and current field. Based 

on the environmental interference factors, the three-degree-of-freedom kinematic model of USVs is 

created, and the multi-objective optimization and complex constraints are reasonably expressed to 

establish the corresponding optimization model. A multi-objective optimization algorithm based 

on HA* is proposed after considering the constraints of motion and dynamic and optimization ob-

jectives. Simulation verifies the effectiveness of the algorithm, where an efficient, safe and econom-

ical path is obtained and is more in line with the needs of practical application. 

Keywords: motion planning; MASS; multi-objective optimization; complex navigation conditions 

 

1. Introduction 

As an unmanned intelligent marine carrier platform, the Unmanned Surface Vehicle 

(USV) is small in size, flexible to operate and of high security. It can be equipped with 

different sensors or weapon systems, as required, in order to perform various tasks in 

military and civilian fields [1,2]. Amid the continuous development of the global marine 

economy and the intensifying disputes over maritime rights and interests, USV is a tech-

nical driver which can not only promote the rapid and sound development of the marine 

economy, but can also boost the strength of marine equipment and safeguard maritime 

rights and interests [3,4]. In 2020, the European Maritime Safety Agency (EMSA) released 

an overview of 13,204 maritime casualties from 2014 to 2019 [5]. The data show that the 

main cause of the casualties was loss of control of the ships (31.4%), followed by ship 

collision/contact accidents (30.5%), as shown in Table 1. About 52.3% of all the maritime 

accidents investigated were caused by personnel misconduct. The research on intelligent 

collision avoidance decision of USV can effectively reduce the influence of human factors 

and human errors on the navigation safety of ships [6], and gradually some routine or 

high-risk manual operations can be replaced by the USV. At present, the study of un-

manned surface vehicles has become a significant issue in the field of international mari-

time affairs, attracting the attention of more and more shipping and shipbuilding 
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countries in the world and emerging as a very important development direction in the 

future shipbuilding industry. 

Table 1. Distribution of casualty events with a ship. 

Types of Events  2014 2015 2016 2017 2018 2019 Percentage 

Capsizing/listing 11 15 8 15 18 17 0.63% 

Collision 332 293 317 292 279 256 13.40% 

Contact 390 402 357 420 379 320 17.18% 

Damage/loss of 

equipment 
287 361 356 310 341 297 14.78% 

Fire/explosion 160 173 131 133 133 124 6.47% 

Flooding/foundering 60 56 44 62 35 46 2.29% 

Grounding/stranding 325 329 290 292 301 228 13.36% 

Hull failure 6 15 22 5 5 4 0.43% 

Loss of control 589 572 680 751 759 796 31.40% 

Considering that the unmanned surface vehicle often performs difficult tasks, it is 

vital to plan a feasible and optimal route. This field can be split into three stages: path 

planning, trajectory planning, and motion planning [7]. In the path planning stage, the 

research object is generally regarded as a particle without considering its own kinematics 

and dynamics constraints [8]. A large number of algorithms have been put forward in the 

research of path planning, some of which have achieved good results, but there is often a 

big difference between the planned path and the actual path, which makes the former 

difficult in terms of meeting the requirement of feasibility. Trajectory planning is an im-

provement of path planning. Kinematics parameters, such as speed, direction and rotation 

radius of the research object, are taken into account in the planned path [9,10]. Although 

the result of final planning is close to the real trajectory, the interaction between con-

straints is still ignored. In the stage of motion planning, the kinematic and dynamic con-

straints of these research objects are fully considered, and the concern is whether the 

planned path can be realized through its own control system [11]. Therefore, in this stage, 

the kinematics and dynamics models of the research object will be discussed further, and 

the path planning method will be improved based on the mathematical model to generate 

new nodes which meet the constraint conditions. 

Motion planning is core to the USV achieving high autonomy in a highly dynamic 

and uncertain navigation environment [12,13], which represents the intelligence level of 

the unmanned surface vehicle to a certain extent and is also one of the bottleneck factors 

that restrict USVs in terms of achieving high autonomy at present [14]. Compared with 

the Unmanned Ground Vehicle (UGV) and the Unmanned Aerial Vehicle (UAV), when 

applied, the USV can be interfered with by wind, waves and currents. Complicated envi-

ronmental disturbance has a great influence on its instantaneous speed and attitude angle 

during navigation, and as such it is easy to make the USV roll over due to the excessive 

leeway and drift angle or turning angle rate [15,16]. In addition, USVs use mostly under-

actuated systems, and their inertia and motion response time are also longer than those of 
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UAVs and UGVs, which brings greater uncertainty to the control and motion planning of 

USVs in complex navigation environments. Therefore, the autonomy of the USV is essen-

tial. This depends on two complex and changeable environmental parameters: wind and 

current [17,18]. Ignoring the environmental impact in motion planning would not only 

lead to a great waste of energy when the USV navigates strong ocean currents, but would 

also increase the potential risk of hitting obstacles. However, most of the current research 

results are based on idealized assumptions that do not consider whether there is environ-

mental interference or it is a steady environment, and the expression of constraints for 

USV motion planning is inaccurate and incomplete, which limits its application in differ-

ent scenarios. 

In the field of USV intelligent planning and control, studies focusing on single-objec-

tive motion planning, such as in terms of length, optimal sailing time, energy consump-

tion, smoothness and safety, have gradually deepened knowledge [19,20]. Planning algo-

rithms can generally be divided into graph search algorithms, random sampling algo-

rithms, curve interpolation algorithms, machine learning and dynamic optimization 

methods [21]. In the practical application situation, the above methods are usually used 

in combination in order to complete the motion planning. Sang et al. [22] used the im-

proved A* algorithm to keep a safe distance and avoid collisions by reducing search points 

near obstacles. At the same time, the turning cost is added to the heuristic function in 

order to reduce the turning points of the path, avoid frequent turns of USV and improve 

the smoothness of the path. Liu et al. [23] introduced a safety parameter into the FMS 

algorithm, which can adaptively adjust the influence of the obstacle size, so as to ensure 

obstacle avoidance in a constrained environment and improve navigation safety. Zuo et 

al. [24] proposed A*-LSPI hierarchical path planning method, by which the global path 

based on the A * algorithm was quickly found and the approximate optimal local planning 

strategy with LSPI was learned. Although the planning time was long, the generated path 

length was short. Han et al. [25] formulated the multi-criteria global shortest path plan-

ning problem with resource constraints as a single objective linear programming model, 

and provided a modified label-correcting algorithm to solve this problem within a ration-

ally short time. However, the planning environment was too simplified, and the environ-

mental impact was less considered. Subramani et al. [26] formulated a stochastic optimi-

zation method to compute energy-optimal paths from among time-optimal paths of au-

tonomous vehicles navigating in a dynamic flow field. Xu et al. [27] generated the path 

for an automatic ferry on the basis of AIS historical data. The resulting path was safer and 

more economic, because the AIS data were recorded from the real-time trajectory of ships. 

Lei et al. [28] proposed a multi-direction A* algorithm to iteratively find an optimum 

neighbor node and APF in scalar mode, which can take into account both computational 

complexity and efficiency. Xu et al. [29,30] proposed the vector field guidance law for the 

path-following control problem of the underactuated surface ship, which considered 

straight-line and curved-path path following scenarios in the presence of ocean currents. 

R. Zaccone et al. [31] developed and proposed a ship voyage optimization method, aiming 

to find the voyage which would require minimum fuel consumption within safety and 

comfort constraints by using 3D Dynamic Programming optimization. 

In conclusion, amid a complex navigation environment, motion planning consider-

ing multi-constraint control decision and multi-objective optimization has become a diffi-

culty and represents a hotspot in USV motion planning research. Therefore, it is necessary 

to study the USV motion planning of multi-objective optimization with complex con-

straints in dynamic navigation environments, that is, to make reliable motion planning 

under the complex constraints of environments, kinematics, dynamics and optimization 

objects. 

According to the planning process, motion planning involves three steps: the envi-

ronment model, the motion mathematical model and the search algorithm. The structure 

of this paper is as follows: Firstly, an environmental model, including wind and current, 

is constructed in order to provide high quality navigation environmental information for 
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USV navigation. Based on the MMG model, a motion mathematical model suitable for 

Dolphin-I USV is proposed. Combined with the above model, the cost function of multi-

objective optimization is analyzed, and a motion planning algorithm MOHA* is proposed 

in order to solve the multi-objective problem in dynamic navigation environment. The 

algorithm is then used to simulate the motion planning of the USV. Finally, the reliability 

of the MOHA* algorithm is proved by analyzing the experimental results. The chapter 

structure is shown in Figure 1, and the full text structure is shown in Figure 2. 

 

Figure 1. Section structure diagram of this paper. 

 

Figure 2. Full text structure diagram. 

2. Materials and Methods 

2.1. Construction of Navigation Environment Based on ENC 

The establishment of the environment model includes the process of extracting and 

describing environmental characteristic information. The electronic navigational chart 

(ENC) classifies and stores relevant elements in the geometric form of points, lines, and 
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planes in data files, which can display and select relevant marine environment infor-

mation according to need. This has such advantages as a short storage time, fast display 

speed and high accuracy [32]. Reading the overall package information in the ENC, and 

further processing the data in the forms of point, line and plane required for conversion, 

are the basis of navigation environment modeling. Modeling methods commonly used for 

USV motion planning mainly include grids [33], topology graphs [34], Voronoi diagrams 

[35], visibility graphs [36], and others. The environment model in this paper is based on 

ENC. The number of environmental obstacles with a complicated structure is large. It can 

be too complicated to describe the obstacle nodes by using topology graphs, Voronoi di-

agrams and visibility graphs. The grid method has a simpler data structure than other 

environmental modeling methods, which can reduce the complexity and calculation of 

the boundary processing of complex-shaped obstacles [37,38]. In this paper, grids are used 

to divide the ENC information. The consistent expression of grid ENC is the basis for im-

proving the efficiency of the path search algorithm. The size of grid granularity deter-

mines the advantages and disadvantages of modeling, to a certain extent. The grid size is 

set to be 25 m × 25 m, comprehensively taking the minimum turning radius of USV (9.6 

m), navigating and positioning error (5 m), safety buffer distance (5 m) and electronic 

navigation chart error (5 m) into consideration, and making sure it can complete the steer-

ing operation in a grid size area. 

In this paper, Zhoushan islands are selected as the research area, where the longitude 

range is E120°55’26”~E123°29’30”, the latitude range is N29°33’15”~N32°28’59”, and the 

proportional scale is 1:2000000. The S-57 ENC in this area was transformed by Mercator 

projection through ArcMap, and the global static obstacle information, including obstruc-

tions such as land, islands and the seabed, was extracted and further transformed into a 

grid map, as shown in Figure 3. The white grids represent navigable areas, and the black 

grids represent obstructed areas. 

 
(a) (b) 

Figure 3. S-57 environment modeling map. (a) S-57 ENC of the study area; (b) Grid navigation environment map. 

The second version of the NCEP Climate Forecast System (CFSv2) was made opera-

tional at National Centers for Environment Prediction (NCEP) in March 2011 [39]. This 

version has upgrades to nearly all aspects of the data assimilation and forecast model 

components of the system. This paper adopts the CFSv2 data set (http://cfs.ncep.noaa.gov 

accessed on 10 January 2020) as the input wind field data, which contains 0.2°, 0.5°, 1.0° 

and 2.5° horizontal resolution data, and updates the data at hourly intervals. 

The current data are obtained from the global Hybrid Coordinate Ocean Model (HY-

COM) and Navy Coupled Ocean Data Assimilation (NCODA) 1/12° analysis, with a time 

update frequency of three hours. This system is configured for the global ocean with HY-

COM2.2 as the dynamical model and NCODA for data assimilation [40]. Having gradu-

ally become a mainstream global ocean circulation model in recent years [41], HYCOM 

can select appropriate vertical coordinates according to different navigation environments 
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and thus can better capture the various physical processes of oceans [42]. The NCODA 

system uses the model forecast as a first guess in a multivariate optimal interpolation 

scheme and assimilates available in-situ observations [43]. More details about the assimi-

lation system can be found at http://hycom.org accessed on 10 January 2020. 

Due to the limitation of data resolution, the 0.2° × 0.2° wind field and the 1/12° × 1/12° 

current field which were adopted cannot cover all of the non-obstacle grids in the map. 

Therefore, it is necessary to perform interpolation based on known environment infor-

mation (e.g., wind, current) to predict environmental information in non-numerical areas. 

In this paper, based on the grid map resolution of 25 m, the known data are calculated by 

bicubic interpolation, and the corresponding wind and flow field data are obtained. 

The processed ENC information was fused with the wind field and current field in-

formation on 10 January 2020, and the results are shown in Figures 4 and 5. Environmental 

information was added to each non-obstacle grid of the grid map. Besides terrain infor-

mation, information about the speed and direction of the wind and current were also 

stored in the grid. The wind reanalysis products cover the time period of the global HY-

COM and NCODA assimilation. Therefore, the two types of data can be updated synchro-

nously at a time interval of three hours, and a dynamic environment map can be obtained. 

. 

Figure 4. Wind field map of local area. 

 

Figure 5. Current field map of local area. 

2.2. Mathematical Model of USV under the Influence of Wind and Current 

The mathematical model is the basis of USV motion simulation and control [44,45]. 

In actual navigation, the speed and direction were controlled by the longitudinal propul-

sion force generated by two propellers at the tail and the turning moment generated by 

the differential speed, with no lateral driving force. 
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Meanwhile, considering that the rolling direction of the hull itself is relatively stable, 

a three-degree-of-freedom plane motion model was established, including surge (longitu-

dinal motion), sway (sideways motion), and yaw (rotation around the vertical axis). The 

navigation state is formulated by two coordinate systems: one is the o o oo x y  inertial coor-

dinate system demonstrating the absolute position/speed information of the unmanned 

surface vehicle, and the other is the oxy  attached coordinate system which studies 

change in the status of the unmanned surface vehicle, taking the first-order differential 

  , ,x y  as the amount  , ,
T

V = u v r  of status change of the unmanned surface vehicle, 

as shown in Figure 6. In this paper, Dolphin-I USV of Tianjin University is used as the 

experimental platform. It adopts a modular design which can install different modules 

according to the application scenarios. The detailed USV performance parameters are 

shown in Table 2. 

 

Figure 6. Schematic diagram of USV of three degrees of freedom. 

Table 2. USV performance parameter setting details. 

Index Parameters 

Length(m) 3.2 

Breadth(m) 2.2 

Weight(kg) 120 

Draft(m) 0.3–0.5 

Velocity(m/s) 7.0 

Advance(m) 16.5 

Diameter Tactical(m) 24.5 

The MMG model mainly works to decompose the hydrodynamic force and torque 

acting on the ship into the hydrodynamic force and torque acting on the bare hull, open-

water propeller and open-water rudder according to the physical meaning, and the mu-

tual interference fluid between them. Based on the hull performance (rudderless, double 

propellers) of Dolphin-I USV, the MMG separation modeling is adopted, and the origin of 

the appendage coordinate system is taken as the center of gravity of the unmanned surface 

vehicle, and the motion equation is: 

   
   
 













x y H 2P

y x H 2P

zz zz H 2P

m + m u - m + m vr = X + X

m + m v + m + m ur = Y + Y

I + J r = N + N

 (1)
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where m is the mass of USV; mx and my are additional inertial masses in x-axis direction 

and y-axis direction respectively; 
zz

I  and 
zz

J are the rotational inertia torque and the 

additional inertia torque in the z-axis direction respectively; X, Y and N are external forces 

and torques, and subscripts H and 2P respectively represent bare hull and two propellers. 

The additional mass, inertia torque, additional inertia torque, forces and torques acting on 

hull and propellers can be calculated using the calculation methods described in the liter-

ature [46]. 

The Dolphin-I USV is differentially driven by two propellers, that is, it’s speed and 

direction are controlled by the speed difference between the double propellers. According 

to the thrust model of two brushless DC thrusters in USBV power system proposed by Jin 

et al. [47] and the USV dynamic model of rudderless dual thrusters proposed by Li et al. 

[48], the resultant thrust vector of differential drive USV is established as follows: 

 

  
  
  
     

2P L R

thrust 2P

LR L R2P

X F + F

F = Y = 0

d F - FN

 (2)

in which 
L

F  and 
R

F  are the thrust produced by the left and right thrusters along the x-

axis in the attached coordinate system, respectively, and 
LR

d  is the transverse distance 

from the centerline of the USV to the centerline of each thruster. 

In this paper, the operational performance of the unmanned surface vehicle in the 

wind is studied, and the mathematical model of the USV under wind disturbance is es-

tablished by using a wind tunnel test and approximate estimation. When the unmanned 

surface vehicle is sailing, the superstructure device is affected by the wind, leading to the 

deviation of course or operational difficulty. When the unmanned surface vehicle is sail-

ing at low speed, it is impacted by the wind quite severely. The interference force of wind 

on the unmanned surface vehicle can be regarded as the superposition of the average 

wind pressure and the variable wind pressure. In this paper, only the average wind pres-

sure    , ,
T

wind wind wind wind
F X Y N  is considered, and the calculation expression is: 

 
 
 

 

 

 













2

 

2

2

 

 

   

 

0.5

0.5

0.5

wind a f R wx R

wind a s R wy R

wind a s R wn R

X A U C

Y A U C

N A LU C

 (3)

where a  is the air density; 
fA  and sA  are the orthographic projection area and the 

side projection area above the waterline of the unmanned surface vehicle respectively; 

RU  is the relative wind speed; L  is the total length of  the USV;  w y RC ,  w y RC  

and  wn RC  are, respectively, the wind pressure torque coefficient in the direction of 

x -axis and y -axis, and the wind pressure coefficient around the z -axis, which are cal-

culated according to Isherwood formula [49]. 

When the motion model of the unmanned surface vehicle was being established un-

der the current interference force, considering the unevenness of the horizontal upstream, 

the velocity of the current field in Zhoushan maritime space is divided into fields accord-

ing to the interval of 0.005 m/s, that is, the uneven current field is divided into uniform 

current fields in different areas for modeling. The impact of water at any position in the 

uniform flow is the same, which will cause the unmanned surface vehicle to drift and 

interfere with its original posture and motion state. In the inertial coordinate system, the 

relationship between absolute current velocity cV , absolute current direction c , and the 

absolute velocity of the unmanned surface vehicle is established, and the expression is: 
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cos -

sin -

r c c

r c c

u u V

v v V
 (4)

where ru  and rv  are, respectively, the longitudinal and lateral velocity of the unmanned 

surface vehicle relative to the current; cV  is the absolute current velocity; and c  is the 

absolute current direction. 

The relative velocity method is used in the hydrodynamic calculation, and consider-

ing its additional force, the current disturbance creates the current force 

   , ,
T

current current current currentF X Y N  as given below: 

   

   

  



 





- sin

- cos

0

current x y c c

current x y c c

current

X m m V

Y  m m V

N

 

   (5)

Considering the environmental interference factors mentioned above, the overall 

stress analysis of the unmanned surface vehicle motion system is carried out, and a three-

degree-of-freedom MMG kinematic model is established with the hull, two propellers and 

environmental interference force as a function: 

   
   
 

      



      


    








2

2

2

x y H P wind current

y x H P wind current

zz zz H P wind current

m m u m m vr X +X X X

m m v m m ur Y Y Y Y

I J r N N N N

 (6)

The Runge-Kutta method is used to solve differential equation (6) to obtain the actual 

speed  [ , ]T

e e eV u v  and corresponding heading angle of the USV under the influence of 

environmental factors. Under the interference of the wind and current, assuming that the 

initial surge of the USV is 5 m/s, the given wind speed is 6 m/s, the wind direction is 180°, 

the current velocity is 1 m/s, and the current direction is 0°, the gyrating motion experi-

ment and direct speed stability experiment are carried out with MATLAB. The actual 

measurement of the gyrating motion of the Dolphin-I USV in the still water shows that the 

advance distance is 16.5 m, and the initial diameter of the gyration is 24.5 m, as shown by 

the yellow dotted lines in Figure 7a,c. Comparing the measured data with the simulation 

results, it is proved that the kinematic model can accurately describe the navigation mo-

tion of the unmanned surface vehicle. Figure 7a,c show that the influence of wind on the 

cycle trajectory is not significant, while the cycle trajectory under the influence of the 

ocean current shifts eastward with a larger amplitude. In Figure 7b,d show that the speed 

changes greatly within 50 s under the influence of environmental disturbance, and then 

tends to be stable over time. 
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(a) (b) 

  
(c) (d) 

Figure 7. Motion simulation experiment of Dolphin-I USV under environmental interference. (a) The gyroscopic trajectory 

with or without wind; (b) The change of direct sailing speed in different wind directions; (c) The gyroscopic trajectory 

with or without current; (d) The change of direct navigation speed under different current directions. 

2.3. Dynamic Model of USV under the Influence of Wind and Current 

The dynamic model of the unmanned surface vehicle represents the change of its 

posture under the action of force and torque. In this paper, based on the rigid-body dy-

namics model proposed by Fossen [50], with the effect of environmental interference, a 

three-degree-of-freedom kinematic model of the Dolphin-I USV is established. The specific 

expression is: 

     
thrust envF +F MV C V V D V V  

   
   

    
      

11

22

33

0 0 0 0

0 0 0 0

0 00 0

x

y

zz zz

m m                 M        

M           m m       =      M   

          M                    I J  

 

 
 
 

  
 
 

22

11

22 11

   0          0      -

   0          0      

   -       0

M v

C V M u

M v M u

 

(7)
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in which M represents the inertia matrix, including the added mass parameters. C  is 

the Coriolis and centripetal matrix. D  is hydrodynamic drag matrix. uX , vY , and rN  

are collectively referred to as the hydrodynamic derivative, and the specific values of the 

above three variables are calculated by using the formula of literature [17]. thrustF , envF  

are the thruster and environment forces  ,wind currentF F , respectively, applied on the USV. 

3. Algorithm of Ship Motion Planning 

Considering the spatial constraints and the constraints of planning behavior of the 

objects motion planning combines path planning with motion control [51]. Global motion 

planning refers to the calculation of the path from the departure point to the target point 

that meets certain performance requirements according to the established prior environ-

mental map, such as shortest distance or the highest safety. 

3.1. Traditional Hybrid A* Algorithm 

Hybrid A* (HA*) is an algorithm for UGV kinematics and it was first proposed by 

Stanford Laboratory [52] in 2008. It can perform the heuristic search in a continuous coor-

dinate system and guarantee that the generated trajectory meets the vehicle nonho-

lonomic constraint. This algorithm is a variant of the A* algorithm, which adopts a four-

dimensional search space and adds the orientation information of the mobile platform 

and the fourth dimension representing the forward and backward movement on the basis 

of the two-dimensional plane, considering the final directions of the starting point and the 

end point. The core of the algorithm is to design a cost function for each node to be 

searched to determine the accessing sequence of each node in the search: 

      n n nf x g x h x  (8)

where  nf x  is the total cost estimate from the starting point sx  through the current 

node nx  to the goal node 
gx ;  the actual cost  ng x  from the starting point sx  to the 

current node nx , and the heuristic cost estimate  nh x  from the current state nx  to the 

goal point 
gx . 

 ng x  can be calculated by recursive formula: 

         -1 -1 ,n n n ng x g x d x x DirectionCost K  (9)

where  -1ng x  is the parent node of the current node, and  -1 ,n nd x x  is the Euclidean 

distance from the parent node to the current node. DirectionCost  indicates the change of 

motion direction where the forward driving value is 1, and the reverse driving value is -1, 

which is used to ensure the forward driving of USV as much as possible; K  is the 

curvature of the motion primitive; and   and   are weights, which are used to unify 

the order of magnitude of each item.  

 nh x  involves two heuristic functions: (1) The 2D heuristic function with ho-

lonomic constraints. When the search node is far away from the goal point, the USV al-

ways moves towards the goal point, and its nonholonomic characteristics can be ignored. 
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Based on the obstacles shown in the environment map, the heuristic function with com-

plete constraints is only used to consider the position information of USV (2) and the 3D 

heuristic function with nonholonomic constraints. The motion range was set as an acces-

sible region and discretized into three-dimensional grids. Only considering the motion 

constraints of USV, the optimal path from the center point of each grid to the goal point is 

calculated by using the Reeds-Shepp curve. This heuristic function does not depend on 

the grid map information at runtime, and can perform off-line calculations in advance. 

The state of the current point is then matched after simple transformation and rotation, 

thus improving the calculation efficiency. The current node heuristic value is the larger 

3D heuristic value and 2D heuristic value, in order to ensure the reliability of the search 

algorithm.  

3.2. Multi-Objective Optimization Model of USV Motion Planning 

In traditional motion planning, only a single optimization objective is usually con-

sidered, which means that it is difficult to generate a high-quality path that satisfies spatial 

constraints, time constraints and motion constraints. In practical navigation, the global 

planning of the USV can be regarded as a multi-constraint and multi-objective optimiza-

tion problem. The shortest search time can ensure the ability of the USV to respond in 

time. The safest path is the premise that the USV can perform various tasks. The most 

energy-efficient route enables the USV to increase mileage. Therefore, under the condition 

that space constraints and USV motion constraints are met, a model is proposed to opti-

mize the search efficiency, safety performance and energy consumption. 

3.2.1. Graph Expansion/Search Model Based on Hybrid Motion Primitives 

The traditional graph search algorithm uses 4-domain or 8-domain connection to ex-

pand nodes [53]. When the search map is expanded, the number of grids will increase 

rapidly, resulting in a sudden increase in the search time. Meanwhile, the obtained path 

has a large number of redundant nodes which do not meet nonholonomic constraints. 

Hence, firstly, the environment map is down-sampled, and the heuristic efficiency can be 

greatly improved by searching and calculating in the processed grid map. The heuristic 

function values of nodes in the original map are then restored by up-sampling.  

When expanding nodes, continuous motion primitives—that is, trajectory segments 

that satisfy the motion constraints of USV—are used to ensure that the curvature of the 

path that is ultimately generated is less than the curvature corresponding to the minimum 

turning radius. In order to reduce the parameters needed by motion primitives and to 

reduce the computational complexity, circular arcs and straight lines are used to generate 

motion primitives. Accordingly, the short primitives are of better flexibility and stronger 

ability to bypass obstacles, but this will lead to an increase in the number of extended 

nodes. Long primitives can reach the vicinity of the final point faster, but they present a 

higher risk of collision with obstacles in complex conditions. Therefore, four kinds of mo-

tion primitives (forward and backward) are mixed in this paper. The long primitives and 

short primitives are divided with the grid size of 25 m as the base length, in which the 

short primitives are S1, S2, S1', S2', the long primitives are M1, M2, M1', M2', L1, L2, L1', 

L2', and the linear motion primitives are SL and SL'. The specific length and curvature are 

shown in Table 3. This is achieved by taking full respective advantages of the above-men-

tioned motion primitives and setting different cost coefficients for them. The cost of long 

primitives is lower and the cost of short primitives is higher. This can make USV approach 

the goal point quickly in exposed waters, while ensuring that it passes through narrow 

obstacle areas. The expansion/search model based on hybrid motion primitives can effec-

tively reduce the number of path nodes in planning, thus improving the computational 

efficiency and achieving drivability. 
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Table 3. Details of hybrid motion primitive parameters. 

Motion Primitive Length(m) |K| 

 

25 0.04 

 

30 0.026 

 

38 0.013 

 
25/30/38 0 

3.2.2. Risk Degree of Navigation Model Based on Ship Domain 

Traditional collision detection takes the USV as a particle and expands the obstacle 

map. This method has high efficiency, but the expansion scale is difficult to choose and 

the accuracy cannot be guaranteed, resulting in a big difference between collision detec-

tion and real results. In actual navigation, it is necessary to maintain an exclusive domain 

around the USV which is defined as the navigation safety domain (NSD) [54,55] and is 

established in order to avoid encroachment by other ships or obstacles. NSD is usually 

oval-shaped, with its long axis being three to eight times the length of the ship. It is de-

signed in order to delimit enough sea space for the USV to take actions to avoid collisions 

in advance. In this paper, combined with the quaternion ship domain (QSD) proposed by 

Wang et al. [56] and the basic navigation safety domain (BNSD) proposed by Zhou et al. 

[57], the ellipse model with four half axes in different directions is established with the 

USV as the origin coordinate, where the space domain can be divided into four sub-do-

mains      1 2 3 4= , , , . To calculate and simplify the model’s complexity, given the 

coefficients of overtaking encounters situations    1s i ,    0.2t i , its mathematical ex-

pression is: 

 

 


  


    
  

  


22

22

1.34 / 2     

0.67 / 2      

1.2                             

0.9                             

fore

aft

starb

port

R L AD DT

R L AD DTR

R B DT

R B DT

 (10)

In the above equations, 
foreR ,

aftR , starbR  and 
portR  are the radii of the navigation 

safety domain. L  and B  represent the length and breadth of the USV. AD is the ad-

vance distance, the longitudinal forward distance of the gravity center in the case of the 

USV turning 90° from the start of steering. DT  is the tactical diameter, the transverse 

distance of the gravity center in the case of the USV turning 180° from the start of steering. 

Based on the above model, two safety domains  1 = 30.74,16.97 , 31.60, 24.25R  and 

 2 = 46.74, 32.97 , 42.60, 35.25R  are constructed with one-time length and three-time 

length as input parameters, as shown in Figure 8. 
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Figure 8. Ship domain model of Dolphin-I USV. 

According to the different heading angles, the reasonable radius range of the sub-

safety zone from USV to static obstacles is obtained with different heading angles and the 

radiuses of navigation safety zones: when   0 90e
,    1nR x ;   90 180e

, 

   2nR x ;   180 270e
,    3nR x ;   270 360e

,    4nR x . Collision 

risk index (CRI) is an evaluation parameter for the collision avoidance of ships, which is 

also a key concept in the field of collision avoidance research and operation. Based on the 

collision risk index (CRI) calculation method of distance to closest point of approach 

(DCPA), the shortest safe distance of the USV and the actual distance  nd x  between the 

USV and obstacles are used to reflect the navigation risk. The smaller the value is, the 

more suitable it is for navigation, while the larger the value is, the less suitable it is for 

navigation. Its mathematical expression is: 

 
   

         
   



 
       




2

1 2

1
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0.5 - 0.5 1.5     

1                                                   

n n
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3.2.3. Energy Consumption Model Based on Dynamic Analysis 

Energy efficiency is an important characteristic of path planning algorithms for au-

tonomous systems [58]. The consumed power of a USV is divided into two parts: the static 

power due to static consumption and the dynamic power involving the thrust power. The 

main USV power consumption is due to thrusters (80%–90%), transferred to the mechan-

ical power. To maximize the engine efficiency [15], only dynamic consumption is consid-

ered in this paper, and the mechanical power is modeled as a function of USV speed and 

environmental conditions. Compared with the approximate path cost of kinematics 

method, the dynamic analysis proposed by Fossen [50] can provide more accurate infor-

mation on the energy consumption cost. According to the dynamics model of Dolphin-I 

USV created in Section 2.3, the scalar product of the thrust vector obtained by Formula (7) 

and velocity vector obtained by MMG formula can get the power dissipated by a given 

force. Assuming that the instantaneous acceleration during the navigation from the cur-

rent node to the extended node is constant, the instantaneous power during the navigation 

is integrated. The heuristic function of the energy consumption cost from the current node 

to the extended node can be obtained as follows: 
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       thrust en n nF Ve x x x dt  (12)

3.3. Multi-Objective Optimization Algorithm for Ship Motion Planning Based on HA* 

In the process of expanding nodes, the Hybrid A* algorithm takes a long time to make 

a search and requires lots of iterations and calculations. Moreover, this algorithm does not 

consider the energy consumption and multiple objectives optimization under the influ-

ence of navigation environment at the same time. In order to resolve the above-mentioned 

problem of USV motion planning in a steady navigation environment, a multi-objective 

Hybrid A * algorithm in a dynamic environment (MOHA*) is adopted to update the actual 

speed in the extended grid after being affected by the environment in real time, and to 

generate a multi-objective optimal path which is more in line with the actual application 

and meets the requirement to be the most efficient, safest and the most energy-saving. The 

complexity of motion planning mainly comes from the following two aspects: the influ-

ence of complex environment and the kinematics constraints of the USV. In order to en-

sure that the estimated cost of the optimal path is close to the actual optimal path cost, 

these two factors should be considered when designing heuristic functions. With the 

multi-objective optimization model of USV motion planning in Section 3.2, the framework 

of the MOHA* algorithm is presented, as shown in the Figure 9. The core idea of designing 

the optimal strategy is the definition of the cost function, which can be expressed as: 

 
   

 


   
 

min min

max min max min

- ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

n n n n
n n n

n n n n

g x g x h x h x
f x sd x e x

g x g x h x h x
 (13)

where （ ）ng xmax  is the maximum of the actual cost, （ ）ng xmin  is the minimum of the ac-

tual cost , （ ）nh xmax  is the maximum of the heuristic cost, （ ）nh xmin  is the minimum of the 

heuristic cost,  nsd x  is safety cost heuristic value,  ne x  is energy cost heuristic value, 

  and   are constants greater than 0, which are used to control the weight of safety 

cost and energy cost in the total cost, respectively, thus controlling their influence on the 

final path. 
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Figure 9. Framework of MOHA* algorithm. 

4. Simulation 

In this paper, the MMG motion model and motion mathematical model of the USV 

are built in the environmental model by integrating ENC data and ocean reanalysis data, 

and expressing the complex constraints under ocean dynamic interference elements. 

Thus, the efficient solution and optimization of USV motion planning are realized. The 

proposed approach is simulated using MATLAB R2020b. All simulations are performed 

on a PC with Microsoft Windows 10 as OS with Intel i5 2.90 GHz quad core CPU and 8 

GB RAM. 

The grid map used in the planning is 5000 m × 5000 m in size and 25 m × 25 m in 

resolution. The approach takes sx (1000, 6500, 0) as the starting point, and 
gx  (3500, 2500, 

−π/2) as the ending point. The initial surge speed is given as 5 m/s, and the number of 

extended motion primitives is six. The cost function values are calculated with five differ-

ent optimization objectives, respectively, including only using original Hybrid A*, effi-

ciency-optimized Hybrid A*, safety-optimized Hybrid A*, energy consumption opti-

mized Hybrid A* and MOHA*. The paths that are obtained are shown in Figure 10a–f. 

Figure 10b represents a partial enlarged view of the traditional HA* algorithm path in 

Figure 10a. In the simulation result diagram, blue lines and blue dots represent the mov-

ing primitives and nodes in the expansion process, respectively, while gray lines and gray 

dots represent the moving primitives and nodes in the retreat, respectively, and their den-

sity represents the number of expanded nodes. The red curve is the final path obtained by 

planning. Figure 10c shows the efficiency-optimized Hybrid A* algorithm results . In Ta-

ble 3, it can be seen that the number of extended nodes decreases and the search time is 

shortened overall. The comparison between Figure 10a,d shows that the curvature of 

some moving primitives of USV changes to a certain extent in the area close to obstacles 

with the safety-optimized HA* algorithm, which leads to a relative increase of expanded 

nodes. At the expense of a certain calculation time, the risk of generating paths is reduced 
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by 41.3%. According to Figure 10a–f, MOHA* expands fewer nodes and has a larger dis-

tance from obstacles. The navigation state of USV is changed by the environmental inter-

ference, and the total energy consumption is reduced by 24.18%. The simulation results 

for the five different scenarios verify the effectiveness of the multi-objective motion plan-

ning model, and the number of extended nodes, risk degree, running time and energy 

consumption are compared. The results are shown in Table 4. 

 
(a) (b) 

(c) (d) 

(e) (f) 

Figure 10. Comparison of motion planning paths. (a) Path of original HA* (Test 1); (b) A local en-

largement of original HA*; (c) Path of efficiency-optimized HA* (Test 2); (d) Path of safety-opti-

mized HA* (Test 3); (e) Path of energy-optimized HA* (Test 4); (f) Path of MOHA* (Test 5). 
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Table 4. Comparison of Motion Planning Test. 

Test Number of nodes Risk Degree Time(s) Energy (KJ) 

1 5450 46 14.56 4252 

2 4164 46 11.16 4168 

3 5477 27 14.73 4318 

4 3742 43 9.78 3512 

5 2987 22 7.57 3224 

The MOHA* algorithm is used to carry out four simulation experiments on motion 

planning at different starting points. The results show that the extended search model, 

based on motion primitives and map downsampling, can effectively reduce the number 

of extended nodes. The specific combination of motion primitives are shown in Table 5. 

The final paths of the four groups can avoid obstacles and always keep a safe distance 

from obstacles. Test 5 and Test 6 show that the USV can make good use of environmental 

interference and consume less energy when heading in the same direction as the environ-

mental interference force. In the opposite navigation situation, the MOHA* algorithm can 

also reduce energy consumption while avoiding obstacles, and can select the optimal 

path, as shown in Figure 11a–d. In summary, the results show that, under different work-

ing conditions, using the MOHA* algorithm can result in the USV simultaneously satisfy-

ing multi-constraint and multi-objective optimization in a complex navigation environ-

ment, and find the optimal path. 

Table 5. Combination of motion primitives for Test 6-Test 9 motion planning paths. 

Test Start Position Goal Position Combination of Motion Primitives 

6 (1000, 3000, π/4) (4000, 5000, 0) L1+SL+SL+L1…M1+M2+L1+SL 

7 (2000,4300, −π/2) (3500, 2200, 0) L2+SL+M1+S1…S1+S2+S1+SL 

8 (4000, 6500, 0) (500, 4000, −π/4) SL+L1+L2+L2…SL+M2+S2+S2 

9 (3200, 6500, 0) (2500, 3400, −π/2) M1+M2+M1+S1…M1+M2+S2+SL 

 

(a) (b) 
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(c) (d) 

Figure 11. Comparison of motion planning paths at different starting and goal points. (a–

d) Test 6-Test 9. 

5. Conclusions 

Marine environment information is essential for optimal path planning. In order to 

quantitatively study the influence of wind and current on the navigation of USVs, this 

paper establishes a high-resolution marine environment model that is updated every 

three hours based on the reanalysis data of a numerical prediction model, which provides 

a high-quality marine environment field for USVs. On the basis of the MMG ship 

operation model, the kinematics and dynamics model of the Dolphin-I USV is established, 

the influence of environmental disturbance force on the motion of the USV is considered, 

and the simulation is carried out, which can quantitatively calculate the speed and 

direction of the USV. In this paper, a motion planning MOHA* algorithm is proposed in 

order to simultaneously optimize three objectives (efficient, safety and energy) in dynamic 

marine environments and satisfy multiple constraints. As the navigation environment 

information changes, the MOHA* algorithm can adjust the input parameters to complete 

the path update. The simulation experiments of single-objective optimization and multi-

objective optimization show that the MOHA* algorithm can improve planning time, 

reduce navigation risk and decrease navigation energy consumption simultaneously, 

which can fully ensure the efficiency of the USV in performing tasks and improve their 

independent decision-making ability, thus supporting larger-scale coordinated motion 

planning and control research for USV clusters. 
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